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Abstract— The residual processor is a dedicated hardware for
solving sets of linear congruences. It is a part of the modular
system for solving sets of linear equations without rounding
errors using Residue Number System. We present a new FPGA
implementation of the residual processor, focusing mainly on the
memory unit that forms a bottleneck of the calculation, and
therefore determines the effectivity of the system. FPGA has
been chosen, as it allows us to optimally implement the designed
architecture depending on the size of the problem. The proposed
memory architecture of the modular system is implemented using
the internal FPGA block RAM. Our goal is to determine the
maximum matrix dimension fitting directly into the FPGA, and
achieved speed as a function of the dimension. Experimental
results are obtained for the Xilinx Virtex 6 family.

I. INTRODUCTION

Residue Number System (RNS), despite being known for a
long time, is becoming a hardware attractive arithmetic today,
not only because it permits us to represent long integers as
independent combinations of small integers based on the Chi-
nese Remainder Theorem, but also because it requires a simple
arithmetic unit. These properties offer natural parallelism, lead
to simpler hardware, and reduce chip size when compared to
a traditional floating point unit implemented in hardware.

RNS is used in areas of digital image processing [1][2],
digital signal processing [3][4][5], and in public-key [6] and
elliptic curve [7][8] cryptography. RNS is also used to simulate
multiple precision arithmetic and for error-free solution of
linear systems [9][10]. Error-free solution of linear systems
is often needed in case of large, dense and ill-conditioned
systems, where rounding errors can lead to long run times due
to stability problems, or even hinder the solution completely.

Performing error-free solution of linear systems on regular
CPUs has large time (and area) complexity. The CPU architec-
ture is usually not optimized for the algorithms and operations
needed (parallelism with respect to multiple modules, modular
arithmetic operations etc).

Papers [11] and [12] design a hardware RNS linear equation
solver — Modular System (MS) — whose implementation
was very difficult at that time. With current technologies, it
is possible to implement the system, and especially FPGA
technologies offer a straightforward implementation with re-
configuration possibilities based on the cardinality of the
problem and optimize for time and area.
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Fig. 1. Architecture of the Modular System [11]

However, for an efficient FPGA implementation, several
parts of the system must be redesigned to use resources found
in modern FPGAs. This is true especially for the memory
architecture, which in [12] used asynchronous logic and cus-
tom memory elements. We present a new memory architecture
using standard RAM blocks found in most recent FPGAs. We
also redesigned the addressing and pivoting logic to support
efficient implementation of the elimination algorithm used.

After a brief introduction of the architecture of the MS for
solution of sets of linear equations (SLE)s Ax = b, the paper
focuses on the memory architecture of the residual processors
(RP)s inside the MS. Next, there follow FPGA implementation
results for various problem sizes, their analyses, and evalua-
tions. Finally, the paper is concluded with the properties of
the FPGA residual processor implementation.

II. ARCHITECTURE OF THE MODULAR SYSTEM

Paper [12] describes the method, the algorithm, and the cor-
responding parallel hardware architecture of the MS (Fig. 1).

It should be noted that evaluation in each modulus is
performed independently of the others and that the addition is
carry-free, subtraction borrow-free across the individual mod-
uli, and therefore the computation can occur safely in parallel.
Once the computation is done, the result is transformed back
into the rational number set either with the Chinese Remainder
Theorem or the Mixed Radix Conversion.

The error-free solution of an SLE with operations performed
in residue arithmetic is implemented in this special MS. The
MS typically has a parallel SIMD architecture, and consists of
a control unit and several processing units – (RP)s denoted as
RP1, RP2, . . . , RPp interconnected with a BUS (see Fig. 1).

III. RESIDUAL PROCESSOR ARCHITECTURE

The architecture of the residual processor RPk is depicted
in Fig. 2 consisting of Memory, Arithmetic Units AU2, AU3,
. . . , AUn+2 and the Control unit.
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Figure 2: Residual processor

The main contributions of both papers are:

• The design of a new hardware architecture of a residual processor (Figure 2 of [15]
and Figure 1). The interconnection of memory and arithmetic units covered by a
patent [16] (see Figure 2). The architecture of RPs lower the time complexities of
the conversion from SLE to SLCs and the SLCs computation by a factor of n.

• An e�cient solution of a problem with negative values of the resulting vector.

• A discussion and calculation of the probability of a failure in the situation when
gcd(M, d) > 1, i.e. dk ⌘ 0 (mod mk) for any k 2 [1, r].

• An introduction of a hardware solution to the so-called ”non-zero residue pivotiza-
tion” of the Gauss-Jordan elimination of SLC.

• A detailed design of the hardware architectures of individual parts of the modu-
lar system with respect to an e�cient execution of basic arithmetic operations in
modular arithmetic.

The method of solving a SLE implemented in the modular system uses only four basic
arithmetic operations, namely addition, subtraction, multiplication and division, to obtain
the solution vector. For solving the SLC using RP’s, four basic arithmetic operations
executed in modular arithmetic are used. An important operation in modular arithmetic
is multiplicative modular inverse because of its largest computational complexity. The
modular system has a very e�cient hardware implementation of addition, subtraction
and multiplication. However, multiplicative modular inverse is realized by a look-up
table (ROM), where for each integer in Galois Field GF(mk), a value of the multiplicative
inverse modulo mk is associated. Such a solution has several drawbacks. First, with
a growing modulus mk the time complexity of the conversion also grows because larger
addresses need to be decoded. The capacity of the ROM grows with the size of mk

exponentially. For some parameters of a SLE to be solved using the modular system the
look-up table takes more space than the residual processor. Due to this fact it was needed
to solve the problem of e�cient computation of the multiplicative inverse (INV unit of
RP, see Figure 2) in Galois Field GF(p), where p is prime, and its implementation in
hardware.
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Fig. 2. Architecture of the Residual Processor [11]

The memory contains residues of matrix A and vector x
elements. The storage of values of a row of the matrix from
AU registers is performed bitwise via Serial Inputs SI1, SI2,
. . . , SIn+1. Loading of values of rows of Memory to AUs
is done via Serial Outputs SO2, SO3, . . . , SOn+1. The bits
of element values of the first matrix column are read by
the Control unit via the parallel bus PO1. All AUs and the
Control unit are interconnected via Internal Data Buses IDBin
and IDBout. The above RPk architecture can solve systems
of linear congruences (SLC)s Axk ≡ b (mod mk). RPs
together with the Control unit of the MS also support all
conversion operations from integer to RNS and vice versa.
The INV and DET units compute the modular multiplicative
inverse and the determinant of A, respectively.

All SLCs in MS are solved with the Gauss-Jordan elim-
ination with Rutishauser modification [12] (GJR), which is
especially suitable for hardware implementation. The elimina-
tion process in RNS is specific in a way that it has to perform
a so called “nonzero residue pivoting” that was introduced in
[11]. Pivoting and massive data access constitute a bottleneck,
and therefore the memory architecture design is critical and is
dealt with in the next section.

The Rutishauser modification of Gauss-Jordan elimination
implies that the column data is shifted by one column to the
left during each elimination step. The shift is accomplished
by the AUs and the memory interconnection design in Fig. 2.
In addition, the first column of the SLC matrix contains values
of the elements intensively used during the elimination process
and for this reason the output from the first column needs to
be parallel (these values are used in the INV and DET units).
The values in the first column determine the first multiplication
operand in the entire row being processed, both in pivot
elimination and row reduction. The other columns ai2 to ain+1

inclusive are used as the second multiplication operand, and
also for addition operations. Assuming serial-parallel (shift-
add) multiplication, we need to read individual bits of these
values, thus requiring serial access only.

A. New Memory Architecture and Pivoting

The elimination process requires nonzero residue pivoting.
The pivot column is always the first column of the matrix, and
all nonzero values are equally acceptable as pivots. Search for
a pivot is done sequentially; however, this search can be easily
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Fig. 3. New architecture of the Residual Processor including new memory
architecture

performed concurrently with write operations to the memory.
The search is performed while the matrix is loaded or updated
during computation. In most cases, the pivot is passed to the
inversion unit (INV) long before the inverse is needed. In order
for a value to be accepted as a pivot, i) it must be nonzero,
ii) the row has not contained a pivot yet, and iii) no pivot has
yet been found for this elimination step.

Once the pivot is found, its row index must be stored in
a pivot index vector at the address of the current elimination
step. The pivot row must be flagged in order to skip it during
the pivot search performed in subsequent elimination steps. If
no pivot was found, the matrix is singular in this modulus.

The elimination is performed by rows. The architecture must
support addressing of the pivot row first; then sequentially
reduce memory matrix rows, with an exception of the pivot
row which must be skipped. The first value in each row must
be read in parallel. This value is either the pivot, which is
inverted, or a value from a different row, which is negated.

The remaining values in each row are read bit-serial (but
all values concurrently) from the MSb first. This ensures the
correct order for left-shift modular multiplication and addition,
and follows from the design depicted at Fig. 3.

Upon completion of the elimination process, the solution
vector appears in the first column. The order of its elements
corresponds to the pivot row indices and may need to be
reordered. The result is therefore read out in correct order
by addressing through the pivot index vector.
Algorithm 1. Elimination algorithm including the pivoting
instructions from Table I. Parameters: n is matrix dimension,
e is word length.

1. k = 0, assuming pivot is found during loading of matrix
2. while k < n begin
3. PSI
4. GETD



TABLE I
PIVOTING INSTRUCTIONS USED IN ALGORITHM 1.

Instruction Description
PSI Select pivot row
GETD Read data row from memory
PUT Write data to memory and test for pivot
PTS Test and skip pivot row during reduction
PCRR Reset row counter

5. multiplication of the pivot row with pivot−1

(5e clocks)
6. PUT
7. PCRR
8. repeat n− 1 times begin
9. PTS

10. GETD
11. reduction of other matrix rows using adjusted

pivoting row (5e clocks)
12. PUT
13. end repeat
14. end while

B. Arithmetic Units, Modular Inverse and Controller

The Arithmetic Units AU2, AU3, . . . , AUn+2 and AUD
design closely follows the original design in [12]. The modular
inversion unit INV was originally designed as a look-up table.
However, for larger moduli, this table grows too large, and
therefore we use a new inversion unit computing modular
inverse with the left-shift modular inverse algorithm [13].

The controller contains a finite state machine using a
memory-based transition and output functions. This allows
flexibility with regard to modification and future extensions.

C. FPGA Implementation

The memory architecture as a critical part of the RP can
be divided into two parts: the pivoting unit and common
memories. The pivoting unit is always implemented in FPGA.
Memory can be implemented internally using block RAM
components, or externally e.g. by a DDR SDRAM. The main
implementation differences are in their parameters such as
memory capacity, throughput, and latency. On one hand,
the internal implementation with FPGA memory has small
capacity and low latency, while on the other hand the external
memory provides large capacity but also a high latency.

We design an architecture with the internal memory. We can
estimate the size of the largest matrix with respect to maxi-
mum size of the block RAM given by the FPGA chip type.
Nonetheless, the maximum frequency of the implemented
design cannot be easily estimated or calculated. Our tested
memory architecture consists of two parts: i) the internal
memory, and ii) a pivoting control logic to support addressing
during the calculation in the RP. The design of our memory
architecture is shown in Fig. 3.

The memory matrix consists of the first column ai1 and
the remaining columns ai2 to ai,n+1. All columns share a
common address. During pivot search, the address is taken

from the Row counter and if the pivot is found in the current
row, the address is written into the Pivot index vector at the
address of current elimination step, and the Pivot flag for the
address of the current row is set. At the same time, the pivot
address is stored in the Pivot index register for comparison
during the next elimination step.

IV. EXPERIMENTAL RESULTS

All experiments were conducted on the residual processor
architecture consisting of: data memory, Pivot index, Pivot
flags, counters, arithmetic units, inversion unit, and control
units. The tools used for simulation and implementation were
selected with respect to the hardware programming language.
The design was written in VHDL. The maximum matrix
dimension n and the word length e and are configurable at
synthesis time using generics. The actual matrix dimension,
value of the modulus and matrix data are set at runtime.

The design was simulated, synthesized and implemented
(mapped, placed and routed). The experiments were performed
on one residual processor (single modulus), including the input
data modulo reduction and matrix elimination. (Transforma-
tion into the rational numbers was not performed).

To verify the design, we added test units increasing testa-
bility and observability of the simulated design to verify
the calculation. The test data were generated using Wolfram
Mathematica and converted with a Python script. The simula-
tion of the residual processor architecture ran within Mentor
ModelSim. The simulation results and Mathematica results
were compared by another script. The simulation was done for
matrices up to n = 100, greater matrices were not simulated
due to a high simulation time.

The implementation process started after simulation, when
correctness matrix calculation was verified. We tested several
different matrix dimensions, and always set the word length
to 24 bits. The block RAM modules were inferred from a
functional description by the synthesis tool. Each column
(ai1 to ai,n+1) is implemented as a block RAM module.
The memory is not always used effectively, depending on the
number of rows. Each memory module has the full capacity
given by the width of its address bus, that is a power of
two. Therefore the memory utilization increases by a step
when the number of address bits changes. The number of
arithmetic units was automatically generated by the selected
matrix dimension.

The Xilinx FPGA platform was selected for all tests.
We used Xilinx ISE to synthesize and implement our design
to the FPGA. We selected the FPGA with the highest block
RAM memory capacity in the Virtex 6 family, that is, the
xc6vsx475t-2-ff1156. In order to get a good estimate of
the best achievable timing, we set the “High effort” with
“Continue on Impossible” options for the implementation part.
Constraining the timing would achieve even better timing. We
gathered the minimum period, logic and memory utilization
from the implementation (post place and route) report files.
The results of our experiments are shown in Table II.



TABLE II
IMPLEMENTATION RESULTS FOR THE FPGA RESIDUAL PROCESSOR

ARCHITECTURE (FPGA IS XILINX XC6VSX475T).

Area utilization Time
n slices %slices BRAM %BRAM TP[ns] fclk[MHz] Telim [ms]

100 4223 6% 101 10% 6 166 7.2
300 12194 16% 301 28% 7 143 74.8
500 19277 26% 501 47% 9 111 266.6
700 29394 40% 701 66% 11.4 88 658.2
900 38372 52% 901 85% 12.7 78 1216.6

1000 42368 57% 1001 94% 13 77 1537.1

The n column denotes the matrix dimension. The “slices”
and “BRAM” columns are the number of used slices and
used block RAMs also with the percentage of occupied FPGA
resources (xc6vsx475t). The “TP” and “fclk” columns are
minimum clock periods and maximum operation frequencies.
The “Telim” column shows the time in milliseconds to solve
a set of linear congruences for one modulus depending on
minimum clock period for the selected matrix dimension.

The elimination time (Telim) assumes the data are already
loaded and stored in memory and elimination process is in
run. The load part takes only a small part of all time needed
for solution of a set of linear congruences. For example, for
matrix dimension n = 100, the load process takes only 12.7%,
while for n = 1000 it takes only 11.7%.

The results show that our residual processor architecture
allows for a maximum matrix size of approx. 1000 rows by
1001 columns with a word size of 24 bits in the chosen FPGA
type. Even with the maximum tested matrix dimension of
1000, which uses more than 90% of the available block RAM,
only approx. 60% of all available slices in FPGA are used.

The clock period increases with the increasing matrix di-
mension. Static time analysis shows that the main parts of the
delay in the circuit are in addressing, control and inner data
bus signals. The fanout of signals significantly increase when
size of matrix increases. For comparison, on a CPU, solving
a SLC of dimension 100, 500 and 1000 takes approximately
3 ms, 424 ms, and 3.37 s, respectively (Intel T9400 CPU at
2.53GHz, cache size 6144 KB, C language compiled with
GCC). This shows that for n = 1000, our design is approx.
2 times faster. In case of future ASIC implementation of our
design, we can expect even greater speedup (which is difficult
to predict, but can reach 100 or more).

Further work will focus on the design of an external memory
interface, which will be influenced by the limited FPGA
input/output pins. The acquired results will be used to design
the whole system for solving SLEs.

V. CONCLUSION

We have designed a Residual Processor (RP) architecture
which solves a set of linear congruences. RP was designed
with a focus on its effective implementation in FPGA for
various problem sizes with a special attention to the memory
architecture. The memory design is critical to the RP because
of massive data access and pivoting. RPs are portions of a
Modular System for solving sets of linear equations in RNS.

All important parts of the RP architecture, such as data
memory, Pivot index, Pivot flags, counters, arithmetic units,
inversion unit and control unit were implemented and tested
in a Xilinx Virtex 6 FPGA with the largest RAM size. The
results show that our RP architecture allows for a maximum
matrix size of approx. 1000 rows by 1001 columns with a
word size of 24 bits in the chosen FPGA type. The maximum
tested matrix dimension of 1000 uses more than 90% of the
available block RAM and approximately 60% of all available
slices in the FPGA while being approx. 2 times faster than a
CPU software implementation.

Future work will focus on a new RP architecture with
external memory and limited numbers of AUs. Also bitwise
communication between internal memory and AUs will be
studied. Next, we will implement the RP in ASIC and evaluate
its performance.
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