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Abstract 

This paper deals with design methodology of high reliable digital system based on modified duplex 
system. Our modified duplex system is based on two FPGAs, where every FPGA can be reconfigured when 
a fault is detected. Design implemented in each FPGAs is based on one of several methods how to ensure the 
self checking properties. Our design methodology reflects requirements on area overhead and value of 
dependability parameters. Our modified duplex system is compared with standard duplex system. Our 
dependability model and dependability calculations are used to quantify proposed solutions. Availability 
parameters have been calculated by dependability Markov models. The final reliable system is fault tolerant. 
Combinational circuit benchmarks have been considered in this work to compute the quality of the final 
adapted duplex system. The benchmarks are represented by two level networks (truth table). All of our 
experimental results are obtained by XILINX FPGA implementation by EDA tools and our design tools. 
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1. Introduction 
 
Systems realized by FPGAs are more and 
more popular due to several properties and 
advantages:  
 
• High flexibility in achieving multiple 
requirements such as cost, performance, 
turnaround time.  
• Possible reconfiguration and later 
changes of the implemented circuit e.g. only 
via radio net connections.  
• Mission critical applications such as 
aviation, medicine, space missions or also in 
railway applications [1]. 
 
The FPGAs are based on SRAM memories 
sensitive to Single Event Upsets (SEUs), 
therefore simple usage of FPGA circuits in 
mission critical applications without any 
method of SEUs detection is impossible.  
One change of a bit in the configuration 
memory by SEUs leads to a change of a circuit 
function, even drastically. The Concurrent 
Error Detection (CED) techniques allow a 
faster detection of soft errors (errors which can 
be corrected by the reconfiguration) caused by 
SEU [2, 3, 4]. SEUs can change the content of 
the embedded memory or Look-up Tables 

(LUTs) used in the design. These changes are 
not detectable by off-line tests, therefore some 
CED techniques have to be used. The 
probability of a SEU occurrence in the random 
access memory (RAM) is described in [5]. 
The possibilities how to keep proper system 
functions are based always on some 
redundancy. Redundancy obviously means 
great area and/or time overhead. Our proposed 
structure increases dependability parameters 
together with ensuring a relatively low area 
overhead compared with classical methods 
such as duplication or triplication [6]. The 
term dependability is used to encapsulate the 
concepts of reliability, availability, safety, 
maintainability, performability, and testability. 
Availability is a function of time, A(t), defined 
as the probability that a system is operating 
correctly and is available to perform its 
function its functions at the instant of time [7].  
Our previous research shows the relation 
between the area overhead and the SEUs fault 
coverage [8]. Due to a need for a small area 
overhead, the SEUs fault coverage for most 
circuits is less than 100%. The SEUs fault 
coverage varies typically from 75% to 95%. 
Therefore an additional method of fault 
detection has to be used to ensure complete 



SEUs fault coverage and to increase 
dependability parameters. 
 
2. Basic On-Line Testing Criteria 
 
There are three basic quantitative criteria in a 
field of CED: fault security (FS), self-testing 
(ST) and totally self-checking (TSC) 
properties [7]. These three aspects have to be 
used in an on-line testing field to evaluate the 
level of safety of the designed or modeled 
system. 
To determine whether the circuit satisfies the 
TSC property, the number of detectable faults 
belonging to one of four classes A, B, C and D 
[9] have to be calculated.  
This fault classification can be used to 
calculate how much the circuit satisfies the FS 
or ST property and then calculate TSC 
properties.  
The parity predictor is used to generate the 
proper output code of the circuit in our 
research, Figure 1. These techniques ensure 
a small area overhead and a higher SEUs fault 
coverage but the SEUs fault coverage reached 
is not 100% [10, 11, 12]. 
The circuit area overhead significantly 
depends on parity codes used. If we use a 
strong error detecting code, like a Hamming 
code or Berger code, the FS parameter is 
almost 100% but the area overhead is high [8, 
13]. The logic synthesis method of the area 
reduction for circuit described by multilevel 
network is described in [14]. 
The following structures are vulnerable to 
SEUs: multiplexer select lines, programmable 
interconnect point states, buffer enables, LUT 
values, and control bit values. 
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Figure 1. Basic structure of TSC circuit 

 

Any changes of a mux select lines, 
programmable interconnect point states or 
buffers lead to a significant circuit function 
change but the function change is hardly 
detected for SEUs impacted in LUTs [15]. The 
probability of SEUs impacting routing 
resources (mux select lines, programmable 
interconnect point states and buffers) is about 
78% and only about 15-21% for LUTs. It 
means many SEUs leads to significant circuit 
function change. But any change in LUTs is 
hardly detected because of its small impact to 
the realized function. In some cases these 
faults may be undetected.  
We have used the LUT upset failure in our 
calculations. The only LUT upset assumption 
giving to us the worst case for availability 
values obtained for our benchmarks. It means 
that the final results are worst in comparison 
with method assuming all faults in FPGA. The 
most faults belong to the routing resources 
group. In this case we have assumed faults 
occurring in routing resources, the 
dependability parameters are higher then in a 
case where only LUTs are calculated. 
We want to obtain the worst case 
of dependability parameters and due to this 
fact our fault model accepts only changes in 
LUTs memory. The FS property depends on 
the class B (Detectable faults)[9]. A low 
number of faults belong to class B leads to low 
FS property. The FS values for MCNC and 
ISCAS [15] benchmarks used to validate our 
modified duplex system are shown in Table 1. 
Here ”C” is benchmark circuit, ”IN” is number 
of inputs, ”OUT” is number of outputs, ”AO” is 
the area overhead, ”FS” is a probability, that a 
fault is detected by code word and ”Ass” is a  
steady-state availability. 
We have used our simulator described in [16] 
to obtain A, B, C, D classes and FS property. 
This simulator has these features: 
• The simulation is performed for circuits 

described by a netlist format (EDIF). 
• The stuck-at-1 and stuck-at-0 faults on 

inputs and outputs of components are 
considered. 

• Combinational and sequential circuits are 
supported. 

This simulator supports circuits where inputs, 
outputs and internal states (in the case of a 



sequential circuit) are coded by even parity, 
multiple parity and 1 out of N code. Multiple 
code groups can be used to ensure TSC. The 
simulator also supports Hamming like codes 
and M out of N code.  
 

Table 1. Single even parity – PLA 

C IN OUT ORIG 
[LUT] 

AO 
[%] 

FS 
[%] 

alu1 12 8 8 688 100 
apla 10 12 45 53 83 
b11 8 31 38 8 75 
br1 12 8 50 20 63 
al2 16 47 52 12 94 
alu2 10 8 30 140 92 
alu3 10 8 28 121 90 
s1488 14 25 312 13 86 
s1494 14 25 317 13 86 
s2081 18 9 24 125 96 
s27 7 4 4 75 72 
s298 17 20 39 49 91 
s386 13 13 51 39 71 

 
The FS property expresses the probability that 
an existing fault is detected on a primary 
output of the circuit. If the FS is fully satisfied 
(to 100%) a fault occurring in a circuit is 
always detected.  

 

3. Proposed Structure 
 
Our previous results show that to fully satisfy 
TSC property (100%) is difficult, so we have 
proposed a new structure based on two 
FPGAs, see Figure 2. 
Each FPGA has one primary input, one 
primary output and two pairs of checking 
signals OK/FAIL. The probability of the 
information correctness depends on the FS 
property. When the FS property is satisfied 
only to 75%, the correctness of the checking 
information is also 75%. It means that the 
signal “OK” give a correct information for 
75% of occurred errors (the same probabilities 
for both signals “OK” and “FAIL”). 
To increase the dependability parameters we 
must add two comparators, one for each 
FPGA. The comparator compares outputs of 
both FPGAs. The fail signal is generated when 
the output values are different. This 
information is not sufficient to determine, 

which TSC circuit is wrong. Additional 
information to mark out the wrong circuit is 
generated by the original TSC circuit. The 
probability of the information correctness 
depends on the FS property and in many cases 
is higher than 75%. In a case when outputs are 
different and one of the TSC circuits signalizes 
fail function, the wrong FPGA is correctly 
recognized. Correct outputs are processed by 
the next circuit.  
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Figure 2. Reconfigurable duplex system 

The reconfiguration process is initiated after a 
fault is detected. The reconfiguration solves 
two problems: localization and correction of 
the faulty part. The time needed to localize the 
faulty part is not negligible and must be 
included in the calculation of dependability 
parameters. We only select the faulty FPGA 
and we reconfigure it in our solution. It means 
that we do not localize the faulty block inside 
the compound design. The time to localize a 
fault and to reconfigure the faulty part can be 
similar to the time to reconfigure the whole 
FPGA. The whole FPGA reconfiguration also 
repairs the faults which occurred in an unused 
logic. The reconfiguration process can be 
initiated also when one of the two FPGAs 
signalize the “FAIL” signal. This situation 
occurs when a fault is detected by one of the 
small TSC blocks inside the compound design. 
The fault propagation to the primary outputs 
may take a long time.  
When the outputs are different, and both 
circuits signalize a correct function, we must 
stop the circuit function and the 
reconfiguration process is initiated for both 
FPGA circuits. When the reconfiguration 



process is performed, states of both FPGAs are 
synchronized. It means that our modified 
duplex system can be used in an application 
where the system reset synchronization is 
possible. 
Each FPGA contains a TSC circuit and 
a comparator. The TSC circuit is composed of 
small blocks where each block satisfies the 
TSC property. The structure of the compound 
design satisfying the TSC property is 
described in [17]. 
 
4. Design methodology 
 
The design methodology of TSC circuit 
creation is described in Figure 3. To generate 
the output parity bits, all the output values 
have to be defined for each particular input 
vector. Unfortunately, it is not so in the 
benchmark definition files. Only several 
output values are specified for each multi-
dimensional input vector, the rest are assigned 
as don’t cares; they are left to be specified by 
another term. Thus, to be able to compute the 
parity bits, we have to split the intersecting 
terms, so that all the terms in the truth table are 
disjoint. 
In the next step the original primary outputs 
are replaced by parity bits. Two different error 
codes were used to calculate output parity bits 
(single even parity code and multiple parity 
code), but our design methodology allows use 
also Hamming like code or standard 
duplication. Another tool was used in the case 
where the original circuit was modified in 
multilevel logic. This tool is described in [18]. 
Two circuits generated in the first step 
(original circuit and parity circuit) are 
processed separately to avoid sharing any part 
of circuit. Every part can be minimized by the 
BOOM [19] or Espresso tool [20]. The final 
area overhead depends on the software that 
was used in this step. Many tools were used to 
reach a small area of the parity bits generator. 
BOOM was used to minimize the final area. In 
this step the area overhead is known, but we 
can decide if the fault coverage is sufficient. 
In the next step the “pla” format is converted 
into the “bench” format. The “bench” format 
was used due to the fact that the tool, which 
generates the exhaustive test set uses this 

format. An exhaustive test set has 2n patterns 
and we used it to evaluate TSC goals. 
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Figure 3. Design methodology flow 

 
Another conversion tool is used to generate 
two VHDL codes and the top level. Top level 
is used for incorporating original and parity 
circuit generator. In the next step the synthesis 
process is performed by Synplicity Synplify 
Pro tool. The constraints properties set during 
the synthesis process express an area overhead 
and a SEU fault coverage. If the maximal 
frequency is too high, hidden faults occur 
during the fault simulation. The hidden faults 
are caused by the circuit duplication. The size 
of the area overhead is obtained from the 
synthesis process. The final netlist is generated 
by the Leonardo Spectrum software. The fault 
coverage was obtained by simulation using our 
software [16]. 
To evaluate the area overhead and fault 
coverage special tools had to be developed. In 
addition to some commercial tools such as 
Leonardo Spectrum and Synplify we have 
used format converting tools, parity circuit 
generator tools and simulation tools. 
At first, the area minimization and term 
splitting is preformed for original circuit by 



BOOM [19]. Hamming code generator (or 
single parity generator) is generated by the 
second software. These two circuits are 
minimized again with BOOM. Next two tools 
convert the two-level format into a multi-level 
format. The first one converts a “pla” file to 
“bench” and the second one “bench” to VHDL. 
The second software is used for generating the 
final circuit in the ”bench” format due to its 
further usage in exhaustive test set generator. 
The format converting software and parity 
generator software was written in Microsoft 
Visual C++. The netlist fault simulator was 
written in Java. The parser source code was 
used to parse the netlist that is generated by 
two commercial tools described above. 
 
6. Results 
 
The results obtained by our design 
methodology for highly reliable system was 
validated on MCNC and ISCAS [19] 
benchmarks. Results are shown in table 2. 
Here ”Circuit” is benchmark circuit, ”AO” is 
the area overhead, ”PN” is the number of parity 
nets, ”C” and ”D” is the number of undetected 
faults, that are not detected by code word and 
”Ass” is the steady-state availability 

 

Table 2. Availability parameters 

Circuit AO 
[LUT] 

P
N 

AO 
[%] C D Ass [%] 

alu1 55 1 687 0 0 1 
alu1 16 2 200 0 0 1 
apla 24 1 53 1 109 0.9999912
apla 22 2 49 1 92 0.9999928
b11 3 1 8 42 59 0.9999938
b11 7 2 18 38 52 0.9999937
br1 10 1 20 47 154 0.9999883
br1 23 2 46 41 142 0.9999871
alu2 42 1 140 0 58 0.9999906
alu2 40 2 133 0 52 0.9999910
alu3 34 1 121 0 63 0.9999897
alu3 33 2 118 0 63 0.9999888

s1488 41 1 13 94 321 0.9999962
s1488 94 2 30 80 267 0.9999961
s386 20 1 39 15 176 0.9999878
s386 25 2 39 8 149 0.9999892

 

7. Conclusion and future work 
  
Our modified duplex system based on two 
FPGAs with high reliable system design 
methodology has been presented. The design 
methodology allows select proper code with 
respect to the system requirements. 
We can use four methods for the totally self 
checking circuit design. The selected method 
depends on the final area overhead and the 
SEUs fault coverage. In a case, when the high 
reliable system is required and area overhead 
can be high, the duplication or Hamming like 
code is better to use. These two methods 
ensure that the fault security is fulfilled on 
hundred percent and Ass parameter is equal to 
hundred percent too. 
In a case, when the low area overhead and a 
high reliable system is required, the simple or 
multiple parity predictor is better to use. 
Our high reliable structure ensures that the 
final system is better than a standard duplex 
system with 0,999978248 of Ass [6]. 
Our future work will be dedicated to some 
practical case studies (e.g., railway 
applications). We will use a hardware fault 
simulator and practical experiments based on 
the ATMEL FPSLIC circuit.  
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