An ASIC Linear Congruence Solver
Synthesized with Three Cell Libraries

Jiff Bucek, Pavel Kubalik, Rébert Lérencz, and Tomas Zahradnicky
Faculty of Information Technology
Czech Technical University in Prague
Thakurova 9, 160 00 Prague, Czech Republic
Email: { bucekj | xkubalik | lorencz | zahradt } @fit.cvut.cz

Abstract— The paper describes an ASIC implementation of a
previously implemented FPGA linear congruence solver, part of
a parallel system for solution of linear equations, and presents
synthesis results for three different standard cell libraries. The
previous VHDL design was adapted to three ASIC technologies
(130 nm, 110 nm, and 55 nm) from two different vendors and
the synthesized results were mutually compared. The maximum
clock frequency and occupied area of the synthesized design
were collected and analyzed for several input matrix dimensions
and the maximum possible input problem size for each of
the technologies was determined. The comparison results were
further used to obtain a view of design properties in higher
density technologies.

I. INTRODUCTION AND BACKGROUND

Solution of a system of linear equations (SLE) Ax =y is
a common task of linear algebra and is frequently computed
in a floating point arithmetic, which involves rounding. There
are numerous methods for solving linear systems of various
sizes, for spare or dense systems, for differently conditioned
systems, for symmetric, or positive definite systems etc., and
all of them need to choose an arithmetic wherein to perform
their operations. A common choice is one of the floating point
(FP) arithmetics defined in the IEEE 754:2008 Standard [1]
and, it is a well known fact, that using an FP arithmetic shall
induce a question of numerical stability, especially in the case
of large, dense, and/or ill-conditioned systems, where the input
error magnification and/or roundoff errors may heavily impact
or even destroy the solution of the SLE.

When rounding is undesired, it is possible to use arithmetics
that do not round, such as the arithmetic of the Residual
Number System (RNS) [2][3], usually at cost of an increased
complexity. Parallel algorithms for solving SLEs using con-
gruence techniques were proposed in [4][5][6] converting
the input SLE into several to many independent systems of
linear congruences (SLC)s, solving them independently, and
reconstructing the SLE result with the Chinese Remainder
Theorem, summarized in three steps:

1) Transformation of the augmented SLE matrix A | y into
independent linear systems (A | y) mod m;, each with
a distinct prime number modulus m;, for ¢ = 1...p
being a number of moduli.

2) Solution of p independent systems of linear congruences
(SLC)s in form Ax =y (mod m;).

3) Reconstruction of the SLE solution vector x from its
RNS residual representations x (mod m;).

Using RNS increases the temporal and spatial complexity
and one of the ways to go is to use a dedicated hardware
Modular System (MS) performing SLE solution and exploit-
ing natural parallelism offered by the RNS. Such MS was
discussed in our previous papers [S][6][7][8].

When studying methods of solving SLEs in RNS arithmetic,
a gap in the publication activity can be observed since the
mid 1990’s. This can be explained by the limited technology
resources available at the time and thus limited sizes of
instances that could be solved. At the same time, better and
more sophisticated methods for solving SLEs in FP arithmetic
were developed that could be performed on general purpose
CPUs. The current demand for precise SLE solving is based on
the fact that FP arithmetic has its limitations, and at the same
time, progress in technology enables creating HW solvers that
can effectively use RNS to solve SLEs for real applications.
RNS is currently used in areas of digital image processing
[9][10], digital signal processing [11][12][13], and in public-
key [14] and elliptic curve [15][16] cryptography.

The goal of this paper is to explore the achievable area con-
sumption and maximum speed for several ASIC technology
libraries, and thus establishing the limitations on the maximum
SLC instance size that can be solved. Previous work [8]
indicated that the internal memory was a limiting factor and it
is then interesting to compare the synthesis results in different
technologies with their corresponding memory blocks.

The paper is organized as follows: Section I. introduces
the reader into the problematics. Section II. provides a brief
overview of the previous work. Section III. presents the archi-
tecture of the basic SLC solution unit — a Residual Processor.
Section IV. summarizes the results, Section V. concludes the
paper, while Section VI. describes our future efforts.

II. PREVIOUS WORK

The method of the SLE solution is based on the previous
work [5][6] including methods, algorithms, and the corre-
sponding parallel hardware architecture of the MS (Fig. 1).
MS solves the SLE in RNS and therefore transforms the
input SLE onto multiple independent SLCs, each with its own
unique prime number modulus, solved at a distinct Residual
Processor (RP). It should be noted that evaluation in each

MODULAR SYSTEM

CENTRAL

HOST
CONTROL
SYSTEM UNIT

BUS

Fig. 1. Architecture of the Modular System [5]. The Central Control Unit
controls solution processes and communicates with the Host System. RP;
through RP,, are individual Residual Processors, each with its own modulus
m; for ¢ = 1...p. RPs perform transformation of the input SLE into RNS,
perform SLC solution mod m;, and also back-transformation from RNS, while
The Bus denotes an internal interconnection of all units within the MS.

modulus is performed independently of the others and that
the addition and subtraction are carry/borrow-free across the
individual moduli, and thus the computation can occur safely
in parallel. Once the SLC solutions are available, they are
recombined back into a solution of the SLE.

The architecture of the residual processor RPy is depicted
at Fig. 2 consisting of a Memory, Arithmetic Units AU5, AU3,
..., AU, 42 and a Control unit. RP, which was described in [7],
was designed with a focus on its effective implementation in
FPGA for various problem sizes with special attention to the
memory architecture. The memory design was critical to the
RP because of massive data access and pivoting. All important
parts of the RP architecture, such as data memory, Pivot
index, Pivot flags, counters, arithmetic units, inversion unit and
control unit were implemented and tested in a Xilinx Virtex 6
FPGA with the largest block RAM capacity of its family, i.e.
38304 Kibits. The results showed that RP architecture with
a 1000-row matrix and with a 24-bit word size in Xilinx
XC6VSX475T occupied more than 90% of the available
block RAM and approximately 60 % of all available slices.
This implementation was the largest possible to fit in the
FPGA and ran approximately 2 times faster than a software
implementation at a CPU.

The 24-bit word length was chosen as a compromise so
that enough prime moduli can be generated to represent the
largest number needed during solution of the system of linear
equations. This follows from the Hadamard’s inequality and
its application on solving a linear system exactly [5].

Paper [8] implemented the same RP architecture in ASIC
with a 130 nm standard cell library and compared it to the
FPGA architecture described in [7]. Results in our previous
paper [8] indicated that the ASIC implementation was yet
4 times faster than its FPGA counterpart.

This contribution builds on papers [7][8] and extends the
ASIC implementation of our SLC solver to three different
standard cell libraries for three ASIC technologies from two
different vendors — Synopsys/GlobalFoundries 130 nm and
Faraday/UMC 110 nm and 55 nm. The 130 nm and 110 nm
libraries are high performance libraries, while the 55 nm
library is a low power library. We have chosen these particular
libraries mainly because of their availability including memory
compilers, which are important in our design and evaluation.
The last one being a low power library, it is not directly
comparable in terms of speed, but it can be used to evaluate

Address MEMORY

Step Row
counter counter

[Pivot
index

A1pn

Bnn

Pivot
index
vector

. SRAM block,

. SRAM block,

PO, SI, SO, SI,

Pivot Zero ‘
found detect

INV AU, AU?] AU,
CONTROL

DB, | DBy

Fig. 2. Architecture of the Residual Processor. a;;s represent elements of
the augmented SLC matrix, AU; stand for individual arithmetic units, POy
is a parallel output, SI;/SO; denote serial inputs/outputs, IDBiN/IDBoyuT
represent internal data buses, while DBin/DBoyut represent external data
buses. INV, AUp, G, Mo, M, and N are auxiliary units described in [6].
Other blocks serve to implement partial pivoting.

the area savings coming from greater integration. The chosen
libraries, although not the most recent ones, are sufficient
to reveal technology-dependent properties of the architecture,
allowing prediction of the behavior of our design in general.
The output of these implementations will provide insight into
the properties of the design in higher density technologies.
The next section describes the experimental results, com-
pares them together, and analyzes the maximum clock fre-
quency and occupied area of the synthesized RP design.

III. ARCHITECTURE OVERVIEW

Each residual processor RPy can solve systems of linear
congruences (SLC)s Ax; = b (mod my) and its architecture
is depicted at Fig. 2 and consists of Memory, Arithmetic Units
AU,, AUs, ..., AU, 42 and the Control unit.

The memory contains an augmented matrix (A.|b) mod my.
It consists of SRAM blocks that are created using the memory
compiler specific for the ASIC library and an appropriate size
block must be selected for the maximum matrix dimension n.

The arithmetic units AU are connected to the memory via
Serial Inputs (SI) and Serial Outputs (SO). The leftmost ele-
ments of the matrix are read by the Control unit via the parallel
bus PO;. All AUs and the Control unit are interconnected
via Internal Data Buses IDB;, and IDB,,. The INV and
AUp units compute the modular multiplicative inverse and
the determinant of A mod my, respectively.

During elimination, partial pivoting is used, where any
non-zero element can be a pivot (Zero detect block). The
Pivot index block holds the row address of the pivot for
the current elimination step. Pivot flags contain one bit for
each row indicating whether the row contained the pivot in
past elimination steps, while the Pivot index memory block
contains row addresses of all pivots found up to the current
elimination step. These addresses are used at the end of the
elimination process for result reordering (no row swapping is
done during elimination).

IV. EXPERIMENTAL RESULTS

All experiments were conducted on the RP architecture
shown at Fig. 2. The design was specified in VHDL, sim-
ulated in Mentor Graphics ModelSim, and synthesized using
Synopsys Design Compiler.

The maximum matrix dimension n and the word length e
were configurable at synthesis time using generics, while the
actual matrix dimension, the modulus, and the matrix data
were specified at runtime.

The solution designed for FPGA [7] was modified to
obtain a solution usable for synthesis process for ASIC. The
modification was focused mainly on memory interface and
restrictions of the synthesis process such as a number of gate
inputs. The designed ASIC architectures for various matrix
dimensions were used to conduct a set of SLC solution
experiments on a single RP. The SLC solution included input
both data modulo reduction and matrix elimination.

In order to verify the design, we added test units to increase
testability and observability of the simulated design and to
verify the calculation. The test data were generated using
Wolfram Mathematica and converted with a Python script into
a file format suitable for the simulation. The RP was simulated
with Mentor ModelSim to solve SLCs and their solutions
were compared to SLCs solutions precomputed in Wolfram
Mathematica. The simulation was performed for matrices up to
matrix dimension n = 100. Matrices with dimension n > 100
were not simulated due to high simulation times.

After the verification of simulation correctness we started
the ASIC synthesis process. Since block RAMs were not
present in the ASIC library as standard cells, we generated
them with a special memory generator tool coming with the
library. We generated a suitable set of synchronous RAM
modules with sizes to cover the expected matrix dimensions.
The generated RAM modules were then instantiated according
to the generic parameters from the VHDL description to
implement memory matrix columns (a;1 t0 @i n41).

We compared three different standard cell libraries for three
ASIC technologies (130 nm, 110 nm, and 55 nm) from
two different vendors. The maximum clock frequency and
the occupied area of the synthesized design were collected
and analyzed for several matrix dimensions. The first two
technologies 130 nm and 110 nm were high speed and the
last technology, the 55 nm one, was low power. Synopsys
Design Compiler tools were used for all ASIC tests. In order
to get a good estimate of the best achievable timing while
keeping the synthesis run time reasonable, we set the synthesis
effort to “medium” and defined the required minimum clock
period in a compile script file. The results of our experiments
are shown in Table I. The n column denotes the matrix
dimension, “Area Utilization” describes an estimation of the
final size, while “Frequency” describes an estimation of the
maximum frequency. Both previous columns are divided into
three technology size: 130 nm, 110 nm, and 55 nm (low
power).

The number of clock cycles needed for the elimination
process can be calculated from (1), where n stands for a

600 T T T T T T T T T
N L0 130nm /=3

= SO0 TrrTI Il 110 am 7
% : : : : : : 55 pm
S 400 [e 1
>
Q ' ' '
S f f
5 300 [M1 [/ f[/r-f[{l ey 1
o
[}
S
a3

200 [; TH 1T -- -

100 300 500 700 900 1000 2000 4000 8000

Matrix dimension n [—]

Fig. 3. Achieved frequency of the design based on matrix dimension n.
matrix size and z a number of bits per word, which is also
the bit length of the modulus and the data path width. For our
comparisons and analyses, we chose the word size z = 24
and the number of words per element ¢ = 3, i.e. input
integer element length is 72 bits, as a reasonable compromise
regarding the range of input data values. Each input integer
(matrix element) is first reduced using a 24-bit modulus and
all internal computation is carried out in a 24-bit modular
arithmetic.

elim(n, z) = ((z + (4z — 2))n + 3)n + 14. (1)

To calculate the elimination time (Tejy), We assume that
the data is already loaded and stored in memory and the
elimination process is in run. The load part takes only a small
part of the SLC solution time (about 10 % for the instances
considered). The elimination time on a 130 nm ASIC takes
3 ms for an n = 100 matrix and 380 ms for an n = 1000 one.

The maximum achieved frequency of the design based on
matrix dimension n is shown in Fig. 3. The results show that
the performance strongly depends on the type of ASIC library
used. For small designs, the 55 nm library yields the best
speed and the smallest area. However for n = 300 and larger,
the 55 nm library is the slowest even though it would seem
that due to its smaller pitch it should be faster. This is due
to the fact that it is a low power library not optimized for
performance.

Interesting effect was observed when comparing the max-
imum frequency between the 130 nm and 110 nm libraries
for n > 2000, where the smaller technology is slower. This

TABLE I
SYNTHESIS RESULTS FOR THE ASIC RESIDUAL PROCESSOR
ARCHITECTURE.
Area Utilization (mm?2) Frequency (MHz)

" 130nm | 110 nm | 55nm | 130 nm | 110 nm | 55 nm
500 32 42 9 318 354 174
1000 102 117 28 310 314 114
2000 342 367 97 297 271 135
4000 1221 1260 353 255 165 151

is caused by different net delay models and different choice
in cell sizes among the two libraries. Further investigation
would require analysis at the layout level, however the library
backends are not readily available for both libraries.

The same task was implemented on a CPU solving an SLC
of dimensions 100, 500, and 1000, it takes approximately 3 ms,
424 ms, and 3.37 s, respectively calculated on Intel T9400 CPU
running at 2.53 GHz with a 6144 KiB cache [17]. This shows
that for n = 1000, our design is approximately 5 times faster.

The results show that our residual processor architecture
allows for a maximum reasonable matrix size of approximately
2000 rows by 2001 columns with a word size of 24 bits in the
chosen ASIC type. With larger maximum sizes, the frequency
drops considerably as a result of high fan-in and fan-out of
the array of AUs, and the die size grows as a result of on-
chip memory required. The memory area consumption can be
addressed either using on-chip dynamic RAM (which was not
available in the library design kit), or better yet, by using off-
chip external memory for the matrix during the elimination
process. The latter option is suitable for significantly larger
matrices and requires significant changes in the design.

V. CONCLUSION

The paper describes an implementation of a solver of sys-
tems of linear congruences in ASIC, part of a parallel system
for solution of systems of linear equations. We modified the
previous FPGA design for ASIC and compared three types
of standard cells libraries: 130 nm, 110 nm, and 55 nm. The
first two technologies were high speed, while the last one was
low power. These implementations provide insight into the
properties of the design in higher density technologies.

The occupied area and speed were gathered from synthesis
reports. The most significant part was the memory used to
store the data for calculation. The time needed to solve one
SLC with 4000 congruences was 15s and the occupied area
was 3.5cm? of die. Considering a suitable die size around
1 em?, the maximum matrix dimension is 1000 for the 130
and 110 nm technologies, and 2000 for the 55 nm low power
technology. The 55 nm technology allowed us to use the same
die space for solution of a much larger SLC, but since the
technology is low power, the solution time is significantly
slower than with the other two technologies.

VI. FUTURE WORK

The implemented linear congruence solver, a Residual Pro-
cessor (RP), will be used as a part of the Modular System
(MS) for solution of sets of linear equations. Time and area
complexity results of the implemented RP obtained in the
paper have already been used to extrapolate properties of an
MS yet to be synthesized in higher density technologies [18].

In future work we intend to focus on RP’s external memory
and optimization of the arithmetic unit utilization. Using
external memory requires design of a memory interface,
possibly limiting data throughput during the parallel read/write
operations, and requires further research. The architecture with
an external memory also offers opportunity to a more efficient

utilization of arithmetic units during the elimination process
through efficient memory interface control.

ACKNOWLEDGMENT

This research was supported by the Czech Science Founda-
tion project no. P103/12/2377.

REFERENCES

[1] IEEE Computer Society Standards Committee., I[EEE Standard for
Floating-Point Arithmetic, ser. ANSI/IEEE STD 754-2008. The In-
stitute of Electrical and Electronics Engineers, Inc., 2008.

[2] A. Omondi and B. Premkumar, Residue Number Systems: Theory and
Implementation, 1st ed. Imperial College Press, 2007, vol. 2.

[3] M. Lu, Arithmetic and Logic in Computer Systems. John Wiley &
Sons, Inc., 2004.

[4] C. K. Kog, “A parallel algorithm for exact solution of linear equations via
congruence technique,” Computers & Mathematics with Applications,
vol. 23, no. 12, pp. 13-24, 1992.

[5] M. Morha¢ and R. Lérencz, “A modular system for solving linear
equations exactly, i. architecture and numerical algorithms,” Computers
and Artificial Intelligence, vol. 11, no. 4, pp. 351-361, 1992.

[6] R. Lérencz and M. Morha¢, “A modular system for solving linear
equations exactly, ii. hardware realization,” Computers and Artificial
Intelligence, vol. 11, no. 5, pp. 497-507, 1992.

[7]1 J. Bucek, P. Kubalik, R. Lérencz, and T. Zahradnicky, “Dedicated
Hardware Implementation of a Linear Congruence Solver in FPGA,” in
The 19th IEEE International Conference on Electronics, Circuits, and
Systems, ICECS 2012. Monterey: IEEE Circuits and Systems Society,
2012, pp. 689-692.

[8] J. Bucek, P. Kubalik, R. Lérencz, and T. Zahradnicky, “Comparison
of FPGA and ASIC Implementation of a Linear Congruence Solver,”
in Digital System Design (DSD), 2013 16th Euromicro Conference on,
2013.

[9] D. Taleshmekaeil and A. Mousavi, “The use of residue number system

for improving the digital image processing,” in Signal Processing

(ICSP), 2010 IEEE 10th International Conference on, oct. 2010, pp.

775-780.

D. Younes and P. Steffan, “Efficient image processing application

using residue number system,” in Mixed Design of Integrated Circuits

and Systems (MIXDES), 2013 Proceedings of the 20th International

Conference. The Institute of Electrical and Electronics Engineers, Inc.,

7 2013.

G. Cardarilli, A. Nannarelli, and M. Re, “Residue number system for

low-power DSP applications,” in Signals, Systems and Computers, 2007.

ACSSC 2007. Conference Record of the Forty-First Asilomar Conference

on, nov. 2007, pp. 1412-1416.

R. Chaves and L. Sousa, “RDSP: a RISC DSP based on residue num-

ber system,” in Digital System Design, 2003. Proceedings. Euromicro

Symposium on, sept. 2003, pp. 128 — 135.

A. Mirshekari and M. Mosleh, “Hardware implementation of a fast

FIR filter with residue number system,” in Industrial Mechatronics and

Automation (ICIMA), 2010 2nd International Conference on, vol. 2, may

2010, pp. 312 -315.

[14] J.-C. Bajard and L. Imbert, “A full RNS implementation of RSA,”

Computers, IEEE Transactions on, vol. 53, no. 6, pp. 769-774, 7 2004.

D. Schinianakis, A. Kakarountas, and T. Stouraitis, “A new approach to

elliptic curve cryptography: an RNS architecture,” in Electrotechnical

Conference, 2006. MELECON 2006. IEEE Mediterranean, may 2006,

pp. 1241-1245.

T. Giineysu and C. Paar, “Ultra high performance ECC over NIST

primes on commercial FPGAs,” in Proceeding sof the 10th international

workshop on Cryptographic Hardware and Embedded Systems, ser.

CHES °08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 62-78.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-85053-3-5

L. Vondra, “System for solving linear equation systems,” Dissertation

thesis, Faculty of Electrical Engineering, Czech Technical University in

Prague, 2014. [Online]. Available: http://hdl.handle.net/10467/20222

[18] J. Bucek, P. Kubalik, R. Lérencz, and T. Zahradnicky, “System on chip

design of a linear system solver,” in International Symposium on System-
on-Chip (SoC), 2014 (accepted).

[10]

[11]

(12]

[13]

[15]

[16]

[17]

