
System on Chip Design of a Linear System Solver
Jiřı́ Buček, Pavel Kubalı́k, Róbert Lórencz, Tomáš Zahradnický

Faculty of Information Technology
Czech Technical University in Prague

Thákurova 9, 160 00 Prague, Czech Republic
email: { bucekj xkubalik lorencz zahradt }@fit.cvut.cz

Abstract—This paper is focused on hardware error-free so-
lution of dense linear systems using residual arithmetic on a
System on Chip Modular System. The designed Modular System
uses Residual Processors (RP)s for solving independent linear
systems in residue arithmetic and combines RP solutions into
solution of the linear system. In order to efficiently exploit
parallel processing and cooperation of the individual components,
a System on Chip architecture of the Modular System with
several RPs is designed, each with a large memory unit used for
data transfer and storage. A Xilinx FPGA architecture with a
MicroBlaze processor is used to verify the proposed architecture.
The experimental results are obtained for an evaluation FPGA
board with Virtex 6 and a 1 GiB DDR memory and serve for
further theoretical analysis of the system performance for various
linear system sizes and the architecture of the system. The
proposed system can be useful as a special hardware peripheral
or a part of an embedded system.

Index Terms—system of linear equations; system of linear
congruences; residue number system; error-free computation;
FPGA; System on Chip

I. INTRODUCTION AND METHOD

Solving a regular system of linear equations (SLE) is a
common task in numerical mathematics and its difficulty
depends on many aspects. The input is an augmented matrix
of the linear system, while the output is a solution vector. The
difficulty of the solution process depends on many aspects,
such as an input matrix dimension, its density, conditioning,
accuracy requirements, and properties of the matrix. Solution
is performed using different numerical methods and algorithms
on all kinds of computational resources including PCs, GPUs,
clusters, specialized hardware, and even supercomputers.

Solution occurs frequently in a floating-point arithmetic
comitting errors and thus there should be a question of
numerical stability. Using floating-point (FP) arithmetic, as
defined in the IEEE 754:2008 Standard [?], requires the result
of each immediate operation rounded to a representable FP
number, committing a roundoff error. Input error magnification
and the accumulation of rounding errors committed during
solution may even destroy the result. For this reason, SLE
solution shall always induce a question of numerical stability,
esp. in case of a large, dense, and/or ill-conditioned system.

Non-rounding arithmetics can go around rounding problems
and such SLE solution processes were already implemented
in special hardware. To avoid undesired rounding effects,
it is possible to use a non-rounding arithmetic such as the
arithmetic of the Residue Number System (RNS) [?], which,

in addition to non-rounding, offers natural parallelism. Parallel
RNS-SLE solution algorithms were proposed in [?][?][?] and
are further exploited by a dedicated hardware Modular System
(MS). Such MS was discussed in [?][?][?][?].

When studying SLE solution methods of in RNS arithmetic,
a gap in the publication activity can be observed since the mid
1990s. This can be explained by limited technology resources
available at that time and thus limited sizes of instances
that could be solved. At the same time, better and more
sophisticated methods for solving SLEs in FP arithmetic were
developed that could be performed on general purpose CPUs.
The current demand for precise SLE solution is based on the
fact that FP arithmetic has its limitations, and at the same time,
progress in technology enables creating hardware solvers that
can effectively use RNS to solve SLEs for real applications.

RNS is currently used to accelerate computation in areas
such as the digital image processing [?][?], digital signal
processing [?][?], and cryptography [?][?].

SLE solution in RNS is built on the Chinese Remainder
Theorem (CRT), and the process proceeds in 3 stages [?]:

METHOD 1
1) Transformation of the augmented SLE matrix1 A | y

into independent linear systems (A | y) mod mi, each
with a distinct prime number modulus mi, for i = 1 : p
being a number of moduli.

2) Solution of p independent systems of linear congruences
(SLC)s in form Ax ≡ y (mod mi).

3) Reconstruction of the SLE solution vector x from its
RNS residual representations x (mod mi).

Using Method 1 has both its pros and cons. An obvious
disadvantage is the increased time and/or space complexity. An
advantage is gained by exploiting the built-in parallelism, ergo
lowering the time complexity by implementing the method
in hardware. Although parallel processing increases spatial
complexity, computation units at the 2nd stage of Method 1
are identical and provide a time-space complexity tradeoff.

The paper continues with design of a dedicated SLE solution
hardware in RNS and provides important results for further
development and verification. Architectures so far designed
and testing of its implementation in FPGA and ASIC tech-
nologies were covered in papers [?][?] and [?]. These papers
focused on design and implementation of an SLC solver as

1The matrix A|y can generally be consisting of floating-point numbers or
integers.978-1-4799-6890-9/14/$31.00 c©2014 IEEE

the most important and computationally intensive part of the
solution process (the 2nd and part of the 1st stage of Method
1), while this paper deals with SLC solvers composed into
a System on Chip including interconnection and integration
into an SLE solving system. Such system can be useful as
a special hardware peripheral attached to a Host System,
or a part of an embedded system requiring SLE solution.
The SoC design provides a platform for analysis of a prac-
tical and functional system. The results of this analysis are
important for subsequent development of the system and
confirmation of the validity of the method and design process.

The paper is organized as follows: Section I (Introduction
and Method) introduced the reader into the context of the
paper. Section II (Previous Work) discusses so far designed
components (SLC solvers) of the designed SLE solver. Sec-
tion III (Architecture of Modular System SoC FPGA) de-
scribes the system architecture of the SLE solver using SLC
solvers (Residual Processors) described earlier. Section IV
(Implementation and Experimental Results) presents the re-
sults of an implementation of the system with multiple residual
processors on FPGA with the ML605 prototyping board.
Section V (Analysis of the Experimental Results) compares the
implementation’s performance in comparison with a model.
Section VI (Perspectives of the Modular System) discusses
possible extensions and improvement of the system, while
Section VII (Conclusion) summarizes the paper.

II. PREVIOUS WORK

SLE solution in RNS performed in dedicated hardware [?]
requires that the hardware is able to perform all Method 1
stages. The architecture of such system is depicted in Fig. 1:

RP1 RP2 RP3 RPpRPk

MODULAR SYSTEM
CENTRAL
CONTROL

UNIT

BUS

HOST
SYSTEM

Fig. 1. The Architecture of the Modular System [?]. The Central Control
Unit controls processes required by Method 1 and communicates with the
Host System. RP1 through RPp are individual Residual Processors, each
with its own modulus mi for i = 1 : p. RPs support all Method 1 stages i.e.
perform transformation into RNS (stage 1), perform SLC solution mod mi

(stage 2), and back-transformation from RNS (stage 3). The Bus denotes an
internal interconnection of all units within the Modular System.

The Modular System (MS) consists of a Central Control
Unit (CCU), p hardware identical Residual Processors (RP)s,
and an interconnection Bus. CCU communicates with an
external Host System such as a computer, coordinates RP’s
work, and dispatches data to and from RPs. Each RP works
with its own distinct prime number modulus mi and in [?]
was designed to support all 3 Method 1 stages. The Bus,
not necessarily implemented as a data/control bus, denotes
necessary interconnection of all units within MS. The follow-
ing paragraphs recapitulate so far achieved progress in papers
[?][?] and [?], all dealing with an RP architecture.

Row
counter

Pivot
index

Pivot
index
vector

Pivot
flags

Step
counter

a11

PO
1

SIn+1SI2 SOn+1SI1 SO2

M
U
X

a12

a21 a22

AUn+2AUn+1AU3AU2

...

...

AUDINV

M

G Mo

N

Zero
detect

Pivot
found

RP Memory

an1 an2 an n+1

a1 n+1

a2 n+1

...

...

...

...

CONTROL
UNIT IDBIN

IDBOUT

DBIN DBOUT

Fig. 2. The Architecture of a Residual Processor. aijs represent elements of
the augmented SLC matrix, AUi stand for individual arithmetic units, PO1

is a parallel output, SIi/SOi denote serial inputs/outputs, IDBIN/IDBOUT

represent internal data buses, while DBIN/DBOUT represent external data
buses. INV, AUD, G, Mo, M, and N are auxilliary units described in [?].
Pivot index vector, Pivot flags, Pivot index, Zero detect, and Pivot found
registers are used to support the non-zero residual pivoting [?].

Paper [?] presents an initial RP architecture (Fig. 2) that
was designed to perform a Gauss-Jordan-Rutishauser (GJR)
elimination upon individual SLCs mod mi stored within the
Residual Processor Memory. RPs contain specialized Arith-
metic Units (AU)s interconnected with the Residual Processor
Memory. This allows performing vector (SIMD) operations
corresponding to the GJR elimination, which is controlled by
the Control Unit. The dedicated hardware for residual pivoting
also solves the zero pivot occurrence problem. Next, there are
a control unit and auxilliary units (see Fig. 2), primarily for
computing a multiplicative modular inverse mod mi (INV)
and the determinant (DET) of the SLC, both needed during
the back-transformation performed in stage 3 of Method 1.

The Memory, implemented in FPGA as a block RAM,
contains residues of matrix A and vector x elements. The
storage of values of a row of the matrix from AU registers
is performed bitwise via Serial Inputs SI1, SI2, . . . , SIn+1.
Loading of values of rows from Memory to AUs is done via
Serial Outputs SO2, SO3, . . . , SOn+1. The bits of element
values of the first matrix column are read by the Control
Unit via the parallel bus PO1. All AUs and the Control
Unit are interconnected via Internal Data Buses IDBin and
IDBout. The above RPk architecture can solve systems of linear
congruences (SLC)s:

Axk ≡ b (mod mk). (1)

RPs together with the Control Unit of the MS also fully
support all conversion operations from the integer set to RNS
and also partially back from RNS to the integer set.

The Arithmetic Units AU2, AU3, . . . , AUn+2 and AUD
design is modified from the original circuit in [?] by using

a strictly synchronous design supporting computation of the
modulo operation on multi-word inputs, which is used during
loading of a new matrix into MS. Modular multiplication
and addition operations are calculated during elimination.
Multiplication operations are carried out using a shift-add
algorithm with interleaved modulus subtraction, while the
modular inverse is calculated with the left-shift algorithm [?].

The Control Unit contains a finite state machine using a
memory-based transition and output functions. It implements a
GJR elimination algorithm as well as data input and output and
allows flexibility with regard to modification and extensions.

The proposed architecture was implemented in FPGA,
tested for various matrix dimensions, and the amount of used
block RAM and speed were evaluated. The architecture was
implemented as a post place and route model in FPGA for
various SLC dimensions up to n = 1000 and with 24-bit mi.
Implementation results performed on Xilinx Virtex 6 FPGA
identified a bottleneck in the memory subsystem because of
massive data accesses and pivoting. The maximum n = 1000
sized matrix took approximately 90% of the available block
RAM (BRAM) and approximately 60% of all available slices.
The implementation in FPGA was approximately 2 times
faster than its GCC-compiled software counterpart running on
an Intel T9400 CPU running at 2.53GHz.

The FPGA implementation was reimplemented in ASIC and
the memory size and speed were again compared. Paper [?]
focuses on the aforementioned bottleneck, implements the
design in ASIC, and compares it to the FPGA implementation.
The fact that the design was implemented in ASIC allowed a
larger memory subsystem than it was possible in FPGA. In
ASIC, the memory blocks are composed of generated static
RAM blocks. The memory size is determined by a generic
parameter that is used to generate the corresponding memory
blocks. RP design for SLCs with n > 1000 produces a
chip with an area larger than 100mm2 in a 130 nm ASIC
technology using static RAMs. Both designs were compared
and in the n = 1000 case the ASIC implementation was about
4 times faster than its FPGA analogue.

Next, three ASIC implementations in different technologies
were compared and evaluated. Paper [?] describes an ASIC RP
implementation in three different standard cell libraries and
compares them together. The architecture remained the same
and the libraries were 130 nm, 110 nm high-speed, and 55 nm
low-power. The maximum dimension that fitted into an area
of about 1 cm2 was an RP with n = 1000 in the 130 nm and
110 nm technologies, while n = 2000 in the 55 nm technology.

The purpose of this paper is to integrate Residual Processors
with the Central Control Unit and design the communication
of the MS with the Host System.

III. ARCHITECTURE OF MODULAR SYSTEM SOC FPGA

This section deals with design of an interconnection of the
units within MS. The architecture, which is depicted at Fig. 3,
is designed to allow interconnection of RPs with the Host
System (HS), Main Memory, and other units to perform Stages
1 and 2 of Method 1.

Ethernet
Interface

SDRAM
Controller

RP2

...R
P

 I
nt

er
fa

ce

RPp

Main Memory

BusHost
System

Modular System

AXI4

FPGA

Central Control Unit
(MicroBlaze)

Residual
Processor 1

Fig. 3. The Modular System as a System on Chip in FPGA. The Central
Control Unit is a MicroBlaze soft-processor. RP1 through RPp are individual
Residual Processors, each with its own modulus m1 to mp. RPs are connected
using an internal bus and form a common AXI4 bus master peripheral. The
AXI4 crossbar switch is used for a high speed interconnect, while the Bus is
used for a lower speed programmed I/O.

In Stage 1, the augmented matrix is sent to the MS from
the Host System using the Ethernet Interface. It provides
a good flexibility and is supported in FPGA development
systems by several performance options. The matrix in form
of multi-word integer numbers is transferred and stored into
the Main Memory and is therefore prepared for loading and
(possibly parallel) conversion to modulus mi. Main Memory
will hold the augmented matrix of the SLE to be solved and
is connected to the FPGA with a (DDR3) SDRAM Controller
supporting burst transfers in between the memory and other
parts of the system. A high-throughput channel is created
using a high performance interconnect (AXI4 in crossbar
configuration) between the SDRAM Controller and a set of
RPs. RPs share a common data channel from Main Memory
since they always get the same data. During loading of a
matrix, each RP applies the modulo operation on the data with
its modulus mi. The set of RPs is connected using a common
bus-master AXI4 peripheral. The system contains a Xilinx
MicroBlaze processor as the Central Control Unit (CCU)
for overall communication, data loading, and synchronization
control. The MicroBlaze processor was chosen as a convenient
way to create a prototype implementation including network
protocol handling. Although MicroBlaze is not a final solution,
it is sufficient for performing experiments and evaluation of
basic properties of the proposed system.

The processor transfers the data over the Ethernet Interface
to RP memories and once loaded, they automatically start
solving the SLCs. The processor uses a network protocol for
communication and data transfer from the Ethernet Inteface
to the memory. After receiving the matrix data, it starts the
process of loading this data from memory to the RPs. This is
done by initiating a bus master read by the RP peripheral from
a specified address in memory. After loading and converting
all the data (Stage 1 of Method 1), the RPs automatically start
solving their SLCs independently (Stage 2). The CCU can
either wait for the RPs to complete or perform other tasks
such as communication to load another instance from the HS.

The SLE solving process according to Method 1 can be
implemented on the architecture in Fig. 3 using two algorithms
synchronized by data communication over the Ethernet Inter-
face (Eth). The algorithms, Algorithm 1 for the Host System,
and Algorithm 2 for the Modular System, follow here:

ALGORITHM 1. Host System – HS.
1) Send the SLE augmented matrix to the MS over Eth
2) Wait until MS finishes computing the results
3) Receive the results from MS over Eth
4) Perform a partial back conversion
5) Enough moduli for a whole back conversion? ⇒ END.
6) Goto 2

ALGORITHM 2. Modular System – MS.
1) Receive the SLE aug. matrix from the HS over Eth
2) Load the matrix in all available RPs
3) Perform elimination on all available RPs
4) Read the results
5) Send the results to the HS over Eth
6) Load the matrix in all available RPs with new moduli
7) Goto 3
The system is now ready to perform experiments and

evaluate the experimental results.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The designed architecture of the MS (see Fig. 3)
was implemented in FPGA and verified by simulation
and hardware prototyping. The implementation and
testing platform used for the development was
a Xilinx ML605 board with a Virtex-6 LX240T
FPGA, 1 GiB DDR3 SDRAM memory, gigabit Ethernet
interface, and other peripherals. The MS is controlled using
a MicroBlaze soft-processor inside the FPGA.

The MicroBlaze processor controls the transfer of data be-
tween Main Memory and the RPs. External DDR3 SODIMM
was the Main Memory used to store the augmented matrix of
the SLE, and the processor program code.

The hardware (RPs, the RP bus-master and slave interface)
was described in VHDL, while the software running on
MicroBlaze was written in C. The MicroBlaze processor is
an IP core included in the development tool. Xilinx ISE
and Embedded Development Kit (EDK) development tools
were used to describe, synthesize, and implement the SoC
architecture into FPGA.

The selected FPGA platform allowed for a system with p =
1, 2, . . . , 5 RP units and matrix dimensions n = 20, 100, 200.
Each matrix element is q = 3 words long, where each word is
z = 24 bits long. Each modulus mi is also 24-bit all internal
computation is done in a 24-bit modular arithmetic, and the
following text assumes these values. Parameters p, n, q, z are
configurable at synthesis time. The maximum attainable matrix
dimension n depends on the number of RPs p implemented
on one FPGA. For up to n = 200, we could attain the default
clock frequency of the MicroBlaze processor of 100 MHz.

The RP peripheral attachment to the AXI4 crossbar was
created using a bus master template from Xilinx EDK. The
RPs are connected to the rest of the system via a FIFO. The
networking code for the MicroBlaze processor was based on
a TCP echo server example contained in the EDK and was
extended to enable data transfer in between the Main Memory
and an RP peripheral. Time measurement was done using a
dedicated timer peripheral and reported using a serial interface.

The testing data for our experiments were generated using
Wolfram Mathematica. We have generated several SLE in-
stances together with their solutions for verification. Data were
transfered between PC and the tested system over Ethernet
using the ncat2 tool.

The times needed for processing of individual steps, mainly
for load, elimination, and result read are collected. The re-
sulting measurements are presented in Table I. The column
Load describes time needed for loading data from the Main
Memory to all RP units including reduction modulo mi,
Elim describes time needed for computing the solution vector
modulo m1, . . . , mp by GJR elimination in all p RPs, and
Read denotes time needed to retreive the results form the
corresponding number of RPs into the Main Memory. Loading
and elimination are performed with all RPs in parallel, while
the read operation is performed sequentially. Table I shows
that most of the time is spent in elimination. The chosen
platform (Xilinx Virtex-6 LX240T) allowed us to implement
a maximum of 2 RPs for n = 200.

TABLE I
LOAD, ELIMINATION, AND READ TIMES FOR THE MS ARCHITECTURE

WITH MULTIPLE RPS.

n Load [ms] Elim [ms] Read [ms] for a number of RPs
1 2 3 4 5

20 0.13 0.51 0.015 0.025 0.036 0.047 0.058
100 2.18 12.60 0.054 0.104 0.154 0.204 0.254
200 7.46 50.41 0.103 0.202 - - -

The gathered performance data from a real implementation
are important for evaluation of the whole modular system
operation as it reflects the real behavior including external
parts (e.g. the DDR3 memory). The measured time and area
complexity are used for subsequent analysis, which is the topic
of the next section.

V. ANALYSIS OF THE EXPERIMENTAL RESULTS

The number of clock cycles needed for load and elimination
process can be calculated by the equations (2) and (3) which
were presented in [?]. These equations express the behavior
of a model of the RP without accounting for its surroundings,
i.e. interface to other parts of the MS.

load(n, z, q) = ((2n+ 2z + 5)q + 7)n+ 1, (2)
elim(n, z) = ((5z − 2)n+ 3)n+ 14. (3)

The load(n, z, q) equation describes the number of cycles
needed to accept the matrix of n by n+1 elements, each having

2Ncat 5.51 (http://nmap.org/ncat)

q words z bits long. It includes the cycles needed to reduce
the matrix modulo a z-bit modulus, and storing the matrix in
the RP’s internal Memory. The elim(n, z) equation describes
the number of cycles an RP needs for the GJR elimination to
compute the solution vector, assuming the data already loaded
and stored in the internal Memory.

TABLE II
LOAD AND ELIMINATION TIME FOR OUR MS ARCHITECTURE.

n
Estimated Measured

Load [ms] Elim [ms] Load [%] Load [ms] Elim [ms] Load [%]
20 0.06 0.47 11.3 0.13 0.51 21.2

100 0.77 11.8 6.1 2.18 12.6 14.7
200 2.73 47.2 5.5 7.46 50.4 12.9

The experimental measured times were compared the with
the theoretical estimation form equations (2) and (3). The
clock period was assumed to be 10 ns (corresponding with
the implementation). The comparison is shown in Table II
indicating a match of the measured elimination time with
the prediction. The elimination process is largely independent
of the control by the MicroBlaze Central Control Unit and
the time measurement was burdened only with a small error
caused by reading state of an external timer.

The measured load times however did not match the predic-
tion. Load times were ≈ 2.7 times longer than the estimation.
Load times were first estimated with an assumption that all
data were available when needed. In the real system, control
and synchronization overhead was added to the loading times,
causing this load time growth. Even though data were read
from Main Memory using AXI4 master read transfers, it was
necessary to read them in blocks (of 32 words) under MicroB-
laze software control. When loading data, the RP(s) compute
remainders of loaded data modulo the assigned modulus. Thus
some form of throttling or flow control had to be implemented
and in our case, this was done in software. The associated
overhead could be decreased by improving the master read
data throttling without the need for software control.

Comparing the predicted results from analyzes with mea-
sured values (c.f. Tab. II) provided a good match of predicted
values with the measured values for the elimination. Such
match was not found for the load part, which was predicted
by equation (2), not involving a communication and synchro-
nization overhead. The load overhead was proportional to the
predicted values and therefore can be extrapolated for larger
instances. Even with the current overhead, the load portion of
the time was small compared to the elimination.

VI. PERSPECTIVES OF THE MODULAR SYSTEM

In this section, a performance analysis of a technically real-
istic hypothetical Modular System configuration is presented.
The experimental data gathered in the previous sections will be
used to evaluate performance of the overall projected system.

The number of z-bit moduli can be derived from
Hadamard’s inequality. Let us have a set of k distinct prime
number moduli β = {m1, m2, . . . , mp, . . . , mk }. The prod-
uct of moduli M =

∏
mi needed to express the solution

TABLE III
MEASURED AND EXTRAPOLATED TIMES FOR 1 RP

n Load [ms] Elim [ms] Read [ms] Total [ms]
20 0.13 0.51 0.015 0.66

100 2.18 12.60 0.054 14.84
200 7.46 50.41 0.103 57.96

1000 174 1260 0.5 1434
2000 688 5039 1 5728

follows from the Hadamard’s inequality [?] giving an upper
bound of the maximum possible absolute value of a matrix
determinant. From this bound, a number of z-bit prime moduli
needed to express the solution can be derived. The number of
moduli k is generally higher than the number of RPs p in MS,
and thus it is necessary to process k by p moduli in parallel.

It is assumed a modulus size z = 24 bits, input integer size
qz = 72 bits (q = 3), SLE size of n = 20 to 2000, the number
of RPs in the system p = 25 to 1000. The operating frequency
of the MS is fcl = 100 MHz (taken from the implementation),
and data throughput between the HS and MS is 1 Gibit/s.

Table III contains the times of loading, elimination, and
result read of a single RP. Numbers printed in bold signify
measured values, while the remaining numbers (for n = 1000
and 2000) were extrapolated from model equations (2) and (3)
with respect to the actually measured times.

In order to analyze the performance of the system, it was
necessary to fractionate the time in a communication and
computation part. First, the communication part is analyzed.

In Table IV we present the amount of data that is sent from
the Host System to the Modular System to transfer the SLE
augmented matrix, and also the amount of data received as
the solution, i.e. MS to HS. The received data depends on the
number of moduli actually used that is always less than the
maximum number of moduli k, which is considered.

TABLE IV
ETHERNET TRANSFER DATA SIZE AND ESTIMATED TIME (1 GIBIT/S)

Max Size [KiB] Data Transfer
n k HS to MS MS to HS Total Time [ms]

100 314 89 93 182 1
200 632 353 372 725 6

1000 3208 8798 9408 18206 149
2000 6457 35174 37853 73027 598

From Table IV we can see that for the considered cases, and
thus the required data amounts, the estimated times are in the
order of hundreds of milliseconds. If needed, the times could
be improved by using a faster data connection (e.g. a 10 Gibit/s
Ethernet or PCI Express).

Next, we analyze the time taken by the computation part. We
use the values for a single RP from Table III, and extrapolate
based on the considered a MS with the number of RPs p
from 25 to 1000 and n from 100 to 2000. The results of the
extrapolation are presented in Table V.

The k column in Table V denotes the maximum number of
moduli needed for the solution. The loading and elimination

TABLE V
SOLUTION TIME FOR DIFFERENT SIZES AND NUMBERS OF RP UNITS

Solution time for a MS with p RP [s]
n k p = 25 p = 50 p = 100 p = 200 p = 500 p = 1000

100 314 0.203 0.110 0.06 0.04 0.04 0.04
200 632 1.53 0.80 0.43 0.25 0.14 0.14

1000 3208 185.5 93.55 47.57 24.58 10.78 6.19
2000 6457 1485.6 746.0 376.2 191.3 80.3 43.3

process is done in parallel by p RPs. If more than p moduli
is needed, RPs are assigned a new moduli set and the process
is repeated (c.f. Algorithms 1 and 2). The results show that
solving larger systems (n ≥ 1000) in reasonable time (units
and tens of seconds) can be achieved by using parallel systems
with p = 100 and more RPs. Although the times may seem
high for the considered SLE dimensions, it must be noted that
the solution occurs without rounding errors. By comparing the
computation and communication parts of the time, it is evident
that even for p = 1000 RPs, and n = 2000, the communication
time is in orders of magnitude less than computation.

The performance can be further improved by fine-tuning
the design of the architecture having speedup potential in the
order of a few units. The architecture can be implemented in
ASIC, which could speed up the system up to 10 times. By
employing a larger word size, the performance can be further
improved. The number of moduli needed is always less than
the theoretical upper bound considered in our data. In most
cases, around a half of the maximum number of moduli is
needed. Considering the mentioned possible improvements,
the SLE n = 2000 could be solved on a MS with p = 500
to 1000 RPs in a time under 1 second. Such a result would
be useful for a number of applications requiring solving SLEs
without rounding errors.

The backward conversion from the remainder representation
into the rational number set, which is performed by the HS,
also contributes (not necessarily significantly) to the overall
time and it is therefore important to perform the conversion
efficiently. One such parallel approach is described in [?].

VII. CONCLUSION

Solving dense regular systems of linear equations (SLE)
without loss of precision is a demanded task of numerical
mathematics. The Modular System (MS) as a System on Chip
(SoC) architecture of an SLE solver using residue arithmetic
to avoid rounding errors is presented. MS was described in
VHDL, designed, and a prototype was implemented on a
Xilinx ML605 development board with a Virtex 6 FPGA with
a 1 GiB DDR3 memory and a gigabit Ethernet interface, which
was used to transfer data between the Host System and the
evaluation board.

The implemented design was used to verify correctness
of the architecture and to gather time and performance data
with a limited number of a maximum of 5 parallel Residual
Processors (RP) and 200 equation SLEs. Measured time also
contained a control overhead of starting data transfers and
start/end of the elimination process. Elimination times agreed

with the estimation and high load time overhead was identified
and future improvements suggested. Time and area complexity
of the real implementation including external memory is useful
for future development of a complete system with many
residual processors. Such a system can be useful as a hardware
peripheral attached to a Host System, or part of an embedded
system needing SLE solution.

The measured time and area complexity were used for
subsequent analysis and extrapolation to a larger number (up
to 1000) RPs and larger SLE instances (up to 2000 equations).
Considering several possible improvements, solution times of
2000 equation SLEs under 1 second could be attainable.

ACKNOWLEDGMENT

This research was supported by the Czech Science Founda-
tion project no. P103/12/2377.

