
Faults Coverage Improvement based on
Fault Simulation and Partial Duplication

Jaroslav Borecký, Martin Kohlík, Hana Kubátová, Pavel Kubalík
Dept. of Digital Design

Czech Technical University in Prague
Prague, Czech Republic

{borecjar; kohlimar; hana.kubatova; pavel.kubalik}@fit.cvut.cz

Abstract— A method how to improve the coverage of single
faults in combinational circuits is proposed. The method is
based on Concurrent Error Detection, but uses a fault
simulation to find Critical points – the places, where faults are
difficult to detect. The partial duplication of the design with
regard to these critical points is able to increase the faults
coverage with a low area overhead cost. Due to higher fault
coverage we can increase the dependability parameters. The
proposed modification is tested on the railway station safety
devices designs implemented in the FPGA.

Keywords: Fault Tolerant, FPGA, Secure Device, Railway
Station, Fault Simulation, Concurrent Error Detection, Partial
Duplication

I. INTRODUCTION
We propose a method how to improve the observability

and coverage of single faults in combinational circuits using
Concurrent Error Detection (CED) techniques.
Combinational circuits are combinational parts of finite state
machine (FSM) in this paper. FSM can be modified as well
by separating both combinational parts (next-state logic and
output logic) from flip-flops, modifying these logics
separately and put it all back together. Due to the fact, that
states are also coded with a self-checking code, the whole
FSM is the self-checking circuit.

CED techniques have been proposed many times in the
past. Almost all of them have focused on the objective of
being able to detect all faults.

Selective Partial Replication (SPaRe) technique
presented in [12] has very similar aim as our modification.
SPaRe is able to detect all faults in finite state machines
(FSM). SPaRe uses a prediction logic that creates
independent predicted signals. The optimization objective of
SPaRe is to minimize the number of outputs of the prediction
logic. Based on the observation that a subset of output bits
per state transition is typically sufficient to detect all faults,
SPaRe aims at identifying a minimal such set.

The main difference between SPaRe and our
modification is that we combine two independent circuits
that predict the values of the outputs of the original logic.
The first predictor uses a regular parity bit, the second
predictor is created by the partial duplication of original

logic and the first predictor. We use a fault simulation to
determine parts that have to be duplicated. Single faults
similar to Single Event Upset (SEU) are inserted into the
design.

Another technique presented in [13] is one of the few
techniques, which is not focused on detecting all faults. It
uses a partial parity function in concurrent error detection
scheme. This methodology allows increasing the faults
coverage with low area overhead. Our modification uses
a regular parity in the first step, thus both techniques could
have been used together.

Our modification is aimed to the railway station safety
devices application implemented in the FPGA, but its
principles can be generalized. Railway station safety devices
are composed of cooperating FSM blocks. Each block is
designed as a self-checking circuit based on Modified
Duplex System (MDS) architecture principles [1], [2] and
[3]. The self-checking circuit quality is determined by an
area overhead and Fault Security (FS) property. The area
overhead of both circuits that are the main parts of an MDS
has to be minimized. On the other hand, it is useful to FS
property of each circuit as high as possible. Higher FS
property allows fault localization that is needed for an
efficient use of the partial reconfiguration ability of the
FPGA. Moreover, we have been planning to use the dynamic
reconfiguration of the FPGA when a permanent fault is
detected. The dynamic reconfiguration process is able to
relocate the part of the design from the damaged place to the
unused resources. We must be able to localize the fault as
good as possible to speed up the reconfiguration process and
to spare resources for the relocation.

Our modification is able to detect all single SEU-like
faults that can affect the tested parts of the design, but our
main goal is to find a trade-off between the fault coverage
and the overhead of the design. The faults coverage is
determined by our modification tool. It uses fault simulation
to find the places, where faults are difficult to detect and then
connects these places to the test outputs. It is assumed that
connecting these places to the test outputs will increase FS
property and its checking will not increase overhead too
much. These outputs increase also the fault observability. It
means that self-testing parameter is also increased.

Our modification is supplemental method to a regular
duplex system. The regular duplex system will be used in
a case in which 100% overhead is acceptable. It is important
to say that the regular duplex system does not allow fault
localization so the reconfiguration quite loses its
effectiveness.

The paper is structured as follows: A short introduction
to Fault Security calculations and Concurrent Error
Detection methods and the description of Railway station
safety devices are in Section II. Section III contains the
description of the proposed modification. Tables, the settings
of the parameters of our simulation and modification tool
and results are presented in section IV. Section V concludes
the paper.

II. BACKGROUND

A. Fault Security calculations
There are three basic quantitative criteria in a field of

CED: [4]
 Fault Security (FS).

 Self-Testing (ST).

 Totally Self-Checking (TSC).

These three aspects have to be used in the on-line testing
field to evaluate the level of safety of the designed or
modelled system.

To determine whether the circuit satisfies the TSC
property (both FS and ST properties are satisfied), the
possible faults should be classified and separate into four
classes, A, B, C and D [5].

 Class A - hidden faults. These are faults that do not
affect the circuit output for any allowed input vector.
Faults belonging to this class have no impact to the
FS property, but if this fault can occur, a circuit
cannot be ST.

 Class B - faults detectable by at least one input
vector. They do not produce an incorrect codeword
(valid code word, but incorrect one) for other input
vectors. These faults have no negative impact to the
FS and ST property.

 Class C - faults that cause an incorrect codeword for
at least one input vector. They are not detectable by
any other input vector. Faults from this class cause
undetectable errors. If any fault in a circuit belongs
to this class, the circuit is neither FS, nor ST.

 Class D - faults that cause an undetectable error for
at least one vector and a detectable error for at least
one another vector. Although these faults are
detectable, they do not satisfy the FS property and so
they are also undesirable.

This fault classification should be used to calculate the
level of satisfaction of FS or ST properties of the designed
circuit and then calculate TSC properties.

Original
Function

Primary
Inputs }

Characteristic
or Parity
Predictor

Predicted Output
Characteristic

Checker

Primary
Outputs }

N

M

Ok

Fail

Code
Word

Figure 1. Basic Concurrent Error Detection diagram

Figure 2. Block diagram of Modified Duplex System (MDS)

B. Concurrent Error Detection
CED is a common way to detect faults in the system

design [6], [7]. The basic diagram of CED is shown in
Figure 1.

Almost all CED techniques are based on adding
a checking circuit to the original one. The added circuit
independently calculates some special characteristic of
output (e.g. parity bit). A checker circuit checks whether the
special characteristic of the output actually produced by the
system in response to the input sequence is the same as the
predicted response, and produces an error signal when
a mismatch occurs.

Both predictor and checker circuits are the sources of the
area overhead of the design. The area overhead must be low
to keep the effectiveness of this method. Any added logic
does not only consume FPGA resources, it may be also
affected by a fault.

MDS architecture uses two instances of design with CED
that may be not fault tolerant. The purpose of MDS
architecture is to achieve the whole circuit including all
checkers and comparators to be fault tolerant. The block
diagram of MDS is shown in Figure 2. Each improvement of
the FS property of the design increases the probability of
detecting error inside the block. Detecting an error inside the
block initiates reconfiguration of the damaged block, but the
second block may still be operational. If the error is not
detected inside the block, it is detected by comparators.

The error detected by comparators initiates the
reconfiguration of both blocks (outputs from blocks are
different, but the source of the error cannot be determined).

C. Railway station safety devices
The proposed methodology is demonstrated on the

practical experiment for safety railway station device design.
Nowadays the safety device of a railway station is in many
cases realized by several functional blocks based on relays.
These functional blocks occupied high area. It means, that
for the railway station with 10ths number of rails it can
occupy whole building. This solution also leads to high
current consumption and high power supply. The devices
based on relays have been very popular due to their high
safety factor ensured by a structure corresponding with
a railway scheme. Current research deals also with systems
based on two or more parallel working processor (instead of
relays). The safety property of this system depends more on
a human factor due to properties based and given by
software. The safety device based on processors is described
in [11].

In our practical experiment the safety device of the
railway station is based on a five blocks realized by an FSM.
These basic five blocks are based on basic meaning of the
safety railway station systems containing relay unit. Security
property is given by possible hardware combination. It
means that one train path cannot be set with using occupied
block by another train path. This approach is different from
PC based system, where possibility of setting of a free path is
defined by rules. The rules are set by programmer and his
mistake could lead to an accident.

The scheme of a simple railway station based on the
relay blocks is shown in Figure 3. The definition of these
blocks and their function is in [8].

The new proposed system investigated in our research
team [8] uses the same structure as a relay-based system but
the function implemented inside the blocks and
communications between these blocks are completely
different. Some blocks from an old system were joined
together. Each new block is based on an FSM. The simple
railway station based on the new proposed blocks is shown
in Figure 4.

Figure 3. Simple railway station with relay-based blocks

Figure 4. Simple railway station composed of the new FSM-based blocks

These blocks are defined as follow:
 VJZD block represents a home signal. This block is

a start point of a train path. This train path is built
directly from this block. This block can be also the
end of a train path. VJZD block solves a track before
the home signal and signalizes whether this track is
free or occupied.

 M block controls correctness of a train position. In
a case, when the train path is divided into three parts,
the train coming from left to right must firstly
occupy the left segment following by the middle one
and at last the right segment. In any other case, an
error is signalized.

 SD block represents a rail switch and also controls
the right position of a train.

 HQ block represents an exit signal. This block serves
as a start point of the train path and the train path is
built to the right from this block. This block can be
also the end of the train path.

 K block represents a station track and controls the
correctness of a train position.

The complex railway station safety device can be
generated from these basic blocks. The inputs and the
outputs of each block are divided into groups according
theirs functionality. There are three types of inputs and three
types of outputs.

Inputs are divided as follow:
 I name – an input from track

 IB name – an input from others blocks

 IO name – an input from control device

Outputs are divided as follow:
 V name – an output to track

 VB name – an output to others blocks

 VO name – an output to control device

All FSM blocks are specified in KISS format. KISS
format is presented as the subset of BLIF format [9]. There
are two blocks of combinational logic. The first block
generates next state and the second block generates outputs
form current state. A set of flip-flops is assumed. The current
state is stored in flip-flops and we assume its representation
only as a data path in our approach. The current state is
encoded by the selected code (Binary or One Hot) and forms
the code word. The code word is generated by one of
combinational logic used to obtain the next state.

III. FAULT SIMULATION AND
FAULT COVERAGE IMPROVEMENT MODIFICATION FLOW
The proposed modification can be divided into two

separate parts. “Top” designs and corresponding “.tst” files
are prepared in the first part. “Top” design contains
next-state or output logic extracted from a chosen safety
device FSM and the corresponding parity predictor. “.tst”

files contain the test vectors, the correct output responses and
the definitions of the check codes. The second part contains
the fault simulation to find Critical points, the modification
in these points, the partial duplication and the final fault test.

A. First part – file preparation
The first part of the proposed modification is the

preparation of input files (“Top” design and “.tst” file) for
the second part. The process flow of this part is shown in
Figure 5. The input to this part is chosen FSM of safety
device of the railway station described in KISS format.

The short description of the first part:
 States encoding, logics extraction, test vectors

generation – Both combinational logics from the
FSM have to be extracted from the KISS file and
saved in the PLA format. The encoding of the states
of the FSM has to be chosen before extraction.
Binary and 1-out-of-n (One Hot) encoding is
selected in this paper. Predictors “Predictor1” are
created as the parity bit generators from each of
combinational logics and are also saved in the PLA
format. The last outputs in this step are the “.tst”
files containing the test vectors to check the parity.
Each “.tst” file corresponds to one “Top” design.
Further steps are equivalent for both combinational
logics.

Figure 5. The process flow of file preparation

 Minimization, conversion to VHDL, independent
synthesis – Both original combinational logics and
both predictors are minimized, converted into VHDL
and synthesized separately to disable resource
sharing.

 Join – Each “Original” (synthesized combinational
logic) and corresponding “Predictor1” (synthesized
parity predictor) are joined to “Top” design at
Electronic Design Interchange Format (EDIF) level
to ensure the independence of both parts. This step is
performed by our simulation and EDIF manipulation
utility.

The outputs of this part are two “Top” EDIF files and
two “.tst” files. The first EDIF contains next-state
combinational logic and its parity predictor, the second EDIF
contains output logic and its parity predictor. “.tst” files
contain the corresponding test vectors and respective correct
responses. The sizes (used LUTs in the FPGA
implementation) of both “Original” and both “Predictor1”
designs are obtained from synthesis results.

B. Second part – simulation and partial duplication

Figure 6. The process flow of modification and test

The second part of the proposed modification contains
the fault simulation and the EDIF modification (partial
duplication). All process steps in the second part are using
a simulator and EDIF manipulation utility developed in our
research group. One pair “Top” EDIF – “.tst” file enters this
part of the process. The flow of this part is shown in Figure
6. All steps are made at the EDIF level. The EDIF parser is
based on BYU Edif Tools [10].

This part is based on the results from the fault simulation.
The main idea is to add the second predictor that contains
part(s) of the “Top” design. The block diagram of
“Complete” design, that contains both “Top” and
“Predictor2” designs, is shown in Figure 7.

Figure 7. Block diagram of “Complete” design

The description of the second part follows:
 Test “Top” design – The fault test of the design is

the key part of proposed modification and deserves
detailed description. The correct output response to
the input word is calculated in the first step and set
of all applicable faults are found. The faults may be
inserted into the Lookup Table (LUT) as flip of one
bit in the LUT’s memory or may be inserted at the
connection point between the part instance and the
net. Both methods provide similar results so the
results in this paper are calculated by using only the
second method.

 One fault from the faults set is inserted into the
design then and if any change is detected, the design
is
re-simulated. Output word code check (if the code is
set in the “.tst” file) and the comparison with the
correct output word are made in the next step. If the
code check fails, the input word is added to the
“test” group. If the comparison of the outputs fails,
but the code check passes, the input word is added to
the “error” group. When all input words are tested,
the fault class is determined. The classification is
based on the size of “test” and “error” groups and is
described in Table I.

TABLE I. FAULT CLASSIFICATION

Fault class “test” group “error” group

A Empty Empty

B Non-empty Empty

C Empty Non-empty

D Non-empty Non-empty

 Fault is removed from the design and all values,

which have been changed after fault insertion and
re-simulation, are restored. Fault insertion,
re-simulation, output checking, fault classification
and values restoration are preformed for all faults
from the faults set. Statistics for each fault and
numbers of “A”, “B”, “C” and “D” class faults are
generated. FS property is calculated from numbers
of faults.

 Find all “fault” nets – All nets connected to places
with class “C” or “D” faults and not connected to
primary inputs are marked as “fault” nets. Nets
connected to primary inputs are taken off the “fault”
nets list because the output added to such net could
detect only the fault that is on the input pin, but such
fault will be propagated to second predictor
“Predictor2” as well and it would not be detected.

 Connect selected “fault” nets to outputs – A list with
“fault” nets sorted by number of input words, that
produces incorrect output codeword, descending is
created. Selected nets are connected to the
newly-formed outputs. Modification parameters
designate number of newly-formed outputs and
“fault” nets that are to be connected to them.

 Remove non-test outputs and reduce logic – The
EDIF created in previous step is duplicated and
saved as “Predictor2”. Only newly-formed outputs
are kept and useless instances and nets are removed.
Statistics with used LUT resources in “Predictor2” is
created.

 Join – EDIF designs from two previous steps are
joined to the “Complete” design.

 Modify “.tst” file – “.tst” file is modified to include
newly-formed test outputs from “Top”, outputs from
the second predictor and their check codes. All pairs
“test_output_X” – “predicted_output_X“ must have
equivalent values, because they are generated form
the same (but duplicated) logic. These check rules
(codes) must be specified in the “.tst” file in the case
of simulation or would have to be checked by
checker circuit during the standard operation.

 Test “Complete” design – The fault test of the
“Complete” design is the final step of the proposed
modification. Statistics for each fault and numbers of
“A”, “B”, “C” and “D” class faults are generated. FS
property is calculated from numbers of faults.

The outputs from the second part are statistics of
numbers of “A”, “B”, “C” and “D” class faults and the size
of “Predictor2”. Another output is “Complete” design
including original logic, parity predictor “Predictor1” and
predictor “Predictor2” that contains duplicated parts from
original logic and “Predictor1”.

The numbers of “A”, “B”, “C” and “D” class faults are
required to calculate the FS property of the design. The size
of “Predictor2” is used to calculate relative overhead.

IV. EXPERIMENTS RESULTS
Experimental results are taken from multiple runs of the

second part of the process (simulation and partial
duplication) with different parameters. The modification of
each “Top” design is launched with parameters as follows:

 Added outputs: All; From position: 0

 Added outputs: 1; From position: 0, 1, …, 18, 19

 Added outputs: 5; From position: 0, 5, 10, 15

 Added outputs: 20; From position: 0

“Added outputs” parameter specifies the number of test
outputs that are added during modification. “All” value
means that the test output is created for each “fault” net.

The position is designated from the list of all “fault” nets
that is sorted by the size of the “error” group descending.
Position “0” matches the net with the largest “error” group. It
is assumed, that connecting this net to the test output and
checking its value with the value of the corresponding output
from “Predictor2” will cause the increase of FS property.

The best achieved results for each settings and design are
in the following tables. The results of next-state logic designs
from all blocks are in Table II. The results of output logic
designs from all blocks are in Table III.

Both tables have the same structure. A design name
including the name of the original block of the safety railway
station system and the code, which is used to encode its FSM
states, is in the first column. K1 indicates the next-state logic
part and K2 indicates the output part of the original FSM.
The second column contains FS property of design before
“Predictor2” is added. FS is calculated as the probability that
the fault is in class “B”. All faults in class “A” are ignored in
calculations. The third column contains FS of design with
both predictors. It is divided into four sub-columns according
to the count of added test outputs. The overhead of the
“Predictor1” relative to corresponding “Original” is in the
fourth column. The overhead value is calculated from the
number of LUTs used in the design. There is no overhead of
“Predictor1” of all next-state logics using One Hot code
because logic function of such “Predictor1” is always logic
“1”. The last column contains the total overhead (the
overhead of both predictors). It is divided into four
subcolumns as in the case of the third column.

It is obvious that the addition of one test output causes
the small increase of both FS and overhead values. The more
outputs are added, the bigger increase of both FS and
overhead values is achieved. Next-state logic designs are
larger

(ca. 100-300 LUTs) so 20 test outputs can be added without
problems in the most cases. Output logic designs are small
(ca. 10-30 LUTs) so 20 test outputs cannot be added in some
cases and therefore some values in the table may be equal for
“All” and other counts of added outputs.

Both tables show significant improvement of FS. Adding
of 20 test outputs increases FS to 90% and more in most
cases. FS increase by 1% costs ca. 1% relative overhead size
of “Predictor2”.

V. CONCLUSION AND FUTURE WORK
The method how to increase Fault Security property has

been presented. Results indicate that Fault Security increase
by 1% costs ca. 1% relative overhead size of “Predictor2”.
The method allows finding a balance between a Fault
Security increment and a design overhead. Big overhead is
unwelcome in the case of the safety railway station system
design therefore the count of added test outputs is limited to
maintain the overhead in acceptable boundaries. However,
Fault Security can be increased from 60%-85% to 90%-99%
at the cost of total overhead from 10% to 50% in
applications, in which a bigger overhead can be tolerated.
The fact, that 100% of Fault Security parameter has not been
reached means that another method of concurrent error
detection such as modified duplex system should be used.
Then the system is failsafe and even for many faults fault
tolerant. Our preliminary results show that the only
remaining non-detectable faults in “All” setting are located
on the primary inputs. When insertion of such faults is
disabled, Fault Security is able to reach 100%.

The presented method is not limited for safety railway
station system design only. It allows increasing Fault
Security property in general applications or System on
a Chip (SoC) designs. The second part (the fault simulation
and the EDIF modification) of the presented method does not
require any commercial tools to operate.

Simulation and modification tools are fully automated
and are able to generate results without any human
intervention. This allows to explore the state space of the
combinations of added test outputs and to find the
combinations that allows a bigger Fault Security
improvement for the lower overhead cost. A state-space
exploration is in development.

ACKNOWLEDGMENT
This research has been partially supported by MSMT

under research program MSM6840770014, GA102/09/1668
and SGS10/118/OHK3/1T/18.

REFERENCES
[1] P. Kubalik, R. Dobias and H. Kubatova, “Dependable Design for

FPGA based on Duplex System and Reconfiguration”, In Proc. of 9th
Euromicro Conference on Digital System Design, Los Alamitos:
IEEE Computer Society, 2006, pp. 139-145.

[2] P. Kubalík and H. Kubátová, “Dependable design technique for
system-on-chip“, Journal of Systems Architecture. 2008, vol. 2008,
no. 54, pp. 452-464. ISSN 1383-7621.

[3] R. Dobiáš, P. Kubalík, H. Kubátová: “Dependability computations for
fault-tolerant system based on FPGA”, Proc. of 12th IEEE
International Conference on Electronics, Circuits and Systems, 2005,
pp. 1-4

[4] D.K. Pradhan: “Fault-Tolerant Computer System Design”,
Prentice-Hall, Inc., New Jersey, 1996.

[5] L. Kafka, P. Kubalík, H. Kubátová and O. Novák: “Fault
Classification for Self-checking Circuits Implemented in FPGA”,
Proc. of IEEE Design and Diagnostics of Electronic Circuits and
Systems Workshop. Sopron University of Western Hungary, 2005,
pp. 228-231.

[6] S. Mitra and E. J. McCluskey: "Which Concurrent Error Detection
Scheme To Choose?", Proc. of International Test Conf. 2000,
pp. 985-994.

[7] S. Mitra and E. J. McCluskey: “Diversity Techniques for Concurrent
Error Detection”, Proc. of IEEE 2nd International Symposium on
Quality Electronic Design, 2001, pp. 249-250.

[8] J. Borecký, P. Kubalík and H. Kubátová: “Reliable Railway Station
System based on Regular Structure implemented in FPGA”, Proc. of
12th EUROMICRO Conference on Digital System Design, Los
Alamitos, IEEE Computer Society, 2009, pp. 348-354.

[9] Berkeley Logic Interchange Format (BLIF), University of California
Berkeley, 2005.

[10] BYU Edif Tools: Available from: http://reliability.ee.byu.edu/.
[11] V. Chandra, M.R. Verma: “A Fail-Safe Interlocking System for

Railways”, IEEE Design & Test of Computers, 1991, pp. 58-66.
[12] P. Drineas, Y. Makris, "SPaRe: Selective partial replication for

concurrent fault-detection in FSMs", IEEE Transactions on
Instrumentation and Measurement, 2003, vol. 52, pp. 1729-1737.

[13] K. Mohanram et al. "Synthesis of Low-Cost Parity-Based Partially
Self-Checking Circuits" In 9th IEEE International On-Line Testing
Symposium, Kos Island, Greece, 2003

TABLE II. BEST VALUES – NEXT-STATE LOGIC

 [Complete]
FS (%) [Complete]

Overhead (%)

Number of added test outputs Number of added test outputs
Design name [Original + Predictor1]

FS (%) All 1 5 20
[Original + Predictor1]

Overhead (%) All 1 5 20

Code_Binary-fsm_HQ_K1 85.17 97.84 85.98 88.44 96.46 22.28 33.49 22.70 24.34 31.58
Code_Binary-fsm_K_K1 86.05 97.71 87.00 88.77 96.68 26.11 37.63 26.58 28.40 35.91
Code_Binary-fsm_M_K1 87.22 97.92 88.03 90.27 97.20 29.38 37.81 29.78 31.32 36.55
Code_Binary-fsm_SD_K1 85.31 98.57 85.65 86.76 90.77 22.22 34.80 22.38 23.82 28.65
Code_Binary-fsm_VJZD_K1 84.41 97.90 85.32 89.70 95.96 29.33 41.11 29.80 33.33 39.77
Code_OneHot-fsm_HQ_K1 36.42 97.02 37.29 48.33 59.79 0.00a 52.63 5.82 11.80 20.98
Code_OneHot-fsm_K_K1 81.29 92.77 83.09 87.58 92.77 0.00a 14.89 1.23 5.88 14.89
Code_OneHot-fsm_M_K1 82.92 94.48 84.35 87.71 94.48 0.00a 16.80 0.95 4.59 16.80
Code_OneHot-fsm_SD_K1 89.84 97.20 90.25 90.78 93.44 0.00a 12.38 0.56 2.03 6.35
Code_OneHot-fsm_VJZD_K1 86.08 96.27 86.64 87.96 93.22 0.00a 16.85 0.65 3.16 13.56

a. “Predictor1” is only VCC – LUTs are not required

TABLE III. BEST VALUES – OUTPUT LOGIC

 [Complete]
FS (%) [Complete]

Overhead (%)

Number of added test outputs Number of added test outputs
Design name [Original + Predictor1]

FS (%) All 1 5 20
[Original + Predictor1]

Overhead (%) All 1 5 20

Code_Binary-fsm_HQ_K2 61.28 98.51 73.40 82.63 98.51 5.13 36.21 24.49 26.00 36.21
Code_Binary-fsm_K_K2 84.75 92.31 92.31 92.31 92.31 10.00 18.18 18.18 18.18 18.18
Code_Binary-fsm_M_K2 87.56 95.71 92.83 95.71 95.71 10.00 18.18 14.29 18.18 18.18
Code_Binary-fsm_SD_K2 71.01 98.76 72.95 85.88 96.48 8.96 34.41 10.29 21.79 31.46
Code_Binary-fsm_VJZD_K2 86.50 97.37 90.00 97.37 97.37 9.68 22.22 12.50 22.22 22.22
Code_OneHot-fsm_HQ_K2 65.38 95.81 77.60 86.46 95.81 11.43 40.38 34.04 39.22 40.38
Code_OneHot-fsm_K_K2 62.21 94.04 77.78 89.90 94.04 26.32 48.15 48.15 48.15 48.15
Code_OneHot-fsm_M_K2 67.04 94.20 72.24 84.50 94.20 26.09 46.88 29.17 39.29 46.88
Code_OneHot-fsm_SD_K2 52.30 90.39 70.86 80.21 87.30 5.00 39.68 39.68 39.68 39.68
Code_OneHot-fsm_VJZD_K2 68.28 90.73 79.65 85.95 90.73 13.33 35.00 31.58 33.33 35.00

