System Design of an FPGA Linear Solver

Jifi Bucek, Pavel Kubalik, Rébert Lérencz, Tomas Zahradnicky
Faculty of Information Technology
Czech Technical University in Prague
Thakurova 9, 166 21 Prague, Czech Republic
email: { bucekj | xkubalik | lorencz | zahradt } @fit.cvut.cz

Abstract—The work is focused on design of a Modular System
performing error-free solution of dense linear systems using
residue arithmetic in Xilinx FPGA. The designed system shall
use a set of Residual Processors (RP)s for linear system solution
in Residue Number System and reconstruct the set’s solution
afterwards. The currently proposed system’s architecture has a
single RP, a large DDR memory used for data transfer in between
a PC and the system, and a built-in MicroBlaze processor. Future
work will focus on extending the architecture to implement the
entire Modular System consisting of multiple RPs and performing
the backward transformation from residue representation into the
rational number set.

Keywords—system of linear equations; residue number system;
error-free computation; FPGA

I. INTRODUCTION

Solution of a system of linear equations (SLE) is a basic,
yet often difficult task of linear algebra. On input, there is an
augmented matrix of the SLE and a SLE’s solution vector on
the output. Whether the solution is difficult or not depends
on many aspects including a dimension, density, conditioning,
accuracy requirements, and used arithmetic. Since solution
mostly occurs in either floating point arithmetic, roundoff
errors are committed, accumulated, and possibly having severe
impact at the solution. A way go around the problem is to avoid
rounding at all by using an error-free arithmetic, such as the
arithmetic of the Residue Number System (RNS) [1].

SLE solution in RNS is built on the Chinese Remainder
Theorem (CRT) and proceeds in 3 stages [2]:

Method 1

1) Transformation of the augmented SLE matrix! A |y
into independent linear systems (A |y) mod m;,
each with a distinct prime number modulus m;, for
t=1,...,p; p being a number of moduli.

2) Solution of the independent systems of linear congru-
ences (SLC)s in form Ax =y (mod m;).

3) Reconstruction of the SLE solution x from its RNS
residual representations x (mod my).

Method 1 has its pros and cons. The advantages are that
there is no rounding, the solution process can occur in parallel,
and is error-free. The disadvantages are an increased time and
space complexities necessary for the solution. However it is
possible to implement the method in special hardware.

The paper continues with design of a dedicated SLE solu-
tion hardware in RNS. The architectures so far designed, their

IThe A matrix generally contains either floating-point numbers or integers.

testing, and implementation in FPGA and ASIC technologies
were covered in papers [3] and [4]. These papers focused
on design and implementation of an SLC solver (Stage 2 of
Method 1), while this paper interconnects solvers at Stage 2
with transformation processes performed at Stage 1.

The paper is organized as follows: Section I (Introduction)
introduces the reader into the context of the paper. Section II
(Previous Work) discusses so far designed parts of the designed
SLE solver. Section III (Modular System Architecture on
FPGA) describes the architecture of the SLE solver using
previously described SLC solvers (Residual Processors), while
Section IV (Conclusion and Future Work) summarizes the
paper and provides an outlook at our future efforts.

II. PREVIOUS WORK

SLE solution in RNS performed in a dedicated hardware
Modular System (MS) requires that the system is able to
perform all Method 1 stages. An architecture of such MS is
depicted at Fig. 1:

MODULAR SYSTEM

S

CENTRAL

HOST
CONTROL
SYSTEM UNIT

BU

Fig. 1. Architecture of the Modular System [5]. The Central Control Unit
controls processes required by Method 1 and communicates with the Host
System. RP1 through RP,, are individual Residual Processors, each with its
own modulus m; for i =1, ..., p, supporting all three Method 1 stages. The
Bus denotes an internal interconnection of all units within the MS.

The MS consists of a Central Control Unit (CCU), p hard-
ware identical Residual Processors (RP)s, and an interconnec-
tion Bus. CCU communicates with an external Host System
such as a computer, coordinates RP’s work, and dispatches
data to and from RPs. Each RP works with its own distinct
prime number modulus m; and is designed to support all three
Method 1 stages. The Bus, not necessarily implemented as a
data/control bus, denotes necessary interconnection of all units
within the MS. The following paragraphs will recapitulate so
the far achieved progress in papers [3] and [4], both dealing
with an RP architecture.

Paper [3] presents an initial RP architecture. The archi-
tecture was designed to perform a Gauss-Jordan-Rutishauser
(GJR) elimination upon individual SLCs mod m; stored within
RP’s internal memory. The RP architecture contains special-
ized Arithmetic Units (AU)s interconnected with RP’s memory.

This allows performing vector (SIMD) operations correspond-
ing to the GJR elimination. The paper also discusses dedicated
hardware for residual pivoting solving a zero pivot occurrence
problem. The proposed architecture was implemented in FPGA
(Xilinx Virtex 6) for various SLC dimensions up to n = 1000
with a 24-bit m,;. The implementation in FPGA was approx.
2 times faster than its GCC-compiled software counterpart
running on an Intel T9400 CPU at 2.53 GHz.

Paper [4] compares FPGA and ASIC implementations.
ASIC allowed a larger memory subsystem than in FPGA.
Both designs were compared and the ASIC implementation
was about 4 times faster than FPGA (n = 1000). Both [3] and
[4] discuss solving SLCs, i.e. Stage 2 of Method 1. Next, it
is necessary to design Stage 1, that is, communication of the
MS with the Host System and initialization/preparing RPs for
the SLC solution process performed in Stage 2.

III. MODULAR SYSTEM ARCHITECTURE ON FPGA

This section deals with design of a MS communication
architecture in FPGA. The architecture at Fig. 2 is designed
to allow interconnection of RPs with the Host System, Main
Memory, and other units to perform Stage 1.

Main Memory ‘ Modular System

SDRAM
Controller

| I
| I
| I
I Residual | |
Processor 1

| AX14 |

X s
Host ‘ Ethernet | BUS S !
System || interface 5 RP, |

€
I o I

4
| Central |

Control
| Unit RP, |
(Microblaze) |
I

Fig. 2. Modular System in FPGA. The Central Control Unit is a MicroBlaze
soft-processor. RP1 through RP,, are individual Residual Processors, with
respective moduli mj; to mp. RPs form a common AXI4 bus master
peripheral. The AXI4 crossbar switch is used for a high speed interconnect,
the Bus is used for a lower speed programmed I/0.

The matrix Aly is sent to the MS from the Host System
using a communication interface. Ethernet is suitable for its
good flexibility and support in FPGA development systems in
several performance options. The matrix is transferred in the
form of multi-word integer numbers, assuming preprocessing
by the Host System. The matrix is stored in the Main Mem-
ory and is therefore prepared for loading and conversion to
(Aly) mod m; inside individual RPs.

The Main Memory is connected to the FPGA with a
(DDR3) memory controller supporting burst transfers with the
other parts of the system. SLC solution is done in the RPs
which require synchronized fast access to the input data. For
this reason, it is essential to provide a high-throughput channel
from the system main memory to the residual processors. This
is achieved by using a high performance interconnection (AXI4
crossbar) between the memory controller and the set of RPs.
RPs share a common data channel from memory since they
always get the same data. During loading of the matrix, each

RP reduces the data modulo m;. The set of RPs is connected
using a common bus-master RP interface peripheral.

The Central Control Unit (CCU) controls communication,
data loading, and synchronization. It is implemented using a
Xilinx MicroBlaze processor. After receiving the augmented
matrix, it starts the data-loading process from the main mem-
ory to the RPs. This is done by initiating a bus master read by
the RP peripheral from a specified address in memory. After
all data is loaded, RPs start their SLC solutions independently.
The CCU can either wait for the RPs to complete, or perform
other tasks such as communication to load another instance
from the Host System, or other data processing.

The number of clock cycles needed for load and elimina-
tion process in the RP can be calculated by (1) and (2) for
matrix size n, word length 2, and word count q.

load(n, 2,q) = (2+ (10 + 3n)qg + (2¢ — 1)2)n, (1)
elim(n, z) = ((z + (42 — 2))n + 3)n + 14.)

We have implemented the system with a single RP attached
to the RP interface and verified it using the Xilinx ML605
development board. Preliminary results show that times solv-
ing the SLC (i.e. elimination) agree with the prediction (2),
however the loading times are slower than (1), burdened by
the synchronization overhead by the CCU.

IV. CONCLUSION AND FUTURE WORK

We have proposed a communication architecture of a
Modular System for solving systems of linear equations. We
can transfer data from PC to all RP units, calculate solution and
transfer result from all RP to PC. The backward transformation
from RNS to the rational numbers will be processed in PC.
To solve a linear system, the more calculation than available
unit must be processed and many runs for RP unit are needed.
Further work will focus on analyzing the loading process and
obtaining a more precise model describing the performance.
We will also focus on lowering the overhead and implementing
parallel processing with multiple RPs. We will implement this
architecture on a Xilinx FPGA development board ML605 and
verify its function with more RP units.

ACKNOWLEDGMENT

This research was supported by the Czech Science Foun-
dation project no. P103/12/2377.

REFERENCES

[1] R. T. Gregory and E. V. Krishnamurthy, Methods and Application of
Error-free Computation. Springer Verlag, 1984.

[2] M. Morha¢ and R. Lérencz, “A modular system for solving linear
equations exactly, ii. hardware realization,” Computers and Artificial
Intelligence, vol. 11, no. 5, pp. 497-507, 1992.

[3] J. Bucek, P. Kubalik, R. Loérencz, and T. Zahradnicky, “Dedicated
Hardware Implementation of a Linear Congruence Solver in FPGA,”
in The 19th IEEE International Conference on Electronics, Circuits, and
Systems, ICECS 2012. Monterey: IEEE Circuits and Systems Society,
2012, pp. 689-692.

[4] ——, “Comparison of FPGA and ASIC implementation of a linear
congruence solver,” in 2013 Euromicro Conference on Digital System
Design, 9 2013, pp. 284-287.

[5] R. Lérencz and M. Morha¢, “A modular system for solving linear
equations exactly, i. architecture and numerical algorithms,” Computers
and Artificial Intelligence, vol. 11, no. 4, pp. 351-361, 1992.

