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Abstract— A method how to improve the coverage of single 
faults in combinational circuits is proposed. The method is 
based on Concurrent Error Detection, but uses a fault 
simulation to find Critical points – the places, where faults are 
difficult to detect. The partial duplication of the design with 
regard to these critical points is able to increase the faults 
coverage with a low area overhead cost. Due to higher fault 
coverage we can increase the dependability parameters. The 
proposed modification is tested on the railway station safety 
devices designs implemented in the FPGA. 
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I.  INTRODUCTION 
We propose a method how to improve the observability 

and coverage of single faults in combinational circuits using 
Concurrent Error Detection (CED) techniques. 
Combinational circuits are combinational parts of finite state 
machine (FSM) in this paper. FSM can be modified as well 
by separating both combinational parts (next-state logic and 
output logic) from flip-flops, modifying these logics 
separately and put it all back together. Due to the fact, that 
states are also coded with a self-checking code, the whole 
FSM is the self-checking circuit. 

CED techniques have been proposed many times in the 
past. Almost all of them have focused on the objective of 
being able to detect all faults.  

Selective Partial Replication (SPaRe) technique 
presented in [12] has very similar aim as our modification. 
SPaRe is able to detect all faults in finite state machines 
(FSM). SPaRe uses a prediction logic that creates 
independent predicted signals. The optimization objective of 
SPaRe is to minimize the number of outputs of the prediction 
logic. Based on the observation that a subset of output bits 
per state transition is typically sufficient to detect all faults, 
SPaRe aims at identifying a minimal such set. 

The main difference between SPaRe and our 
modification is that we combine two independent circuits 
that predict the values of the outputs of the original logic. 
The first predictor uses a regular parity bit, the second 
predictor is created by the partial duplication of original 

logic and the first predictor. We use a fault simulation to 
determine parts that have to be duplicated. Single faults 
similar to Single Event Upset (SEU) are inserted into the 
design.  

Another technique presented in [13] is one of the few 
techniques, which is not focused on detecting all faults. It 
uses a partial parity function in concurrent error detection 
scheme. This methodology allows increasing the faults 
coverage with low area overhead. Our modification uses  
a regular parity in the first step, thus both techniques could 
have been used together. 

Our modification is aimed to the railway station safety 
devices application implemented in the FPGA, but its 
principles can be generalized. Railway station safety devices 
are composed of cooperating FSM blocks. Each block is 
designed as a self-checking circuit based on Modified 
Duplex System (MDS) architecture principles [1], [2] and 
[3]. The self-checking circuit quality is determined by an 
area overhead and Fault Security (FS) property. The area 
overhead of both circuits that are the main parts of an MDS 
has to be minimized. On the other hand, it is useful to FS 
property of each circuit as high as possible. Higher FS 
property allows fault localization that is needed for an 
efficient use of the partial reconfiguration ability of the 
FPGA. Moreover, we have been planning to use the dynamic 
reconfiguration of the FPGA when a permanent fault is 
detected. The dynamic reconfiguration process is able to 
relocate the part of the design from the damaged place to the 
unused resources. We must be able to localize the fault as 
good as possible to speed up the reconfiguration process and 
to spare resources for the relocation.  

Our modification is able to detect all single SEU-like 
faults that can affect the tested parts of the design, but our 
main goal is to find a trade-off between the fault coverage 
and the overhead of the design. The faults coverage is 
determined by our modification tool. It uses fault simulation 
to find the places, where faults are difficult to detect and then 
connects these places to the test outputs. It is assumed that 
connecting these places to the test outputs will increase FS 
property and its checking will not increase overhead too 
much. These outputs increase also the fault observability. It 
means that self-testing parameter is also increased. 



Our modification is supplemental method to a regular 
duplex system. The regular duplex system will be used in  
a case in which 100% overhead is acceptable. It is important 
to say that the regular duplex system does not allow fault 
localization so the reconfiguration quite loses its 
effectiveness.  

The paper is structured as follows: A short introduction 
to Fault Security calculations and Concurrent Error 
Detection methods and the description of Railway station 
safety devices are in Section II. Section III contains the 
description of the proposed modification. Tables, the settings 
of the parameters of our simulation and modification tool 
and results are presented in section IV. Section V concludes 
the paper. 

II. BACKGROUND 

A. Fault Security calculations 
There are three basic quantitative criteria in a field of 

CED: [4] 
 Fault Security (FS). 

 Self-Testing (ST). 

 Totally Self-Checking (TSC). 

These three aspects have to be used in the on-line testing 
field to evaluate the level of safety of the designed or 
modelled system. 

To determine whether the circuit satisfies the TSC 
property (both FS and ST properties are satisfied), the 
possible faults should be classified and separate into four 
classes, A, B, C and D [5]. 
 

 Class A - hidden faults. These are faults that do not 
affect the circuit output for any allowed input vector. 
Faults belonging to this class have no impact to the 
FS property, but if this fault can occur, a circuit 
cannot be ST.  

 Class B - faults detectable by at least one input 
vector. They do not produce an incorrect codeword 
(valid code word, but incorrect one) for other input 
vectors. These faults have no negative impact to the 
FS and ST property.  

 Class C - faults that cause an incorrect codeword for 
at least one input vector. They are not detectable by 
any other input vector. Faults from this class cause 
undetectable errors. If any fault in a circuit belongs 
to this class, the circuit is neither FS, nor ST.  

 Class D - faults that cause an undetectable error for 
at least one vector and a detectable error for at least 
one another vector. Although these faults are 
detectable, they do not satisfy the FS property and so 
they are also undesirable. 

This fault classification should be used to calculate the 
level of satisfaction of FS or ST properties of the designed 
circuit and then calculate TSC properties.  
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Figure 1.  Basic Concurrent Error Detection diagram 

 
Figure 2.  Block diagram of Modified Duplex System (MDS)  

B. Concurrent Error Detection 
CED is a common way to detect faults in the system 

design [6], [7]. The basic diagram of CED is shown in  
Figure 1.  

Almost all CED techniques are based on adding  
a checking circuit to the original one. The added circuit 
independently calculates some special characteristic of 
output (e.g. parity bit). A checker circuit checks whether the 
special characteristic of the output actually produced by the 
system in response to the input sequence is the same as the 
predicted response, and produces an error signal when  
a mismatch occurs. 

Both predictor and checker circuits are the sources of the 
area overhead of the design. The area overhead must be low 
to keep the effectiveness of this method. Any added logic 
does not only consume FPGA resources, it may be also 
affected by a fault. 

MDS architecture uses two instances of design with CED 
that may be not fault tolerant. The purpose of MDS 
architecture is to achieve the whole circuit including all 
checkers and comparators to be fault tolerant. The block 
diagram of MDS is shown in Figure 2. Each improvement of 
the FS property of the design increases the probability of 
detecting error inside the block. Detecting an error inside the 
block initiates reconfiguration of the damaged block, but the 
second block may still be operational. If the error is not 
detected inside the block, it is detected by comparators.  



The error detected by comparators initiates the 
reconfiguration of both blocks (outputs from blocks are 
different, but the source of the error cannot be determined). 

C. Railway station safety devices 
The proposed methodology is demonstrated on the 

practical experiment for safety railway station device design. 
Nowadays the safety device of a railway station is in many 
cases realized by several functional blocks based on relays. 
These functional blocks occupied high area. It means, that 
for the railway station with 10ths number of rails it can 
occupy whole building. This solution also leads to high 
current consumption and high power supply. The devices 
based on relays have been very popular due to their high 
safety factor ensured by a structure corresponding with  
a railway scheme. Current research deals also with systems 
based on two or more parallel working processor (instead of 
relays). The safety property of this system depends more on 
a human factor due to properties based and given by 
software. The safety device based on processors is described 
in [11]. 

In our practical experiment the safety device of the 
railway station is based on a five blocks realized by an FSM. 
These basic five blocks are based on basic meaning of the 
safety railway station systems containing relay unit. Security 
property is given by possible hardware combination. It 
means that one train path cannot be set with using occupied 
block by another train path. This approach is different from 
PC based system, where possibility of setting of a free path is 
defined by rules. The rules are set by programmer and his 
mistake could lead to an accident. 

The scheme of a simple railway station based on the 
relay blocks is shown in Figure 3. The definition of these 
blocks and their function is in [8]. 

The new proposed system investigated in our research 
team [8] uses the same structure as a relay-based system but 
the function implemented inside the blocks and 
communications between these blocks are completely 
different. Some blocks from an old system were joined 
together. Each new block is based on an FSM. The simple 
railway station based on the new proposed blocks is shown 
in Figure 4.  

 

Figure 3.  Simple railway station with relay-based blocks 

 

Figure 4.  Simple railway station composed of the new FSM-based blocks 

These blocks are defined as follow: 
 VJZD block represents a home signal. This block is  

a start point of a train path. This train path is built 
directly from this block. This block can be also the 
end of a train path. VJZD block solves a track before 
the home signal and signalizes whether this track is 
free or occupied. 

 M block controls correctness of a train position. In  
a case, when the train path is divided into three parts, 
the train coming from left to right must firstly 
occupy the left segment following by the middle one 
and at last the right segment. In any other case, an 
error is signalized. 

 SD block represents a rail switch and also controls 
the right position of a train. 

 HQ block represents an exit signal. This block serves 
as a start point of the train path and the train path is 
built to the right from this block. This block can be 
also the end of the train path.  

 K block represents a station track and controls the 
correctness of a train position. 

The complex railway station safety device can be 
generated from these basic blocks. The inputs and the 
outputs of each block are divided into groups according 
theirs functionality. There are three types of inputs and three 
types of outputs. 

Inputs are divided as follow: 
 I name – an input from track 

 IB name – an input from others blocks 

 IO name – an input from control device 

Outputs are divided as follow: 
 V name – an output to track 

 VB name – an output to others blocks 

 VO name – an output to control device 

All FSM blocks are specified in KISS format. KISS 
format is presented as the subset of BLIF format [9]. There 
are two blocks of combinational logic. The first block 
generates next state and the second block generates outputs 
form current state. A set of flip-flops is assumed. The current 
state is stored in flip-flops and we assume its representation 
only as a data path in our approach. The current state is 
encoded by the selected code (Binary or One Hot) and forms 
the code word. The code word is generated by one of 
combinational logic used to obtain the next state. 

III. FAULT SIMULATION AND  
FAULT COVERAGE IMPROVEMENT MODIFICATION FLOW 
The proposed modification can be divided into two 

separate parts. “Top” designs and corresponding “.tst” files 
are prepared in the first part. “Top” design contains  
next-state or output logic extracted from a chosen safety 
device FSM and the corresponding parity predictor. “.tst” 



files contain the test vectors, the correct output responses and 
the definitions of the check codes. The second part contains 
the fault simulation to find Critical points, the modification 
in these points, the partial duplication and the final fault test. 

A. First part – file preparation 
The first part of the proposed modification is the 

preparation of input files (“Top” design and “.tst” file) for 
the second part. The process flow of this part is shown in 
Figure 5. The input to this part is chosen FSM of safety 
device of the railway station described in KISS format. 

The short description of the first part: 
 States encoding, logics extraction, test vectors 

generation – Both combinational logics from the 
FSM have to be extracted from the KISS file and 
saved in the PLA format. The encoding of the states 
of the FSM has to be chosen before extraction. 
Binary and 1-out-of-n (One Hot) encoding is 
selected in this paper. Predictors “Predictor1” are 
created as the parity bit generators from each of 
combinational logics and are also saved in the PLA 
format. The last outputs in this step are the “.tst” 
files containing the test vectors to check the parity. 
Each “.tst” file corresponds to one “Top” design. 
Further steps are equivalent for both combinational 
logics.  

 
Figure 5.  The process flow of file preparation 

 Minimization, conversion to VHDL, independent 
synthesis – Both original combinational logics and 
both predictors are minimized, converted into VHDL 
and synthesized separately to disable resource 
sharing. 

 Join – Each “Original” (synthesized combinational 
logic) and corresponding “Predictor1” (synthesized 
parity predictor) are joined to “Top” design at 
Electronic Design Interchange Format (EDIF) level 
to ensure the independence of both parts. This step is 
performed by our simulation and EDIF manipulation 
utility. 

The outputs of this part are two “Top” EDIF files and 
two “.tst” files. The first EDIF contains next-state 
combinational logic and its parity predictor, the second EDIF 
contains output logic and its parity predictor. “.tst” files 
contain the corresponding test vectors and respective correct 
responses. The sizes (used LUTs in the FPGA 
implementation) of both “Original” and both “Predictor1” 
designs are obtained from synthesis results. 

B. Second part – simulation and partial duplication 

 
Figure 6.  The process flow of  modification and test 



The second part of the proposed modification contains 
the fault simulation and the EDIF modification (partial 
duplication). All process steps in the second part are using  
a simulator and EDIF manipulation utility developed in our 
research group. One pair “Top” EDIF – “.tst” file enters this 
part of the process. The flow of this part is shown in Figure 
6. All steps are made at the EDIF level. The EDIF parser is 
based on BYU Edif Tools [10]. 

This part is based on the results from the fault simulation. 
The main idea is to add the second predictor that contains 
part(s) of the “Top” design. The block diagram of 
“Complete” design, that contains both “Top” and 
“Predictor2” designs, is shown in Figure 7.  

 
Figure 7.  Block diagram of “Complete” design 

The description of the second part follows: 
 Test “Top” design – The fault test of the design is 

the key part of proposed modification and deserves 
detailed description. The correct output response to 
the input word is calculated in the first step and set 
of all applicable faults are found. The faults may be 
inserted into the Lookup Table (LUT) as flip of one 
bit in the LUT’s memory or may be inserted at the 
connection point between the part instance and the 
net. Both methods provide similar results so the 
results in this paper are calculated by using only the 
second method. 

 One fault from the faults set is inserted into the 
design then and if any change is detected, the design 
is  
re-simulated. Output word code check (if the code is 
set in the “.tst” file) and the comparison with the 
correct output word are made in the next step. If the 
code check fails, the input word is added to the 
“test” group. If the comparison of the outputs fails, 
but the code check passes, the input word is added to 
the “error” group. When all input words are tested, 
the fault class is determined. The classification is 
based on the size of “test” and “error” groups and is 
described in Table I. 

TABLE I.  FAULT CLASSIFICATION 

Fault class “test” group “error” group 

A Empty Empty 

B Non-empty Empty 

C Empty Non-empty 

D Non-empty Non-empty 
 
 Fault is removed from the design and all values, 

which have been changed after fault insertion and  
re-simulation, are restored. Fault insertion,  
re-simulation, output checking, fault classification 
and values restoration are preformed for all faults 
from the faults set. Statistics for each fault and 
numbers of “A”, “B”, “C” and “D” class faults are 
generated. FS property is calculated from numbers 
of faults. 

 Find all “fault” nets – All nets connected to places 
with class “C” or “D” faults and not connected to 
primary inputs are marked as “fault” nets. Nets 
connected to primary inputs are taken off the “fault” 
nets list because the output added to such net could 
detect only the fault that is on the input pin, but such 
fault will be propagated to second predictor 
“Predictor2” as well and it would not be detected. 

 Connect selected “fault” nets to outputs – A list with 
“fault” nets sorted by number of input words, that 
produces incorrect output codeword, descending is 
created. Selected nets are connected to the  
newly-formed outputs. Modification parameters 
designate number of newly-formed outputs and 
“fault” nets that are to be connected to them. 

 Remove non-test outputs and reduce logic – The 
EDIF created in previous step is duplicated and 
saved as “Predictor2”. Only newly-formed outputs 
are kept and useless instances and nets are removed.  
Statistics with used LUT resources in “Predictor2” is 
created. 

 Join – EDIF designs from two previous steps are 
joined to the “Complete” design.  

 Modify “.tst” file – “.tst” file is modified to include 
newly-formed test outputs from “Top”, outputs from 
the second predictor and their check codes. All pairs 
“test_output_X” – “predicted_output_X“ must have 
equivalent values, because they are generated form 
the same (but duplicated) logic. These check rules 
(codes) must be specified in the “.tst” file in the case 
of simulation or would have to be checked by 
checker circuit during the standard operation. 

 Test “Complete” design – The fault test of the 
“Complete” design is the final step of the proposed 
modification. Statistics for each fault and numbers of 
“A”, “B”, “C” and “D” class faults are generated. FS 
property is calculated from numbers of faults. 



The outputs from the second part are statistics of 
numbers of “A”, “B”, “C” and “D” class faults and the size 
of “Predictor2”. Another output is “Complete” design 
including original logic, parity predictor “Predictor1” and 
predictor “Predictor2” that contains duplicated parts from 
original logic and “Predictor1”. 

The numbers of “A”, “B”, “C” and “D” class faults are 
required to calculate the FS property of the design. The size 
of “Predictor2” is used to calculate relative overhead. 

IV. EXPERIMENTS RESULTS 
Experimental results are taken from multiple runs of the 

second part of the process (simulation and partial 
duplication) with different parameters. The modification of 
each “Top” design is launched with parameters as follows: 

 Added outputs: All; From position: 0 

 Added outputs: 1; From position: 0, 1, …, 18, 19 

 Added outputs: 5; From position: 0, 5, 10, 15 

 Added outputs: 20; From position: 0 

“Added outputs” parameter specifies the number of test 
outputs that are added during modification. “All” value 
means that the test output is created for each “fault” net. 

The position is designated from the list of all “fault” nets 
that is sorted by the size of the “error” group descending. 
Position “0” matches the net with the largest “error” group. It 
is assumed, that connecting this net to the test output and 
checking its value with the value of the corresponding output 
from “Predictor2” will cause the increase of FS property. 

The best achieved results for each settings and design are 
in the following tables. The results of next-state logic designs 
from all blocks are in Table II. The results of output logic 
designs from all blocks are in Table III. 

Both tables have the same structure. A design name 
including the name of the original block of the safety railway 
station system and the code, which is used to encode its FSM 
states, is in the first column. K1 indicates the next-state logic 
part and K2 indicates the output part of the original FSM. 
The second column contains FS property of design before 
“Predictor2” is added. FS is calculated as the probability that 
the fault is in class “B”. All faults in class “A” are ignored in 
calculations. The third column contains FS of design with 
both predictors. It is divided into four sub-columns according 
to the count of added test outputs. The overhead of the 
“Predictor1” relative to corresponding “Original” is in the 
fourth column. The overhead value is calculated from the 
number of LUTs used in the design. There is no overhead of 
“Predictor1” of all next-state logics using One Hot code 
because logic function of such “Predictor1” is always logic 
“1”. The last column contains the total overhead (the 
overhead of both predictors). It is divided into four  
subcolumns as in the case of the third column. 

It is obvious that the addition of one test output causes 
the small increase of both FS and overhead values. The more 
outputs are added, the bigger increase of both FS and 
overhead values is achieved. Next-state logic designs are 
larger  

(ca. 100-300 LUTs) so 20 test outputs can be added without 
problems in the most cases. Output logic designs are small  
(ca. 10-30 LUTs) so 20 test outputs cannot be added in some 
cases and therefore some values in the table may be equal for 
“All” and other counts of added outputs. 

Both tables show significant improvement of FS. Adding 
of 20 test outputs increases FS to 90% and more in most 
cases. FS increase by 1% costs ca. 1% relative overhead size 
of “Predictor2”. 

V. CONCLUSION AND FUTURE WORK 
The method how to increase Fault Security property has 

been presented. Results indicate that Fault Security increase 
by 1% costs ca. 1% relative overhead size of “Predictor2”. 
The method allows finding a balance between a Fault 
Security increment and a design overhead. Big overhead is 
unwelcome in the case of the safety railway station system 
design therefore the count of added test outputs is limited to 
maintain the overhead in acceptable boundaries. However, 
Fault Security can be increased from 60%-85% to 90%-99% 
at the cost of total overhead from 10% to 50% in 
applications, in which a bigger overhead can be tolerated. 
The fact, that 100% of Fault Security parameter has not been 
reached means that another method of concurrent error 
detection such as modified duplex system should be used. 
Then the system is failsafe and even for many faults fault 
tolerant. Our preliminary results show that the only 
remaining non-detectable faults in “All” setting are located 
on the primary inputs. When insertion of such faults is 
disabled, Fault Security is able to reach 100%.  

The presented method is not limited for safety railway 
station system design only. It allows increasing Fault 
Security property in general applications or System on  
a Chip (SoC) designs. The second part (the fault simulation 
and the EDIF modification) of the presented method does not 
require any commercial tools to operate. 

Simulation and modification tools are fully automated 
and are able to generate results without any human 
intervention. This allows to explore the state space of the 
combinations of added test outputs and to find the 
combinations that allows a bigger Fault Security 
improvement for the lower overhead cost. A state-space 
exploration is in development. 
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TABLE II.  BEST VALUES – NEXT-STATE LOGIC 

 [Complete] 
FS (%)  [Complete] 

Overhead (%) 

Number of added test outputs Number of added test outputs 
Design name [Original + Predictor1] 

FS (%) All 1 5 20 
[Original + Predictor1] 

Overhead (%) All 1 5 20 

Code_Binary-fsm_HQ_K1 85.17 97.84 85.98 88.44 96.46 22.28 33.49 22.70 24.34 31.58 
Code_Binary-fsm_K_K1 86.05 97.71 87.00 88.77 96.68 26.11 37.63 26.58 28.40 35.91 
Code_Binary-fsm_M_K1 87.22 97.92 88.03 90.27 97.20 29.38 37.81 29.78 31.32 36.55 
Code_Binary-fsm_SD_K1 85.31 98.57 85.65 86.76 90.77 22.22 34.80 22.38 23.82 28.65 
Code_Binary-fsm_VJZD_K1 84.41 97.90 85.32 89.70 95.96 29.33 41.11 29.80 33.33 39.77 
Code_OneHot-fsm_HQ_K1 36.42 97.02 37.29 48.33 59.79 0.00a 52.63 5.82 11.80 20.98 
Code_OneHot-fsm_K_K1 81.29 92.77 83.09 87.58 92.77 0.00a 14.89 1.23 5.88 14.89 
Code_OneHot-fsm_M_K1 82.92 94.48 84.35 87.71 94.48 0.00a 16.80 0.95 4.59 16.80 
Code_OneHot-fsm_SD_K1 89.84 97.20 90.25 90.78 93.44 0.00a 12.38 0.56 2.03 6.35 
Code_OneHot-fsm_VJZD_K1 86.08 96.27 86.64 87.96 93.22 0.00a 16.85 0.65 3.16 13.56 

a. “Predictor1” is only VCC – LUTs are not required 

TABLE III.  BEST VALUES – OUTPUT LOGIC 

 [Complete] 
FS (%)  [Complete] 

Overhead (%) 

Number of added test outputs Number of added test outputs 
Design name [Original + Predictor1] 

FS (%) All 1 5 20 
[Original + Predictor1] 

Overhead (%) All 1 5 20 

Code_Binary-fsm_HQ_K2 61.28 98.51 73.40 82.63 98.51 5.13 36.21 24.49 26.00 36.21 
Code_Binary-fsm_K_K2 84.75 92.31 92.31 92.31 92.31 10.00 18.18 18.18 18.18 18.18 
Code_Binary-fsm_M_K2 87.56 95.71 92.83 95.71 95.71 10.00 18.18 14.29 18.18 18.18 
Code_Binary-fsm_SD_K2 71.01 98.76 72.95 85.88 96.48 8.96 34.41 10.29 21.79 31.46 
Code_Binary-fsm_VJZD_K2 86.50 97.37 90.00 97.37 97.37 9.68 22.22 12.50 22.22 22.22 
Code_OneHot-fsm_HQ_K2 65.38 95.81 77.60 86.46 95.81 11.43 40.38 34.04 39.22 40.38 
Code_OneHot-fsm_K_K2 62.21 94.04 77.78 89.90 94.04 26.32 48.15 48.15 48.15 48.15 
Code_OneHot-fsm_M_K2 67.04 94.20 72.24 84.50 94.20 26.09 46.88 29.17 39.29 46.88 
Code_OneHot-fsm_SD_K2 52.30 90.39 70.86 80.21 87.30 5.00 39.68 39.68 39.68 39.68 
Code_OneHot-fsm_VJZD_K2 68.28 90.73 79.65 85.95 90.73 13.33 35.00 31.58 33.33 35.00 

 

 


