
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract— A hardware fault emulator based on programmable

devices (FPGA) is presented. The emulator performs a single-bit
fault injection in bitstream on top of the implemented circuit,
emulating the SEU event. The combinational circuits mapped in
FPGA are tested and SEU-fault resistance is observed.

I. INTRODUCTION

The main motivation for single-bit fault observing is the
Single Event Upset [1], [2] (SEU) existence. Systems based on
FPGA are sensitive to SEU, because the configuration of
operating FPGA is being held in SRAM cells. The SEU
appearance can lead to a system malfunction. The chance of
SEU occurrence is not limited to radiation-hostile
environment. SEU was observed even at the ground level [3].

The FPGA emulator uses a reconfiguration method to
emulate an SEU impact. The FPGA design typically does not
occupy the whole FPGA device. Here is the difference
between fault injections in the Register Transfer Level and in
the mapped design. Each bit in bitstream could be one possible
fault. The mapped design will always come with unused bits.

The primary goal is to observe the SEU resistance with
regard to the bitstream utilization. That leads to a software
bitstream analysis, which has to be performed before testing.

Faults are quantified in 4 categories (described in [4] in
detail): Hidden (A), detected (B), undetected (C) and
temporary detected (D). This fault classification assumes
tested circuits to be protected by some kind of CED technique
(in our case the even parity predictor is used). Fault Security
(FS), Self Testing (ST) and Totally Self-Checking (TSC)
properties are assessed from these 4 classes.

In comparison with other FPGA fault emulator [5], our
incoming fault emulator extends the range of the fault set to
cell interconnection and bus connections.

II. THE FPGA EMULATOR

The core of the FPGA fault emulator is an FPSLIC device
(Atmel’s SoC combining FPGA and AVR). The fault injection
and the fault classification is performed in the FPSLIC device.

The faults are injected only into the tested circuit
(benchmark), see Fig. 1. The problem of possible logic mixing
and aliasing was solved by tested circuit floorplanning into the

separate area of the FPGA.
The set of all possible faults in a bitstream can be divided

into the 2 subset: the safe set (fault injection should not lead to
shorts in the FPGA) and risk set (fault injection should lead to
shorts and therefore the behavior is unknown).

The safe fault set consist of design-independent subset
(typically LUTs, several 2-to-1 MUXes can be also included),
which can be tested anywhere, no matter where the design
lays; and design-dependent subset (most of unused logic;
drivers, turn points and repeaters of unused wires and busses,
clocking, reset and many others configuration bit), where each
bit in the design has to be wisely considered, whether the fault
is safe to test.

Each fault test from the risk fault set should be followed by
a test, which should guarantee non-destruction function of the
FPGA due to possible shorts. In our case the non-destructivity
test will be guaranteed by the cycle of “dummy”-fault full test
(bitstream is without fault).

At the present time the safe-or-risk fault decision is being
moved from AVR to PC. Until recently, the only design-
independent safe fault set testing wasn’t memory intensive and
only small part of the bitstream holding was sufficient. The
design-dependent fault analysis requires more memory for
operation than the FPSLIC SRAM memory can withstand.

III. PARTIAL RESULTS

The limited results from our previous work were obtained,

An FPGA based fault emulator

J. Kvasnička, P. Kubalik, H. Kubátová
Department of Computer Science and Engineering

Czech Technical University in Prague
Karlovo nám. 13, 121 35 Prague 2

e-mail: (kvasnj1, xkubalik, kubatova)@fel.cvut.cz

FPGA

Tested

benchmark

Test

generator

Comp

checker

Fault

class

logic

AVR

reconfiguration

Ref.

benchmark

SRAM

Commands Results

Fig. 1. FPGA part of fault emulator

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

but these results are limited only to the safe (only LUTs) fault
injection [2]. These results cover only approx. 10% of the
bitstream.

Results of our previous hardware fault emulation [6] are
shown in TABLE I. “Circuit” is the benchmark name, “Inputs”
and “Outputs” are numbers of primary inputs and primary
outputs, “Original circuit” means a number of used LUTs for
original circuit, “Parity generator” means a number of used
LUTs for the parity generator, “Number of all faults” are all
tested faults and “A, B, C, D” are classes derived by our fault
classification.

IV. EXPECTED RESULTS

Our actual work is the extending of the tested fault list to
faults, which belongs to the safe faults set (and which is not
limited to LUTs) and risk set.

The goal of our work is a functional FPGA simulator, which
would cover at least 50% of bitstream allocated by benchmark.
100% coverage is not feasible in this design due to some
shared logic with testing environment (shared clock, some IO
ports used, occupied busses) and the design itself (benchmark
is driven from test generator, not IO ports etc.).

Much more hidden faults (category a) is expected in safe
fault set testing. Therefore more soft distinction among the
hidden faults might have become necessary (used by design or
not used by design).

An answer to the question, whether SEU can lead to the
irreversible destruction of the FPSLIC chip or not will be
solved and presented during the WiP Euromicro conference.

Results will be used in our future work, which is a software
simulator at the bitstream level. Such a simulator would be
great contribution to a dependability analysis of design
mapped to FPGA. This approach could lead to the more
precise fault-tolerant design and its evaluation with respect to
the real dependability parameters.

REFERENCES

[1] Bellato, M., Bernardi, P., Bortalato, D., Candelaro, A., Ceschia, M.,
Paccagnella, A., Rebaudego, M., Sonza Reorda, M., Violante, M.,
Zambolin, P.: “Evaluating the effects of SEUs affecting the
configuration memory of an SRAM-based FPGA.” Design Automation
Event for Electronic System in Europe 2004, pp. 584-589.

[2] QuickLogic Corporation.: Single Event Upsets in FPGAs, 2003,
www.quicklogic.com

[3] Normand, E.: “Single Event Upset at Ground Level,” IEEE Transactions
on Nuclear Science, vol. 43, 1996, pp. 2742-2750.

[4] Kafka L., Kubalík P., Kubátová H., Novák O.: “Fault Classification for
Self-checking Circuits Implemented in FPGA”, Proceedings of IEEE
Design and Diagnostics of Electronic Circuits and Systems Workshop.
Sopron University of Western Hungary, 2005, pp. 228-231.

[5] Kafka, L., Novak, O.: "FPGA-based fault simulator", In Proceedings of
the 2006 IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems DDECS2006, CTU Prague 2006, vol. 1, pp. 274-
278.

[6] Kvasnicka, J.: “Highly Reliable Design Based on FPGA circuits”, CTU
FEE, 2006, (in Czech).

TABLE I:
PARTIAL RESULTS OF FAULT SIMULATION

C
irc

ui
t

In
pu

ts

O
ut

pu
ts

O
rig

in
al

 c
irc

ui
t [

LU
T

s]

P
ar

ity
 g

en
er

at
or

 [L
U

T
s]

N
um

be
r

of
 a

ll
fa

ul
ts

A
 (

hi
dd

en
 fa

ul
ts

)

B
 (

de
te

ct
ed

 fa
ul

ts
)

C
 (

un
de

te
ct

ed
 fa

ul
ts

)

D
 (

te
m

po
ra

ry
 d

et
ec

te
d)

alu1 12 8 8 47 656 0 656 0 0
alu2 10 8 44 47 1072 109 935 0 28
alu3 10 8 45 45 1044 130 877 8 29
Apla 10 12 48 25 900 141 625 5 129
br1 12 8 50 15 810 141 456 69 144
s1488 14 25 310 50 4286 638 3060 85 503
s1494 14 25 276 53 3938 645 2785 67 441
s2081 18 9 22 25 536 22 494 0 20
s386 13 13 57 18 976 170 646 25 135

