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Abstract 

This paper describes a highly reliable digital circuit 
design method based on totally self checking blocks 
implemented in FPGAs. The bases of the self checking 
blocks are parity predictors. The parity predictor 
design method based on multiple parity groups is 
proposed. Proper parity groups are chosen in order 
to obtain minimal area overhead and to decrease the 
number of undetectable faults. 

 

1. Introduction 
This paper presents a parity predictor design method 

based on parity nets grouping. FPGAs are based 
on SRAM memories sensitive to Single Event Upsets 
(SEUs), therefore using FPGA circuits in mission 
critical applications without any method of SEUs 
detection is impossible. Our structure increases 
dependability parameters together with ensuring a 
relatively low area overhead compared with classical 
methods such as duplication or triplication [1]. Our 
solution assumes a possible dynamic reconfiguration 
of a faulty part of the system.  
 

2. Proposed Method 
There are three basic qualitative criteria in a field 

of CED: fault security (FS), self-testing (ST) and 
totally self-checking (TSC) properties. Our previous 
results [2] show that to fully satisfy the TSC property 
(to 100%) is difficult, so we have proposed a new 
structure based on two FPGAs. Each FPGA has one 
primary input, one primary output and two pairs 
of checking signals OK/FAIL. 

The parity predictor is used to generate proper 
output code of the circuit. These techniques ensure 
small area overhead and higher fault coverage while 
the fault coverage reached is not 100% [3, 4, 5]. 
 

2.1.  Parity Bits Grouping 
An algorithm used for grouping the circuit’s outputs 

is described here. Two outputs are XORed in each step, 
until a desired number of parity bits is obtained. The 
selection of outputs to be joined is of a key importance 
for the final design area overhead. We propose a 
method based on a “similarity” of functions. The 
algorithm is based on these assumptions: 

(1) When two equal functions are XORed, the 
result will be ‘0’ for all minterms. If values of 
two functions will differ in a few minterms, 
there will be only few ‘1’ values in the resulting 
function. Experiments show that a low number 
of ‘1’s at the output is very advantageous for the 
subsequent minimization process (Figure 1). 

(2) Two inverse functions, when XORed, yield a 
‘1’ value for each minterm. If the output values 
of two functions are inverse but a few minterms, 
there will be only few ‘0’ values in the result, 
which is advantageous too (Figure 1). 

(3) If two functions are “similar”, there is a big 
probability that they will share a lot of logics.  

A typical dependency of an area on the number of 
‘1’ values in the output is shown in Figure 1. The 
number of ‘1’s in the output varied from 10% to 90% 
while the number of gate equivalents of the circuit 
obtained after a minimization by BOOM [6, 7] was 
measured. 
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Figure 1: Dependency of the area overhead 

on the ratio of output ‘1’s 
 



2.2. Evaluation of Similarity of Functions 
The first two criteria could be a sufficient criterion 

to choose the two outputs to be joined. Experiments 
show that this is not an efficient way to do so (see 3.1). 
A scoring function is introduced to obtain better 
results. Its value describes the measure of a 
“similarity” of the two functions. The method is based 
on a comparison of values of two functions, when a 
value of one input variable is changed. To compute the 
values of scoring functions, all the minterms are 
processed. For each minterm each input variable value 
is changed and values of the outputs of the two 
functions are observed. If both values remain 
unchanged, the scoring function is increased by one, 
since this represents the same behavior of these two 
functions. If both values change, the scoring function is 
increased by one as well. 

3. Experimental Results 
3.1.  Comparison of the Methods 

The results obtained by our case study were 
validated on MCNC and ISCAS [8] benchmarks. 

Four methods are compared here, to evaluate the 
area overhead reached by each of them. The newly 
proposed method, described in Subsection 2.2 (“Prop”) 
is compared with two simple methods where only the 
minterm values are compared (“Equal”, “Inverse”), (1) 
and (2) in 2.1. Then, values obtained by the proposed 
method are compared to a random choice of outputs 
to be grouped together (“Rand”). An average of 500 
random grouping is considered in this experiment. 

All the values are in terms of gate equivalents, 
obtained after the synthesis. An area reduction 
obtained by the proposed method, with respect to the 
random method is shown in the “Red.” column. It can 
be seen that there is often a significant improvement 
with respect to the random method. Simple “Equal” 
and “Inverse” methods do not yield satisfactory results. 

 
Table 1. Comparison results 

Circuit Prop 
[GEs] 

Equal 
[GEs] 

Inverse 
[GEs] 

Rand 
[GEs] Red. 

alu1 156 1670 1442 967 83.9 % 
apla 76 81 136 128 40.6 % 
b11 21 20 17 36 41.7 % 
alu2 40 1122 547 418 90.4 % 
alu3 320 534 573 433 26.1 % 

s1488 241 299 289 364 33.8 % 
 

3.2.  Evaluation of the Availability Parameters 
The results obtained by the computation of the 

models are summarized in Table 2. Here “Circuit” is the 
benchmark circuit, “AO” is the area overhead, “C” and 
“D” is the number of undetected faults, that are not 

detected by code word , “SP” is number of parity nets 
and “Ass” is the steady-state availability 

Table 2. Availability parameters 
Circuit AO [LUT] SP AO C D Ass [%] 

alu1 55 1 687% 0 0 1 
alu1 16 2 200% 0 0 1 
apla 24 1 53% 1 109 0.9999912 
apla 22 2 49% 1 92 0.9999928 
b11 3 1 8% 42 59 0.9999938 
b11 7 2 18% 38 52 0.9999937 
alu3 34 1 121% 0 63 0.9999897 
alu3 33 2 118% 0 63 0.9999888 

s1488 41 1 13% 94 321 0.9999962 
s1488 94 2 30% 80 267 0.9999961 

4. Conclusions 
A fault tolerant system design method based 

on parity bits grouping is proposed. We design a parity 
predictor, composed as a duplicate of the original 
circuit with its outputs joined by “xor” gates. The 
method is based on an algorithm properly choosing the 
circuit outputs to be joined. This yields a big area 
overhead reduction, with respect to other methods. The 
method has been verified by experiments including 
dependability models for dependability computations. 
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