

Czech Technical University in Prague

Faculty of Electrical Engineering

Doctoral Thesis

March 2007 Pavel Kubalík

Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Computer Science and Engineering

Design of Self Checking Circuits Based on
FPGAs

Doctoral Thesis

Pavel Kubalík

Prague, March 2007

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

Supervisor: Hana Kubátová

ii

Thesis Supervisor:
Hana Kubátová

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University in Prague

Copyright © 2007 by Pavel Kubalík

iii

Abstract

This thesis presents the structure and design principles of a new highly reliable fault
tolerant system. The proposed system structure is based on cooperation between two
identical FPGA systems each including self-checking circuits. The main idea is based
on a standard duplex system combined with fault-tolerant design principles and
reconfiguration (static or dynamic).

The system combines two individual FPGA circuits with identical design, where each
FPGA is a totally self-checking circuit that enables fault detection. Because the
hardware redundancy techniques obviously lower the dependability parameters, this
system is designed as reconfigurable. The correct design is repeatedly loaded into a
faulty FPGA, when the fault is detected. A totally self-checking circuit is based on error
detection codes for which one hundred percent faulty coverage and low area overhead
are difficult to achieve. The type of code is discussed, and it is experimentally verified
that in many cases single parity is enough for our purpose. Single parity keeps a low
area overhead with relatively high fault coverage. The whole system contains two
totally self-checking comparators for cases, when the fault is not detected. One totally
self-checking comparator is used for each FPGA. The comparators compare the primary
outputs. When the outputs are different and no fail signal from the totally self-checking
circuit is detected, both FPGAs are reconfigured.

The design methodology for this system is also presented in this thesis. The new fault
classification was proposed to obtain better view on various fault types. A Markov
model is presented to evaluate the dependability parameters of the proposed system.
The proposed modified duplex system is more reliable than the original duplex system,
and has a lower area overhead than a triple module redundancy system.

Keywords:

on-line testing, self-checking circuits, fail-safe circuits, error detecting codes, FPGA,
highly reliable design, fault tolerant design, reconfiguration.

iv

Acknowledgements

First of all, I would like to express my gratitude to my thesis supervisor, Hana
Kubátová. She has been a constant source of encouragement and insight during my
research. Her continued support is gratefully acknowledged. Her efforts as thesis
supervisor contributed substantially to the quality and completeness of the thesis.
Together with Prof. Ondřej Novák, she has provided me with numerous opportunities
for professional advancement. I have learned a great deal from both of them.

Many other people have influenced my work. In particular I wish to thank to Petr Fišer,
Jan Schmidt and Radek Dobiáš.

The staff of the Department of Computer Science and Engineering has provided a
pleasant and flexible environment for my research. Especially, I would like to thank
Prof. Pavel Tvrdík, head of the department, for taking care of my financial support. My
work has been partially supported by grants from the GACR grant agency.

Finally, my greatest thanks go to my family and friends.

v

Contents
1. INTRODUCTION.. 1

1.1. MOTIVATION ... 1
1.2. RELATED WORK... 2
1.3. CONTRIBUTION OF THIS DISSERTATION THESIS .. 6
1.4. ORGANIZATION OF THE THESIS .. 8

2. THEORETICAL BACKGROUND.. 9
2.1. REDUNDANCY TECHNIQUES .. 10

2.1.1. Hardware Redundancy .. 10
2.1.2. Information Redundancy.. 11
2.1.3. Time Redundancy... 11
2.1.4. Software Redundancy... 11

2.2. FAULT MODELS CLASSIFICATION ... 12
2.3. DESIGN OF FUNCTIONAL BLOCKS.. 12
2.4. FAIL-SAFE DESIGN .. 13
2.5. ERROR DETECTION CODES... 14

2.5.1. Parity code... 14
2.5.2. Dual-Rail code ... 14
2.5.3. M-out-of-n code ... 14
2.5.4. Berger code.. 15
2.5.5. Arithmetic codes... 15
2.5.6. Hamming codes.. 15

2.6. DESIGN OF CHECKERS ... 16
2.6.1. Code-Disjoint... 16
2.6.2. Self-Testing .. 16

2.7. PERTURBATION TOLERANT MEMORIES ... 17
2.8. AVAILABILITY ... 17
2.9. RELIABILITY MODELING ... 18

3. NEW FAULT CLASSIFICATION SCHEME .. 20
3.1. THE NEW PROPOSED APPROACH ... 20
3.2. EXPERIMENTAL VERIFICATION.. 22

3.2.1. Combinational Circuits.. 22
3.2.2. Sequential Circuits... 23

3.3. SW SIMULATOR .. 24
4. CONCURRENT ERROR DETECTION ... 26

4.1. METHOD USING THE OLD FAULT CLASSIFICATION ... 27
4.1.1. Single Parity and Hamming-Like Codes.. 27

4.2. METHODS USING THE NEW FAULT CLASSIFICATION... 33
4.2.1. Single Parity and Hamming-Like Codes.. 34
4.2.2. Single Parity and Parity Net Grouping.. 40
4.2.3. Parity Net Grouping and the Self-Checking Circuit .. 44

5. ARCHITECTURE OF A MODIFIED DUPLEX SYSTEM (MDS) .. 48
5.1. IMPLEMENTATION OF TSC BASED ON MDS .. 49
5.2. HW EMULATION OF MDS IN FPGA.. 50

5.2.1. Checker .. 51
5.2.2. Comparator.. 52

5.3. EMULATION PROCESS.. 54
5.4. EMULATION RESULTS.. 55

6. PROOF OF MDS OPTIMALITY .. 57
6.1. RELIABILITY MODEL ... 57
6.2. EVALUATION OF THE RELIABILITY MODEL ... 59
6.3. MAIN RESULTS .. 61
6.4. GENERALIZATION.. 62

vi

7. DESIGN METHODOLOGY... 63
8. CONCLUSIONS AND FUTURE WORK.. 65

8.1. CONTRIBUTION OF THE DISSERTATION: ... 65
8.2. FUTURE WORK... 67

9. REFERENCES... 68
10. PUBLICATIONS OF THE AUTHOR .. 73

10.1. REFEREED PUBLICATIONS RELEVANT FOR THE THESIS... 73
10.2. UNREFEREED PUBLICATIONS ... 74
10.3. CITATIONS... 74

vii

List of Figures

Figure 1. CED scheme .. 3
Figure 2. Fault classification scheme.. 22
Figure 3. Fault model.. 27
Figure 4. Fault Model – Example ... 28
Figure 5. Generating matrix for Hamming code (15, 11) ... 29
Figure 6. Right part of the generating matrix ... 29
Figure 7. Circuit duplication and code word generation .. 30
Figure 8. Automatic fault insertion and checking code word... 31
Figure 9. Generating left side of matrix.. 32
Figure 10. Design scheduling of a self-checking circuit .. 36
Figure 11. Two different flows for creating a parity generator 37
Figure 12. Single-level partitioning .. 41
Figure 13. The parity prediction ... 44
Figure 14. Dependency of the area overhead on the ratio of output ‘1’s 45
Figure 15. MDS architecture .. 48
Figure 16. Proposed structure of TSC circuits implemented in FPGA 49
Figure 17. Final structure for the benchmark test .. 50
Figure 18. Design scheduling of the self-checking circuit ... 51
Figure 19. Even parity checker and length of tree.. 52
Figure 20. Comparator.. 53
Figure 21. Emulation Process ... 54
Figure 22. Model of our modified duplex system .. 57
Figure 23. Availability for 50% overhead .. 59
Figure 24. Availability for 80% FS .. 60
Figure 25. Availability 3D graph.. 60
Figure 26. Curves of availability values ... 61
Figure 27. Design methodology flow ... 63

viii

List of Tables

Table 1. Classification of faults for SC circuits.. 21
Table 2. Experiment 1 – combinational circuits and Hamming like code...................... 23
Table 3. Experiment 2 – combinational circuits and even parity 23
Table 4. Results of Experiment 3 – sequential circuits and even parity 24
Table 5. Results of Experiment 4 – sequential circuits and M-out-of-N code 24
Table 6. Application of even parity code.. 31
Table 7. Application of double even parity code.. 31
Table 8. Application of Hamming code (63, 57).. 32
Table 9. Application of Hamming code (255,247)... 33
Table 10. Example of parity generator ... 34
Table 11. Description of the tested benchmarks... 37
Table 12. Hamming code – PLA .. 37
Table 13. Hamming code – XOR ... 38
Table 14. Single even parity – PLA.. 38
Table 15. Single even parity – XOR... 39
Table 16. Single even parity – PLA.. 39
Table 17. Output grouping results .. 44
Table 18. Comparison results ... 46
Table 19. Availability parameters... 46
Table 20. Even parity checker and length of tree ... 52
Table 21. Length of tree.. 53
Table 22. Results obtained from our HW emulator without routing cells...................... 55
Table 23. SW simulation/HW emulation time.. 55
Table 24. Availability parameters... 61

1

1. Introduction
VLSI testing has been dominated by the need to achieve high quality manufacture
testing with acceptable cost. With the rapidly increasing complexity of VLSI circuits,
this goal has become increasingly difficult and has biased the effort of the test
community in the direction of manufacturing testing [1].

However, important industrial applications require protection against field failures, and
require an on-line testing solution. At first these needs concerned specific products
destined for safety critical applications and fault tolerant computing, which were
produced in small quantities. At the same time, there were not enough applications to
make it attractive for CAD vendors to develop tools specific to the design of on-line
testable ICs. The lack of such tools has dramatically increased the effort needed design
on-line testable ICs. Low-volume production of such applications often does not justify
the high development cost, which will have a dramatic impact on the per product unit
cost. In practice, techniques using off-the-shelf components, such as duplication or
triplication, are more often adopted, since the development cost is much lower, although
the production cost is relatively high.

We can expect this situation to start changing. Various industrial sectors have rapidly
increasing needs for on-line testing. Such sectors include railway control, satellites,
avionics, telecommunications, control of critical automotive functions, medical
electronics, industrial control, etc. We can also expect wider sectors of the electronics
industry to demand on-line testing solutions in order to ensure the welfare of the users
of electronic products. Some of these applications involve high volume production and
should support the standardization of such techniques, in the same way that the
increasing needs of VLSI testing have transformed DFT and BIST into standard design
techniques, and have supported the development of the specific tools now offered by
most CAD vendors.

Since silicon is "cheap", such tools should greatly popularize the design of on-line
testable circuits. In addition to these trends, the high complexity of present-day systems
requires more efficient solutions. The complex multi-chip systems of yesterday have
become present-day single-chip components. Indeed, the fault tolerant and fail-safe
system designs of yesterday have to be integrated at chip level, calling for on-line
testing techniques for VLSI.

A large variety of on-line testing techniques for VLSI have been developed and are still
being enriched by new developments. They can respond efficiently to the needs
expressed above, provided that available CAD tools simplify their implementation.
Such techniques include self-checking design and signature monitoring.

1.1. Motivation

FPGAs are typically based on SRAMs. This means that the functional bitstream is not
permanently saved in FPGA and must be loaded after FPGA is powered on. Because the
FPGA configuration is saved in volatile memory, FPGAs are more sensitive to faults.
High fault sensitivity is particularly important in aviation and astronautics, due to the
long distances from the ground and the low level of the earth’s shield.

2

Nowadays transistor sizes are decreasing, power voltage is decreasing, and the threshold
is decreasing. These properties decrease the noise immunity and increase the SEU
sensitivity of FPGA. This is a good reason to focus on SEU detection, localization and
correction.

Higher energy particles impacting on an FPGA die can cause various faults. A typical
example is a function circuit change due to the impact of high energy particles on the
transistor drain. These types of faults are called Single Event Upsets (SEU) [2, 3, 4].
This change occurs after high energy particles impact digital or analog parts. These
faults are nondestructive, and after resetting or the correct bitstream load, the
functionality of FPGA is restored. The fault can appear as a short pulse or as a change
in the flip-flop. The volume of the final errors depends on the structure implemented in
FPGA, and on the place where the fault appears. A configuration memory bit change is
another example of an SEU effect. These faults are temporary and can be corrected after
the new bitstream is loaded into FPGA.

1.2. Related work

Previous approaches benefited from the fact that it was possible to work at
functional/logical level, by providing the necessary fault observability properties to each
node constituting the functional description of the device under consideration. With
ASIC, even when mapping with different technological libraries, commercial tools are
able to maintain the functional description of each node constituting the network. Thus
a TSC device is produced even when the gates that are used are not exactly those
identified by the Boolean equations. With FPGA, the nodes constituting the network are
collapsed and merged to better suit the basic CLB elements constituting the FPGA
resources, in order to minimize the used area. This operation modifies the observability
of each fault, thus potentially not fulfilling the required and previously provided fault-
error relation. Hence no assumptions can be made on the observability of each fault on
the primary outputs, so that subsequent TSC fault analysis and re-design steps are
necessary.

The goal of the investigation proposed here is to explore the suitability of Concurrent
Error Detection (CED) techniques based on Error Detection Codes for the FPGA
platform. Attention is therefore initially given to Single Event Upsets (SEUs) that may
corrupt the internal memory or the LUTs.

The FGPA configuration is stored in SRAM, and any changes to this memory may lead
to a malfunction of the implemented circuit. SEUs caused by high-energy particles
impacting sensitive parts are one way that configuration memory can be change. Some
results of SEU effects on the FPGA configuration memory are described in [2, 3, 29, 57,
64]. These changes are described as soft errors and cannot be detected by an offline test
without interrupting the circuit function.

Concurrent Error Detection (CED) techniques are widely used to increase the system
dependability parameters. Almost all CED techniques are based on the original circuit
contains the primary inputs and outputs, as well as another unit which independently
predicts some special characteristic of the primary system outputs for every input
sequence. Finally, a checker unit checks whether the special characteristic of the output
actually produced by the system in response to the input sequence is the same as the
predicted response, and produces an error signal when a mismatch occurs. Some
examples of the characteristics can be: single parity, a number of 1s or a number of 0s.

3

The architecture of a general CED scheme is shown in Figure 1. It is important to note
that the general architecture of the CED scheme, as shown in Figure 1, makes use of
some form of hardware redundancy (predictor and checker circuits) for error-detection.
Time redundancy techniques such as alternate-data-retry and recomputation with shifted
operands can also be used for concurrent error detection. Time redundancy directly
affects the system performance, but the hardware cost is generally lower than the cost of
hardware redundancy.

Original
Function

Primary
Inputs }

Characteristic
or Parity
Predictor

Predicted Output
Characteristic

Checker

Primary
Outputs }

N

M

Ok

Fail

Code
Word

Figure 1. CED scheme

Several CED schemes for reliable computing system design have been proposed and
used commercially. These techniques differ mainly in their error-detection capabilities
and in the constraints required for the system design. There are many publications on
system design with concurrent error detection [5, 6, 9, 20, 27, 28, 32, 33, 56]. They
include designs of datapath circuits (e.g., adders, multipliers), and general
combinational and sequential logic circuits with concurrent error detection. Almost all
publications on CED focus on their area/performance overhead. However, the systems
considered here are restricted to those with redundancy through replication. All the
above-mentioned CED techniques guarantee system data integrity against single faults.
However, these CED schemes are vulnerable to multiple faults and common-mode
failures. Common-mode failures are a special and very important cause of multiple
faults.

Common-mode failures (CMFs) produce multiple faults, which generally occur due to a
single cause; system data integrity is not guaranteed in the presence of CMFs. They
include design mistakes and operational failures that may be due to external causes
(e.g., EMI, power-supply disturbances and radiation) or internal causes. CMFs in
redundant VLSI systems are surveyed in [5, 7].

Another approach focusing on CED techniques using hardware redundancy is presented
in [5, 6, 9, 20, 27, 28, 32, 33, 56]. Concurrent error detection (CED) techniques (based
on hardware duplication, parity codes, etc.)[16] are widely used to enhance system
dependability parameters. All CED techniques introduce some form of redundancy.
Redundant systems are subject to common-mode failures (CMFs). While most studies
of CED techniques focus on the area overhead, few analyze the CMF vulnerability of
these techniques.

The next approach was presented in [8]. This paper addresses the issue of self-checking
FPGA design, based on the adoption of error detection codes (e.g., Berger code, Parity
code) as an evolution of the traditional approaches developed in past years for the ASIC
platform. Research was done on the applicability of design techniques introducing

4

hardware fault detection properties in a combinational network through information
redundancy at functional/gate level. This approach is the starting point for the design of
a more complete methodology of dynamically reconfigurable FPGAs in response to a
fault, once it has been detected. Furthermore, the original fault-error analysis tool was
adapted at the circuit description level. Therefore fault-error relation enforcement can be
directly suited for FPGA, due to better control of the effects of manipulations of
commercial tools and the presence of unused logic.

The characteristics predictor is not the only unit that is important for realizing the CED
scheme. The Checker also plays an important role in the CED scheme. The Checker
depends on the characteristics predictor. Many papers have been published on this topic
[21, 22].

In many publications the quality of a self-checking circuit is characterized by the
number of detected faults. In many cases, however when the fault coverage is high
(almost 100%) the area overhead is too high. The high area overhead decreases the fault
tolerant properties, and it was important to find some trade-off between the area
overhead and the used code. These requirements have been taken into account in this
dissertation.

CED techniques based on ED codes are widely used. However many research groups
have not evaluated the Totally Self-Checking parameter, fault Secure and Self Testing
property of the final circuit. Many publications describe only the TSC parameter. But
this parameter provides insufficient information about all faults in a circuit implemented
in FPGA. The hidden faults are not taken into account. Therefore a new fault
classification has been proposed to describe faults in FPGA caused by SEU.

A fault tolerant system can satisfy fault masking requirements. A fault occurring in such
a system is detected and does not lead to an incorrect function. If no techniques for error
correcting are used, the system must be stopped after the next fault is detected. A fault
tolerant system protected against SEU must also be reliable. Additional techniques must
be taken into account to increase the reliability parameters. However, CED techniques
increase the final area, and techniques to increase the reliability parameters based on a
single FPGA are not sufficient. Some publications have focused on reliable systems
based on a single FPGA using a TMR structure [25, 58, 63].

The TMR structure is unsuitable when a high area overhead is unacceptable. Some
hybrid architecture must be used. TMR architecture and a hybrid system, e.g., the
modified duplex system with a comparator and some CED technique are compared in
[59, 61]. A technique based on Duplication With Comparison (DWC) and the
Concurrent Error Detection (CED) technique are described in [60, 62].

The fault tolerant system proposed in this work is based on DWC-CED with
reconfiguration. This thesis is devoted to methods for maximally increasing the
dependability parameters with maintaining the minimal area overhead. The complex
structure implemented in each FPGA is divided into small blocks, where every block
satisfies TSC properties. This approach can detect a fault before the fault is detected by
the output comparator.

Design methodology plays an important role in fault tolerant systems based on a self-
checking circuit. The methodology of self-checking code selection was presented in [51,
65]. Here the methodology assumes that the circuits are described by multilevel logic
and are realized by ASICs. The synthesis process of this self-checking circuit is
different from the classical method. Each part of the self-checking circuit is synthesized

5

individually, due to possible sharing of logic primitives among these blocks. The
sharing logic decreases the number of detected faults. Some papers describing
methodologies for VHDL automatic modification has been published [53, 54].

A design flow for protecting an FPGA-based system against SEUs is presented in [25].
This paper presents a design flow composed of standard tools and also ad-hoc
developed tools, which designers can use fruitfully for developing a circuit resilient to
SEUs. Experiments are reported on benchmark circuits and on a realistic circuit to show
the capabilities of the proposed design flow.

There is another on-line testing approach that does not take the implemented design into
account. The on-line test is processed for a whole FPGA, without disturbing the normal
system operation. [11, 55].

6

1.3. Contribution of this dissertation thesis

The main result of the dissertation thesis is a fault tolerant design methodology based on
self-checking circuits implemented with using FPGAs. The methodology describes the
design steps of the fault tolerant system realization. The main contribution of this work
can be divided into two groups: primary results and secondary results.

The primary results are: design methodology steps, fault classification, self-checking
and fault tolerant structures and etc.

• Fault classification
This work supports the design process of CED circuits implemented in FPGAs. We
have proposed a new fault classification. Briefly, our classification leads to more
accurate evaluation of the fault coverage, and we can determine whether the tested
circuit satisfies the FS and ST properties. We can also evaluate how many of the faults
violate the FS and ST property. The proposed fault classification is used in our
experiments. The classification enables us to distinguish which ED code is suitable for
the chosen synthesis method for the fault model that is used.

• Self-checking circuit suitable for a fault tolerant system
Previous works show that the area overhead depends on the ED codes that are used. To
obtain the minimal area overhead and 100% of fault coverage, we have proposed
method to select the appropriate ED code, which may increase the dependability
parameters.

• Single parity and parity net grouping
We propose a very efficient application of on-line BIST design. Here the circuit outputs
are joined together by XOR gates, to form a parity predictor. The parity predictor
outputs are compared with the outputs of the original circuit, and thus the appropriate
circuit function is checked. The proposed method helps to minimize the parity predictor
logic overhead.

• Modified duplex system (MDS)
CED techniques are not able to increase the dependability parameters sufficiently. A
new structure based on the DWC-CED technique has been developed. An appropriate
ED code was selected to ensure a trade-off between area overhead and fault coverage.
The dependability parameters depend on these two criteria.

• MDS Implementation with TSC
Our methodology for fault tolerant design is based on SC circuits. It assumes a
combinational circuit with up to 16 primary inputs, because simulation time grows by

7

the square of the number of inputs. Therefore a compound design architecture has been
proposed. The proposed architecture enables combinational circuits and sequential
circuits to be combined in compound design.

• HW emulation of MDS
Each reaction to an input vector change must be calculated in the SW simulation. Each
simulation step takes many processor cycles, especially for circuits with many gates.
One simulation step is processed, and the time needed for calculation is equal to one
system cycle. However the results need to be compared and evaluated concurrently. We
therefore decided to use an HW emulator. The HW emulatorr was programmed with
respect to the Atmel FPSLIC FPGA design process.

• Proof of MDS optimality
We describe the MDS system using Markov dependability model. This model is used
for computing the availability parameters for the SEU fault model. The results of
MCNC [36] and ISCAS [30] benchmarks used in our MDS, reconfigurable and on-line
testing design method are compared with the result for the standard duplex system and
TMR.

• Design metodology
A fault tolerant system design methodology is presented with the aim of obtaining
results from individual parts of this study. The design methodology enables to use the
system in a mission-critical application, where the dependability parameter
requirements are very high.

The secondary results are: implementation, modification and other tools.

• SW simulator
Because a new fault classification is being presented here, a new fault simulator is
needed. This SW simulator has been written in Java programming language.

• HW emulator
The new HW emulator was designed to evaluate faults more precisely. The HW
emulator was programmed with respect to the Atmel FPSLIC FPGA design process.

• Tools that add single parity nets
Some special tools for modifying benchmark circuits need to be used in this work. We
programmed some utilities allowing circuit modification where circuit is described by
two-level networks and also multilevel networks. We designed some utilities enabling
us to simulate and calculate fault coverage.

• Tools that add multiple parity nets
We have programmed a tool enabling modification of the combinational circuit and
selection of the appropriate ED code. This tool can generate a single event parity

8

predictor, a multiple parity predictor and a Hamming-like code predictor. The BOOM
[35] and Espresso [34] minimization tools are used to evaluate the area overhead and
thus select the appropriate ED code.

1.4. Organization of the thesis

Chapter 1 - The motivation and related works are presented in this section. Works
related to each part of the design methodology are described with references to
publications by other research groups that have deal with related problems.

Chapter 2 - This chapter describes the entire theoretical background and also defines
all important terms in this area of research.

Chapter 3 – In this chapter we introduce a new fault classification for use in comparing
different techniques for designing TSC circuits.

Chapter 4 - Concurrent checking methods verify circuits during normal operation.
Because the outputs delivered by a circuit during its operations as a part of a system are
unpredictable, we need to introduce an invariant property that we can check for this
invariance. Self-checking (SC) design is used to achieve concurrent error detection
(CED) using hardware redundancy. This chapter describes the self-checking circuit
design methodology and the results obtained by SW simulation.

Chapter 5 – This chapter focuses on the proposed MDS structure, and deals with issues
in the design of a fault tolerant system.

Chapter 6 – To evaluate the influence of a sequence of SEU faults, we need a more
precise definition of a “single fault” is needed. We use availability computation for
dependability analysis. This chapter describes the results of the dependability
computations obtained from the proposed Markov model of our MDS fault tolerant
structure. We compare the original duplex system and TMR with our proposed MDS
system.

Chapter 7 – A new design methodology is proposed in this chapter. All steps in this
methodology are based on the results given in Chapter 3, 4, 5 and 7.

9

2. Theoretical Background
When speaking about fault tolerant design, there are some important terms that need to
be defined. Defect, fault, and error are key terms in the field of testing [1, 17, 18, 19
,52].

Defects can occur anywhere on the die, on one of multiple layers, packages, boards, etc.
Generally, a defect (failure mechanism) in an electronic system is an unintended
physical difference between the implemented hardware and its intended design. A
defect may cause s deviation from the given device specifications. Defects occur either
during manufacture or during the use of devices and systems [52].

Faults are defined as representations of a defect at the abstracted function level
(electrical, Boolean or functional malfunction). The difference between a defect and a
fault is rather subtle. They are imperfections in the hardware and in the function,
respectively [52].

Errors are wrong output signals produced by a defective system (an incorrect response
in circuit behavior). Therefore an error is any behavioral effect caused by a physical
defect [52]. Errors can be divided into two groups: soft errors and hard errors.

Soft errors are errors occurring temporarily in a device, and can be corrected. The
correction process depends on the fault that generated the soft error. The fault is
typically caused by a change in a device under the test parameters (e.g. temperature,
power consumption, cosmic rays, etc.)

Hard errors are permanent errors caused by hard faults. When a hard error occurs, the
device must be replaced or masked by some fault masking techniques.

A fault-tolerant system is a system that provides some techniques to avoid failure after a
fault has caused errors within the system. When the system satisfies fault tolerant
requirements, the following four steps must be taken into account:

Fault detection is the process of recognizing that a fault has occurred. This is often
required before any recovery procedure can be implemented.

Fault location is the process of determining where a fault has occurred, so that an
appropriate recovery can be implemented.

Fault containment is the process of isolating a fault and preventing the effects of that
fault from propagation throughout a system.

10

Fault recovery is the process of repairing the faulty part of a system to put the system
back into an operational state.

Functional blocks can be tested by two basic methods: on-line tests and off-line tests.

In an off-line test, the tested system is switched to the non-operational state, where the
system is tested by an additional logic performing test. The system is inaccessible while
it is being tested. This type of test is in many cases performed after the device has been
manufactured.

In an on-line test, the test is performed when the system is in the operational state. This
test is performed continually during normal life of device. When a fault is detected, the
system can stop the device and correct the fault. When a fault tolerant system is used,
the faults are corrected without changing the functionality of the device. The recovery
operation can be processed if the error is caused by a soft fault, or some redundant
techniques can be used.

Fault tolerant systems lead designers use some redundant techniques. The most
important redundant techniques are described in the following section.

2.1. Redundancy Techniques

The concept of redundancy implies the addition of information, resources, or time
beyond what is needed for normal system operation. Redundancy can take one of
several forms, including hardware redundancy, software redundancy, information
redundancy, and time redundancy. The use of redundancy can provide additional
capabilities within a system. In fact, whenever fault tolerance or fault detection is
required, some form of redundancy is also required. However, it should be understood
that redundancy can have a very important impact on a system in the areas of
performance, size, weight, power consumption, reliability, and others [19].

2.1.1. Hardware Redundancy

Physical replication of hardware is perhaps the commonest form of redundancy used in
systems. As semiconductor components have become smaller and less expensive, the
concept of hardware redundancy has become commoner and more practical. The cost of
replicating hardware within a system is decreasing, simply because the cost of hardware
is decreasing.

There are three basic forms of hardware redundancy. First, passive techniques use the
concept of fault masking to hide the occurrence of faults and prevent the faults from
resulting in errors. Passive approaches are designed to achieve fault tolerance without
requiring any action on the part of the system or operator. In their most basic form,
passive techniques do not provide fault detection. They simply mask the faults.

The second form of hardware redundancy is the active approach, which is sometimes
called the dynamic method. Active methods achieve fault tolerance by detecting the
existence of faults and performing some action to remove faulty hardware from the

11

system. In other words, active techniques require that the system perform a
reconfiguration to tolerate the faults. Active hardware redundancy uses fault detection,
fault location, and fault recovery in an attempt to achieve fault tolerance.

The final form of hardware redundancy is the hybrid approach. Hybrid techniques
combine the attractive features of both the passive and active approaches. Fault masking
is used in hybrid systems to prevent erroneous results from being generated. Fault
detection, fault location, and fault recovery are also used in hybrid approaches to
improve fault tolerance by removing faulty hardware and replacing it with spare
hardware. Providing spares is one way of providing redundancy in a system. Hybrid
methods are most often used in the critical-computation applications, where fault
masking is required to prevent momentary errors, and high reliability must be achieved.
Hybrid hardware redundancy is usually a very expensive form of redundancy to
implement [19].

2.1.2. Information Redundancy

Information redundancy is the addition of redundant information to data to allow fault
detection, fault masking, or possibly fault tolerance. Good examples of information
redundancy are error-detecting and error-correcting codes, formed by the addition of
redundant information to data words, or by mapping data words into new
representations containing redundant information [19].

2.1.3. Time Redundancy

The fundamental problem with the forms of redundancy is the penalty paid in extra
hardware to implement the various techniques. Both hardware redundancy and
information redundancy can require large amounts of extra hardware for their
implementation. In an effort to decrease the hardware required to achieve fault detection
or fault tolerance, time redundancy has recently received much attention. Time
redundancy methods attempt to reduce the amount of extra hardware at the expense of
using additional time. In many applications, time is of much less importance than
hardware, because hardware is a physical entity that impacts weight, size, power
consumption and cost. Time, on the other hand, may be readily available in some
applications. It is important to understand that the selection of a particular type of
redundancy is very dependent upon the application [19].

2.1.4. Software Redundancy

In applications that use computers, many fault-detection and fault-tolerance techniques
can be implement in software. The redundant hardware necessary to implement the
capabilities can be minimal, while the redundant software can be substantial. Redundant
software can occur in many forms; it is not necessary to replicate complete programs to
have redundant software. Software redundancy can appear as several extra lines of code
used to check the magnitude of a signal, or as a small routine used to periodically test a
memory by writing and reading special locations.

12

2.2. Fault models classification

It is known that not all faults are identical. The test techniques that are used depend on
the assumed fault model. Nowadays, the following fault models are used in the testing
process [1, 17, 18, 19, 52].

• Stuck-at faults (SAF) i.e., a type of logical faults affecting logical signal states.
This is the commonest fault model for digital circuits at the logic level.

• Bridging faults, or simply bridges or shorts, occur between two signals. Two
types of bridging faults are recognized: inter-gate and intra-gate shorts. Shorts
are the dominant cause of faults in present-day CMOS technologies.

• Open faults mean that a physical conducting line in a circuit is broken. The
resulting unconnected node is not laid to either power source “Vdd” or ground
“GND”. The occurrence of such defects can provide “memory effect” or delay
faults.

• Delay faults mean that timing specifications are not fulfilled. Gate or path delay
faults have to be investigated.

• Parametric faults are defects causing changes in a device under the test
parameters (e.g. current, Vdd and GND voltage, power consumption,
temperature, etc.)

• A Single Event Upset (SEU) is defined by NASA as "radiation-induced errors
in microelectronic circuits caused when charged particles (usually from the
radiation belts or from cosmic rays) lose energy by ionizing the medium through
which they pass, leaving behind a wake of electron-hole pairs." [Ref: NASA
Thesaurus] SEUs are transient soft errors, and are non-destructive.

• A Single Event Latchup (SEL) is a condition that causes loss of device
functionality due to a single-event induced current state. SELs are hard errors,
and are potentially destructive (i.e., may cause permanent damage).

• A Single Event Burnout (SEB) is a condition that can destroy a device due to a
high current state in a power transistor. SEB causes the device to fail
permanently.

2.3. Design of Functional Blocks

The following properties are required for a functional block

• Fault Secure: Under each modeled fault the erroneous outputs that are produced
do not belong to the output code. The reason for this property is obvious; if an
erroneous output belongs to the code, the error is not detected and the TSC goal
is not achieved. Thus, the fault secure property is the most important property
required for the functional block.

• Self-Testing: For each modeled fault there is an input vector occurring during
normal operation that produces an output vector which does not belong to the
code. In fact, this property avoids the existence of redundant faults. Such fault
remain undetectable and could be combined with new faults occurring later in
the circuits, resulting on multiple fault that could destroy the fault secure and the
self-testing properties

13

• Totally Self-Checking: The circuits are both fault secure and self-testing. Totally
self-checking properties offer the highest level of protection [1].

The fault secure property guarantees that the first fault always generates detectable
errors. Then, assuming that a sufficient time elapses between the occurrence of two
faults so that the functional block receives all inputs required to test its faults (i.e.,
sufficiently long MTBF), the self-testing property guarantees that the first fault is
detected before a second fault occurs in the S-C system. In this way the TSC goal is
achieved for a TSC functional block.

TSC can be generalized as the strongly fault secure property that defines the largest
class of functional circuits achieving the TSC goal.

The fault secure property is the most important property, since it guarantees error
detection in the event of any single fault. However, it is also the most difficult property
to achieve. The self-testing property can easily be achieved, especially for stuck-at
faults, where it is enough to remove the redundant faults by simplifying the circuit. The
most straightforward way to achieve the fault secure property is to duplicate the
functional block and use a comparator to check the delivered outputs for equality.

Since this solution raises the hardware cost, by at least 100%, sophisticated techniques
are being developed to reduce this cost. These techniques use error detection codes that
cost less than the duplication code. The codes are described in greater detail in [1, 17].

2.4. Fail-Safe Design

The final stage of an electronic system often drives some actuators that control elements
of the external world. Many systems have states that can be considered as safe. That is,
they do not involve catastrophic events if they occur erroneously. A typical example of
a safe state is a red traffic light. Nobody can go across the crossroad. In safety critical
applications, each actuator must be controlled by a fail-safe signal, (i.e., a signal which
in the event of failures is either correct or safe. Self-checking systems deliver groups of
encoded signals and are not adequate for driving these actuators (since each actuator is
controlled by a single line which must be fail-safe individually). Due to this particular
requirement, it is not possible to implement fail-safe systems in VLSI. Therefore,
existing fail-safe systems are composed of a self-checking or fault tolerant processing
system (e.g., using error detecting codes, duplication, triplication, etc.), together with a
fail-safe interface implemented using specific discrete components with very low
probability of failing in the non-safe direction.

This interface transforms the outputs of the processing system into fail-safe signals. The
drawback of these interfaces is that they are very cumbersome and have a high cost.
Furthermore, the use of discrete components results in lower MTTF in VLSI
implementations, and system availability is reduced. It is therefore necessary to provide
more compact fail-safe interfaces. However, few results have been published in this
domain.

14

2.5. Error Detection codes

Concurrent Fault Detection Circuits (CFDCs) are essential components for on-line
testing in systems designed to be highly reliable, highly available, and diagnosable to a
replaceable unit such as a PCB or chip. CFDCs are also referred to as concurrent error
detection (CED) circuits. CFDCs are typically incorporated in VLSI and PCB designs to
support system-level fault recovery and maintenance strategies. These circuits are
typically applied in an ad hoc manner to ASIC design, and usually only to the data path
circuits. Extensive use has been made of CFDCs in many digital systems, e.g.,
electronic switching systems.

Many types of error detecting codes (EDCs) and error correcting codes (ECCs) are used
in the design of CFDCs. Different types of CFDCs require varying degrees of
information redundancy (extra bits) in the system circuitry for the EDC/ECC code
word. However, not all of these codes are useful in practical system applications,
because of the large area and performance penalties associated with their hardware
implementation. Therefore, the choice of a CFDC has a considerable impact on the
overall area and cost of the final system. Unlike fault tolerant hardware structures that
use hardware redundancy such as N-tuple Modular Redundancy (NMR), CFDCs are
based on information redundancy using EDCs or ECCs. While there are many types of
EDCs and ECCs, not all of these are useful in practical system applications because of
the area and performance penalties that result from the circuitry required to generate the
code words. Code word generation is performed on the data at the data source before
entering the CUT, and the code words are checked (which requires regeneration of the
code word) at the output of the CUT. Partitioning a system into sub-circuits and
inserting the code word check and regeneration circuits to detect faults at intermediate
points facilitates effective fault isolation and diagnosis of replaceable units.

2.5.1. Parity code

Parity code detects all single errors and more generally all errors of odd multiplicity. It
is the cheapest code since it adds only one check bit to the information part. This check
bit is computed to make constant the parity of each code word. As a matter of fact, we
can use an odd parity code (an odd number of 1’s in each code word) or an even parity
code (an even number of 1’s in each code word) [1].

2.5.2. Dual-Rail code

This is a variety of duplication code where the check bits are equal to the complements
of the information bits. This code has very strong error detection capabilities, since it
detects any errors affecting either the information part or its complement. However, it is
quite expensive since it duplicates the information [1].

2.5.3. M-out-of-n code

This is a non-separable code (the information and check bits are merged). It is
composed of code words that have exactly m 1’s, (e.g., 2-out-of-4 code: 1100, 1010,
1001, etc.) This code is an optimal non-separable unordered code (minimal redundancy
for unordered coding) [1].

15

2.5.4. Berger code

Berger code [17] can detect all multiple unidirectional errors (where the bits in error fail
as logic 1s or logic 0s, but not both in the same data word). However, it provides no
error correction capability.

The basic idea is to count the number of logic 1s in the data word and use the inverted
binary count value as the code word. By inverting the count value for use as the code
word, we are able to detect a stuck-at-0 fault on a serial data line since the Berger code
bits would be all 1s to indicate an all 0s data word. The number of data bits to be
serviced by the Berger code word can be variable but should be less than (2N), where N
is the number of Berger code bits, to ensure optimal error detection.

2.5.5. Arithmetic codes

These codes are divided into separable and non-separable. In separable arithmetic codes
of base A, the code words are obtained by associating to an information part X a check
part X’ equal to the modulo A of the information part, that is X0 = |X|A (residue code),
or X0 = A − |X|A (inverse residue code).

In non-separable arithmetic codes of base A (or AN codes), the code words are equal to
the product of the original (i.e., non-coded) word by base A.

Arithmetic codes [1] are interesting for checking arithmetic operations, because they are
preserved under such operations. The most useful arithmetic codes are separable codes,
and they are most often implemented as low cost arithmetic codes, where check base A
is equal to 2m−1. In this case an m-bit modulo A adder is realized by an m-bit adder
having the carry-out signal feeding back the carry-in signal (carry end-around adder).

Then, the check part generator for low cost arithmetic codes is realized as a modular
network using these adders as building blocks. Low cost arithmetic codes detect
variable arithmetic errors according to the value of the check base.

2.5.6. Hamming codes

Hamming codes [17] provide not only error detection but also an error correction
capability based on an extension of the principles of parity. The Hamming code word is
constructed from the parity bits of various combinations of data bits determined by the
parity check matrix. Note that the decimal value of each bit position in the parity check
matrix corresponds to the binary value of the parity check matrix. Also note that the
Hamming code bits, Hi, occupy 2n positions in the parity check matrix and, as a result,
have only a single 1 in any position in the column below Hi. It is easy to extend this
matrix to accommodate any desired size data word with a new Hamming code bit
introduced each time a new 2n value position is encountered. Each Hamming code bit is
generated by the exclusive-OR of all the data bits, Di, that have a 1 in the same row at
the corresponding Hamming bit.

Hamming circuits are more complex than parity circuits in terms of the number of gates
and the number of additional bits required for the code word. However, Hamming code
is quite efficient in comparison with other error correcting codes in terms of the area
overhead and the performance penalty required for the error correction process.
Hamming circuit models are based on single-bit error-correcting parity codes which use
M Hamming bits to detect and correct single-bit errors in N data bits. Given N data bits,

16

the required value of M can be calculated by the relationship 2M > M + N. If a single
bit error is detected, the error can be corrected in the output data bus and the presence is
indicated by the active error signal.

2.6. Design of Checkers

The task of a checker is to signal the occurrence of a code input (by generating on its
output a correct operation indication), and the occurrence of a noncode input (by
generating an error indication. The set of output words indicating the correct form of the
output code space of the checker and the set of output words indicating error occurrence
form the output noncode space. As an implication of this task the checker verifies the
code disjoint property [1].

2.6.1. Code-Disjoint

The checker maps code inputs into code outputs and noncode inputs into noncode
outputs.

Code-disjointness is not related to the testability of the checker. It simply reflects a
functional property. However, a fault occurring in the checker may alter its ability to
produce an error indication output under a noncode input. If this fault is not detected,
another fault can later occur in the functional block. Then, an erroneous noncode output
produced by this block will eventually not be signaled by the checker due to its own
fault. To cope with this problem, the checker must verify the self-testing property [1].

2.6.2. Self-Testing

For each modeled fault there is a code input that produces a noncode output.

In the case of functional blocks, provided that there is a long Mean Time Between
Failures (MTBF), the self-testing property guarantees that the fault is detected before
the occurrence of another fault in the system. In this way the TSC goal is achieved.

Self-testing code-disjoint checkers can be generalized into strongly code-disjoint
checkers, which define the largest class of checkers allowing achieve the TSC goal.

Self-testing checkers are difficult to design, because it is necessary to detect all the
faults in the checker by applying only code inputs. Fortunately, we need to consider
only a limited number of checker classes corresponding to the more useful error
detecting codes.

For these checkers, extensive investigations by numerous researches have accomplished
this task. Thus, self-testing checkers are now available for all the error detecting codes
used in self-checking design.

An important implication of the self-testing property is that a checker must have at least
two outputs. In a single-output checker, one output value (e.g., logic 0) must be used to
indicate correct operation and the second (e.g., logic 1) for error indication. Then, a
stuck-at fault on the value corresponding to the correct operation indication cannot be
detected and the checker is non self-testing. Such a fault is very dangerous, since it will
mask any subsequent fault occurring in the functional block. Because of this danger, the
use of two output checkers is generally. In this case, the dual-rail indication is used for
error indication. The error function is signalized by 00 and 11 values. [1].

17

2.7. Perturbation Tolerant Memories

Complex electronic systems are subject to transient faults provoked by various causes
such as electromagnetic interference, cross-talk, alpha particles, cosmic rays, etc.
Transients are the main cause of failures in complex electronic systems. In some
particular applications, e.g., space application, protection against soft errors (SEUs
caused by heavy ion strikes) is mandatory. There are strong requirements for protection
against transients in fault tolerant systems and in safety critical applications. The
introduction of deep submicron technologies also significantly increases the sensitivity
of VLSI circuits to various causes of transients. As a matter of fact, hardware
techniques for designing perturbation tolerant circuits may have a considerable impact
on the design of a large number of electronics systems [1].

Memory elements are the most sensitive parts of a CMOS circuit, since static CMOS
logic is drastically less sensitive than memory cells to various causes of transient faults.
Thus, perturbation resistant/tolerant memory design is the key point for designing
perturbation tolerant ICs. Perturbation tolerant design for large memory arrays (e.g.,
large RAMs, caches, etc.) can be efficiently achieved by means of error correcting
codes. However, this solution cannot be used in the case of memory elements
distributed across the logic of an IC. This is also a very expensive solution for
implementing small embedded memories, because the cost of an error correcting code
(check bits plus the error correction controller) will be very high. In these situations, the
use of perturbation hardened memory cells is the most appropriate option.

2.8. Availability

Fault tolerance is an attribute that is designed into a system to achieve a design goal.
Just as a design must meet many functional and performance goals, it must also satisfy
numerous other requirements. The most prominent of the additional requirements are
dependability, reliability, availability, safety, performability, maintainability, and
testability; fault tolerance is a system attribute capable of fulfilling such requirement.

Dependability is a term used to encapsulate the concepts of reliability, availability,
safety, maintainability, performability, and testability.

Reliability is a conditional probability, in that it depends on the system being
operational at the beginning of the chosen time interval. The reliability of a system is a
function of time R(t).

Availability is a function of time A(t), defined as the probability that a system is
operating correctly and is available to perform its functions at instant of time t.

Safety is the probability S(t) that a system will either perform its functions correctly or
will discontinue its functions in a manner that does not disrupt the operation of other
systems or compromise the safety of any people associated with the system.

18

Performability of a system is a function of time P(L,t), defined as the probability that
the system performance will be at or above some level L, at instance of time t. In many
cases, it is possible to design systems that can continue to perform correctly after the
occurrence of hardware and software faults, but the level of performance is somehow
diminished.

Maintainability is a measure if the ease with which a system can be repaired once it
has failed. In more quantitative terms, maintainability is the probability M(t), that a
failed system will be restored to an operational state within a period of time t. The
restoration process includes locating the problem, physically repairing the system, and
bringing the system back to its operational condition.

Testability is simply the ability to test for certain attributes within a system. Measures
of testability allow us to assess the ease with which certain tests can be performed.
These parameters are described in greater detail in [26].

Applications of fault tolerant computing can be categorized into four primary areas:
long-life applications, critical computations, maintenance postponement, and high
availability. Each application presents differing design requirements and challenges
[26].

• Long-life applications: space flight and satellites.
• Critical-computation applications: aircraft flight control systems, military

systems and certain types of industrial controllers. (Environmental cleanliness or
equipment protection)

• Maintenance postponement applications: remote processing stations and
certain space applications.

• High availability applications: banking, railway control and other time-shared
systems

2.9. Reliability Modeling

Reliability is one of the most important attributes of systems. Almost all specifications
for systems mandate that certain values for reliability be achieved and, in some way,
demonstrated. The most popular reliability analysis techniques are analytical
approaches. Of the analytic techniques, combinatorial modeling and Markov modeling
are the two most commonly used approaches. Here, we consider both combinatorial and
Markov modeling.

Combinatorial models
Combinatorial models use probabilistic techniques that enumerate the different ways in
which a system can remain operational. The probabilities of events that lead to a system
being operational are calculated to form an estimate of the system’s reliability. The
reliability of a system is generally derived in terms of the reliabilities of the individual

19

components of the system. The two models of systems that are most common in
practice are series models and parallel models. In a series system, each element of the
system is required to operate correctly for the system to operate correctly. In a parallel
system, on the other hand, only one of several elements must be operational for the
system to perform its functions correctly.

Markov models
The primary difficulty with combinational models is that many complex systems cannot
be modeled easily in a combinatorial fashion. Reliability expressions are often very
complex. In addition, the fault coverage that we have seen to be extremely important in
the reliability of a system is sometimes difficult to incorporate into the reliability
expression in a combination model. Finally, the process of repair that occurs in many
systems is very difficult to model in a combinatorial fashion. For these reasons, we
often use Markov models, which are sometimes referred to as Markov chains.

These types of models are described in greater detail in [26].

20

3. New Fault Classification Scheme
In this chapter we will introduce a new fault classification that can be used for the
comparing different techniques for designing TSC circuits. New fault classification was
published in [A.5].

The use of ED codes and possibly some special synthesis methods does not necessarily
ensure the TSC property. We need to evaluate how many faults violate the FS and ST
property to make a comparison of different methods. In common fault classifications,
the faults are divided into two groups according to the testability of the faults. This
classification is not sufficient for our purpose. It is necessary to distinguish whether the
change to an output caused by a fault is detectable by the given ED code.

3.1. The New Proposed Approach

 Fault detection can be based on two different approaches – comparison of two
values (duplication), and the use of ED codes. In the first case, the outputs of two units
are compared. Assuming that one fault can occur at a time; at least one unit will produce
correct values. This means that when a fault-free comparator is assumed, each error
caused by any fault in a unit will be detectable. Evaluating the error detection
capabilities in the second case is more complicated. The correct output is not known
during the processing. The fault detection ability depends only on the ED codes that are
used. It is not sure that each fault causes a detectable error. It is necessary to use a
different approach to fault classification. For each input vector, the responses of a
circuit in the presence of a fault can be divided into three groups:

1. No error – the fault does not affect the output values. The data is not corrupted,
but the presence of a fault is not detected.

2. Detectable error – the fault changes the outputs into a non-code word. This is

the best case, because the presence of a fault is detected.

3. Undetectable error – the output vector is a valid codeword, but is incorrect

(incorrect codeword). This is the worst case, because the checker is not able to
detect this error.

Each circuit has a set of allowed input vectors. The faults can be divided into four
classes, according to the reaction of the circuit to their presence. These classes are:

• Class A - hidden faults. These are faults that do not affect the circuit output for
any allowed input vector. Faults belonging to this class have no impact on the
FS property. However, if this fault can occur, a circuit cannot be ST.

21

• Class B - faults that are detectable by at least one input vector and do not
produce an incorrect codeword (a valid codeword, but incorrect) for other input
vectors. These faults have no negative impact on the FS and ST property.

• Class C - faults that cause an incorrect codeword for at least one input vector

and are not detectable by any other input vector. Faults from this class cause
undetectable errors. If any fault in the circuit belongs to this class, the circuit is
neither FS nor ST.

• Class D - faults that cause an undetectable error for at least one vector and a

detectable error for at least one other vector. Although these faults are
detectable, they do not satisfy the FS property and so they are also undesirable.

In the following text we use the above mentioned class identifiers. The fault
classification is shown in Table 1. Each row corresponds to one class. The columns
contain the numbers iii zyx ,, of input vectors that cause the corresponding response at
the output, DCBiNzyxzyx iiiiii ,, , ,0,, =≤++> , N is the number of allowed input
vectors.

Table 1. Classification of faults for SC circuits

Class No errors Detectable
errors

Undetectable
errors

A N 0 0
B xB yB 0
C xC 0 zC
D xD yD zD

With regard to the definitions of the FS and ST properties, we define the following

theorems:

• A circuit will be FS and ST only if all the faults belong to class B.
• A circuit will be FS only if all the faults belong to class A or B.
• A circuit will be ST only if all the faults belong to class B or D.

These theorems follow directly from the definitions of FS and ST.

The FS property is achieved only when a special method of synthesis is used. However,
if a much simpler method is used, the number of faults that violate the FS property may
not be high. It may be useful to evaluate this value to compare different methods. We
can use this value to evaluate how much the circuit satisfies the FS property.

The evaluation of the FS property (the number of faults that belong to class A or B) is
independent of the set of allowed input words. If a fault does not manifest itself as an
incorrect codeword for all possible input words, it cannot cause an undetectable error
for any subset of input words. So we can use the exhaustive test set for combinational
circuits, and a test that uses all transitions for a sequential circuit.

22

The evaluation of the ST property (the number of faults that belong to class B or D) is
more complicated due to the fact that some input words may not appear. For
combinational circuits, where the set of input words is not defined, an exhaustive test
set is generated. However, in a real situation, some input words may not occur. This
means that some faults can be undetectable. This can decrease the final fault coverage.
A similar situation can occur for sequential circuits. For the evaluation of ST we use all
possible transition edges of the state transition graph. However, some transition edges
can be unreachable from any state (e.g., some edges that are used after reset only). For
this reason, there is a higher number of faults that can be undetectable. It is not possible
to determine whether the circuit is ST without a good knowledge of the allowed input
words.

3.2. Experimental Verification

In our experiments, we will use the proposed fault classification to evaluate the FS and
ST property of some methods. The main aim is to show the advantages of the proposed
fault classification. Our experiments focus on combinational and sequential MCNC
benchmarks [36]. The benchmarks were implemented in Xilinx FPGA. The stuck-at-1
and stuck-at-0 fault model was considered. Tables 12, 13, 14, 15 contain the results of
the experiments. These tables contain the name of the tested benchmarks “Circuit”, the
number of input pins “Inputs”, the number of output pins, including check bits
“Outputs”, the number of state bits, including check bits “State bits”, the total number
of considered faults (All faults), the number of faults that cause a change at the outputs
(X) for one input vector at least and the number of faults according to our classification
(A, B, C, D) in Table 1. The method of fault class calculation method is performed by
scheme shown in Figure 2.

Figure 2. Fault classification scheme

3.2.1. Combinational Circuits

The benchmarks presented here are based on real circuits used in large designs. The
exhaustive test set generated for the combinational circuit is limited by the number of
inputs of the circuit. The main drawback is that for a big number of inputs the
exhaustive test set is too large. For circuits with more than 16 inputs the simulation time
increases rapidly (doubles with every added input). Due to this restriction we use only
circuits with fewer than 16 inputs for our experiments.

The design technique for these experiments is based on the structure described in
Figure x. As the first step we must fully define the outputs. Then we use a copy of the
original circuit to create the predictor. The outputs of the copied circuit are replaced by

23

parity nets calculated from the original outputs. The original circuit and the parity
predictor are synthesized individually, because the synthesis process can cause sharing
of equivalent logic between the two circuits, and this can lead to lower fault coverage.
The lower fault coverage is caused by the logic used for both the original circuit and the
predictor. This means that for this shared part the parity bits are not calculated.

Two experiments were carried out for combinational circuits, one with Hamming-like
codes (Table 2) and the second with even parity (Table 3).

Table 2. Experiment 1 – combinational circuits and Hamming like code

Circuit Inputs Outputs All faults X A B C D

alu1 12 12 1076 1076 0 1076 0 0
apla 10 17 1434 1409 25 1409 0 0
b11 8 37 736 734 2 734 0 0
br1 12 12 1014 994 20 972 0 22
al2 16 54 1180 1166 14 1166 0 0
alu2 10 12 1784 1784 0 1784 0 0
alu3 10 12 1344 1344 0 1344 0 0

Table 3. Experiment 2 – combinational circuits and even parity

Circuit Inputs Outputs All faults X A B C D

alu1 12 9 2594 2566 28 2566 0 0
apla 10 13 632 632 0 522 3 107
b11 8 32 418 416 2 321 42 53
br1 12 9 594 594 0 369 78 147
al2 16 48 628 627 1 576 17 34
alu2 10 9 830 819 11 757 0 62
alu3 10 9 622 622 0 572 0 50

More than 99% of the considered faults (X) cause a change of outputs for at least one
input vector in both experiments. These results correspond to the common fault
classification. In other words, we can say that these faults are testable when we use an
external tester. The advantage of our classification is evident from the results of
experiment 2. Although more than 99% of all the faults change the output for at least
one input vector (X), only 85% of all faults satisfy the FS property (A + B). About 96%
of all faults satisfy the ST property (B + D). When our classification is used, we can say
that the method used in Experiment 1 is better than the method used in Experiment 2
from the FS and ST point of view.

3.2.2. Sequential Circuits

In the experiments with sequential circuits, the state variables and outputs are coded by
ED codes. The faults at the primary inputs are not considered. In Experiment 3 we use
an even parity code and in Experiment 4 the M-out-of-N code (1 out of N for state
variables and reduced M-out-of-N code for outputs). The KISS2 description was

24

modified according to the ED code that was used. KISS2 was translated to the VHDL
code using our tool. The standard synthesis process was used. We used our fault
simulator, as mentioned above. The results are shown in Table 4 and Table 5.

Table 4. Results of Experiment 3 – sequential circuits and even parity

Circuit State
bits Outputs All faults X A B C D

mc 3 6 174 168 6 147 21 0
s386 7 8 746 727 19 529 115 83

mark1 5 17 684 625 59 503 86 36
beecount 4 5 292 274 18 253 17 4

pma 6 9 1236 1131 105 826 99 206
ex6 4 9 670 645 25 407 143 95

Table 5. Results of Experiment 4 – sequential circuits and M-out-of-N code

Circuit Sate
bits Outputs All

faults X A B C D

mc 4 7 322 293 29 272 21 0
s386 13 10 1018 988 30 943 45 0

mark1 15 18 678 649 29 616 33 0
beecount 7 4 306 296 10 275 17 4

pma 24 15 1214 1185 29 1146 17 22
ex6 8 14 790 760 30 725 24 11

Approximately 96% of all faults (X) cause a change at the outputs for at least one input
vector. Approximately 80% of all faults (A+B) in the case of even parity and 95% of all
faults in the case of M-out-of-N code satisfy the FS property. Approximately 82% of all
faults in the case of even parity and 91% of all faults in the case of M-out-of-N code
satisfy the ST property (B + D). We can say that the use of M-out-of-n code produces
better results.

This work supports the design process of CED circuits implemented in FPGAs. We
propose a new fault classification. We can summarize that our classification leads to a
more accurate evaluation of the fault coverage, and we can determine whether the tested
circuit satisfies the FS and ST properties. We can also evaluate how many of the
considered faults violate the FS and ST property. The proposed fault classification was
used in four experiments. The classification allows us to distinguish which ED code is
suitable for the chosen synthesis method for the fault model that is used.

3.3. SW Simulator

If we want to compare different techniques for TSC circuit design, the distribution of
the faults considered here into the above defined classes has to be obtained. A suitable
fault simulator is needed. Most simulators (e.g. FSIM [12] or HOPE [50]) compare the

25

correct outputs with outputs when there is a fault. They cannot classify the faults as
precisely as we need. These simulators are therefore not suitable. We used the simulator
described in [31, A.13]. This simulator has the following features:

• The simulation is performed for circuits described by a netlist format (EDIF).
• Stuck-at-1 and stuck-at-0 faults on the inputs and outputs of components are

considered.

• Combinational and sequential circuits are supported.

• This simulator supports circuits where inputs, outputs and internal states (in

the case of a sequential circuit) are coded by even parity, multiple parity and 1
out of N code. Multiple code groups can be used to ensure TSC. The
simulator also supports Hamming-like codes and M out of N code.

• Only Xilinx Virtex netlist format is supported.

26

4. Concurrent Error Detection
Systems realized by FPGAs have become more and more popular due to several
properties and advantages:

• High flexibility in achieving multiple requirements such as cost, performance,
turnaround time.

• Possible reconfiguration and later changes of the implemented circuit, e.g., only
via radio net connections.

• Mission critical applications such as aviation, medicine, space missions, and also
railway applications [24].

The design process for FPGAs differs from the design process for ASICs mainly in the
“design time”, i.e., in the time needed from the idea to its realization. Moreover, FPGAs
enable different design properties, e.g., in-system reconfiguration to correct functional
bugs or update the firmware to implement new standards. For this reason, and due to the
growing complexity of FPGAs, these circuits can also be used in mission-critical
applications such as aviation, medicine or space missions.

The process when high-energy particles impact sensitive parts is described as a Single
Event Upsets (SEUs) [2]. SEUs can lead to bit-flips in SRAM. The FGPA configuration
is stored in SRAM, and any changes to this memory may lead to a malfunction of the
implemented circuit. Some results of SEU effects on FPGA configuration memory are
described in [2, 3, 29, 57, 64].

CED techniques can enable faster detection of a soft error (an error which can be
corrected by a reconfiguration process) caused by an SEU. SEUs can also change values
in the embedded memory used in the design, and can cause data corruption. These
changes are not detectable by off-line tests, only by some CED techniques. The FPGA
fabrication process allows the use of sub-micron technology with smaller and smaller
transistor size. Due to this fact the changes in FPGA memory contents, affected by
SEUs, can therefore be observable even at sea level. This is another reason why CED
techniques are important.

There are three basic terms in the field of CED:

• The Fault Security property (FS) means that for each modeled fault, the

produced erroneous output vector does not belong to the proper output code
word.

• The Self-Testing property (ST) means that for each modeled fault there is an

input vector occurring during normal operation that produces an output vector
which does not belong to the proper output code word.

• The Totally Self-Checking property (TSC) means that the circuit must

satisfy FS and ST properties.

27

There have been many papers [5, 6, 9, 20, 27, 28, 32, 33, 56] on concurrent error
detection (CED) techniques. CED techniques can be divided into three basic groups
according to the type of redundancy. The first group focuses on area redundancy, the
second group on time redundancy and the third group on information redundancy.
When we speak about area redundancy, we assume duplication or triplication of the
original circuit. Time redundancy is based on repetition of some computation.
Information redundancy is based on error detecting (ED) codes, and leads either to area
redundancy or to time redundancy. Next, we will assume the utilization of information
redundancy (area redundancy) due to the use of ED codes.

Concurrent checking verifies circuits during their normal operation. Because the outputs
delivered by a circuit during its operations as a part of a system are unpredictable, we
need to introduce some invariant property in order to be able to check for this
invariance. Self-checking (S-C) design is used to achieve concurrent error detection
using means of information (hardware) redundancy. A complex circuit is partitioned
into its element functional blocks and each of these blocks is implemented according to
the structure of Figure 1.

The basic method for the proper choice of a CED model is described in [5]. Techniques
using ED codes have also been studied by other research groups [32, 33].

4.1. Method Using the Old Fault Classification

4.1.1. Single Parity and Hamming-Like Codes

There are many ways to generate checking bits. A single even parity code is the
simplest code that can be used to get a code word at the output of the combinational
circuit. This parity generator performs XOR over all primary outputs, and the
modification is processed on a circuit described by a multi-level network. However, the
single even parity code is mostly not appropriate to ensure the TSC goal. Nevertheless,
our results show that parity code is most suitable for fault tolerant design, due to its low
area overhead.

Another error code is a Hamming-like code, which is in essence based on the single
parity code (multi parity code). The Hamming code is defined by its generating matrix.

4.1.1.1. The Fault Model

All our experiments are based on FPGA circuits. The circuit implemented in an FPGA
consists of individual memory elements (LUTs - look up tables). We can see 3 gates
mapped into an LUT in Figure 3.

Gates mapped into LUT
0
1
•
•

15

faultI0..3
O

LUT

0
1
•
•

15

faultI0..3
O

0
1
•
•

15

faultI0..3
O

LUT

Redundant fault
Figure 3. Fault model

28

The original circuit has two inner nets. The original set of test vectors covers all faults
in these inner nets. These test vectors are redundant for an LUT. For circuits realized by
LUTs a change (a defect) in the memory leads to a single event upset (SEU) at the
primary output of the LUT. Therefore we can use the SEU fault model in our
experiments to detect SEU – only some of the detected faults will be redundant.

0
1
1
0
•
•
1

LUT
inputs

0
1
1
0
•
•
1

LUT
inputs

Single event upset

0
0

0

0
0

0 1

1 1

faultfault

Figure 4. Fault Model – Example

Our SEU fault model is described by a simple example in Figure 4. For simplicity, only
one LUT is used. This LUT implements a circuit containing 3 gates. The primary inputs
from I0 to I1 are the same as the address inputs for LUT. When this address is selected
its content is propagated to the output.

We assume the following situation: first the content of this LUT can be changed, e.g.,
due to electromagnetic interference, cross-talk or alpha particles. The appropriate
memory cell is set to ‘1’ and the wrong value is propagated to the output. This means
that the realized function is changed and the output behaves as a single event upset. We
can say that a change of any LUT cell leads to a stuck-at fault on the output, according
to this example. This fault is observed only if the faulty cell is selected. This is the same
situation as for circuits implemented by gates. Some faults can be masked and do not
necessarily lead to an erroneous output.

Some faults are masked, and they may appear when previously unused logic is being
used. E.g., One bit of an LUT is changed. If appropriate bit in the LUT is selected by
the address decoder, the erroneous output will appear.

4.1.1.2. Parity Bits Predictor Using Hamming-Like Codes

We used a matrix containing the unity sub-matrix on the left side for simplicity. The
generating matrix of the Hamming code (15, 11) is shown in Figure 5. The values aij
have to be defined.

When a more complex Hamming code is used, more values have to be defined. The
number of outputs oi used for the checking bits determines the appropriate code. For
example, the benchmark alu1 [35] having 8 outputs requires at least the Hamming code
(15, 11). Therefore 8 data bits and 4 checking bits are used. The definition of values aik
is also important.

Now we present a method for generating values aik. Let us mention the Hamming code
(15, 11) with 4 checking bits. In our case (alu1) we have only 8 bits. Therefore the
reduced Hamming matrix must be used.

29

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

4,113,112,111,11

4,23,22,21,2

4,13,12,11,1

100

010
001

aaaa

aaaa
aaaa

G

L

MOMMMOMM

L

L

Figure 5. Generating matrix for Hamming code (15, 11)

The sub-matrix has only 8 rows and 4 columns after reduction. We can define eight 4-
bit vectors or four 8-bit vectors. The second case will be used here. The search for
erroneous output is a similar method to a binary search. The first vector is composed of
log. 1s only. The last vector is composed of log. 1s in the odd places and log. 0s in the
even places. Each vector except the first contains the same number of 1s and the same
number of 0s. An example of the possible content of the right part of the sub-matrix is
shown in Figure 6.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1000

1010
1011
1100
1101
1110
1111

MMMM

Figure 6. Right part of the generating matrix

The number of vectors in the set is the same as the number of rows in the appropriate
Hamming matrix. The way to generate parity output for checking bit xk is described by
equation 1:

xk= a1ko1⊕ a2k o2⊕ ... ⊕ amkom, (1)

where o1...om are the primary outputs of the original circuit.

4.1.1.3. Experiments

The experiments in this section are based on a circuit modification described by the
multi-level network. The parity bits are incorporated into the tested circuit as a tree
composed of XOR gates. The maximum area of the parity generator can be calculated
as the sum of the original circuit and the size of the XOR tree. These experiments are
based on previous fault classification where only a minimal test set is used.

Atalanta software was used to generate the minimal test [12]. This tool allows process
ISCAC benchmarks based on equations. A tool for circuit optimization described by
tables cannot be used in this case because table creation is difficult due to the large
number of inputs. Special software was written in C language for automatic
modification of the original circuit and adding the parity bits generator. The ISCAS
benchmarks are loaded into inner form by this software. The form is composed of list of
nets and gates. Some functions are written to modify this inner form and can add new

30

gates and nets, or can change the names of all nets. Net renaming enables duplication of
an original circuit. After the original circuit is loaded into memory all nets are renamed
and the original circuit is loaded again. To add parity bits the original circuit is loaded
and modified by the corresponding function. Then all nets are renamed and the original
circuit is loaded again. By this procedure the original circuit with predicted parity bits
has been obtained. For each tested checking code, new functions modifying a circuit
have been written. The even parity, double parity, multiple parity generated by the
Hamming code are used in the experiments described here. When the original circuit is
modified, two methods of output form can be generated. The first form is the ISCAS
benchmark used for simulation. The second form is the VHDL source code, which
allows a modified circuit to be synthesized. Variety circuits can be created by this tool.
Each part of the final circuit is created separately and combined together with the same
tool. If the area occupied by the circuit in FPGA is to be computed, then the VHDL
output is selected and a synthesize tool is used. Then the original circuit and the
modified circuit can be compared. In our case the VHDL code is used to obtain the area
overhead by each checking code. Two VHDL codes are generated: the first for the
original circuit and the second for the circuit generating parity bits. For simulation, the
design contains both the original circuit and the parity bits generator (Figure 7).

combinational
circuit

inputs outputs

combinational
circuit

inputs outputs

combinational
circuit

outputs
code

}code
word

Figure 7. Circuit duplication and code word generation

Atalanta software processes the modified circuit and generates the minimal fault test.
Both files, minimal test and modified circuit, are put into the simulator, which enables
the efficiency of the checking code to be computed. The same tool that enables the
original circuit to be modified is used for simulation. The same form of circuit stored in
memory is used. The new simulation functions are added to the source code of our tool,
see Figure 8. With this modified tool we can simulate faults. Firstly, our tool simulates
stuck-at-zero faults by consecutive fault insertion in every net. When a fault is inserted
the whole set of patterns from the minimal test is applied to every net. The same steps
are used for simulating stuck-at-one. The simulator does not simulate faults on primary
inputs and outputs. For each step of the test, the outputs of circuits with and without
inserted faults are processed. In cases when the outputs are incorrect a check of the code
word is performed.

31

combinational
circuit

inputs error outputs

combinational
circuit

outputs
code

}
in

je
ct

ed
fa

ul
ts

check
code
word

Figure 8. Automatic fault insertion and checking code word

We have chosen codes, e.g. Hamming codes, even parity and double parity, for which
the checking combinational part can be generated easily. Berger code is not used
because it is difficult to generate the checking combinational part.

Even parity, the simplest checking code, was used for the first experiment. The results,
presented in Table 6, show that one parity bit cannot cover all faults inserted into the
tested circuit.

Table 6. Application of even parity code

Redundancy
part Data part

c432 36 7 1 5536 4626 83,56 72 69
c499 41 32 1 15150 14628 96,55 87 88
c880 60 26 1 24567 23998 97,68 117 112
c1355 41 32 1 64165 62472 97,36 92 87
c1908 33 25 1 134012 119280 89,01 125 120
c2670 233 140 1 105532 84840 80,39 166 175

Area occupation[LUT]
Circuit Inputs Outputs Redundancy

parity bits
All tested

faults Detected faults Detected
faults[%]

Circuit c17 is not used for our experiments because of its simplicity.

In the second experiment, double parity was used to generate checking bits. Even and
odd bits of the outputs are coded separately by even parity. The results of this
experiment are presented in Table 7.

Table 7. Application of double even parity code

Redundancy
part Data part

c432 36 7 2 5433 5012 92,25 73 69
c499 41 32 2 13984 13750 98,33 99 88
c880 60 26 2 27495 27206 98,95 120 112
c1355 41 32 2 62834 62012 98,69 90 87
c1908 33 25 2 130140 124958 96,02 124 120
c2670 233 140 2 116220 111270 95,74 219 175

Area occupation[LUT]
Circuit Inputs Outputs Redundancy

parity bits
All tested

faults Detected faults Detected
faults[%]

Both of these experiments failed to achieve 100% fault coverage of the tested circuits.

The next way to generate checking bits is by using the Hamming code, which enables
more checking bits to be added while retaining the quality of the Hamming code.

32

The Hamming code is defined by its generating matrix. For simplicity we use the matrix
containing the unity submatrix on the left side. The generating matrix of Hamming code
(15, 11) is shown in Figure 6. The values aij have to be defined.

When a more complex Hamming code is used, more values have to be defined. The
number of outputs oi used for the checking bits determines the appropriate code. For
example, circuit c432, which has 7 outputs, requires at least Hamming code (15, 11). In
this case we use 7 data bits and 4 checking bits. The definition of values aik is also
important.

Now we present a method for generating values aik. Let us mention Hamming code (15,
11), which has 4 checking bits. We generate a set of all 4bit vectors. From all these
vectors we remove vectors containing less than 2 binary ‘1’. The resulting subset is
relatively regular - there are many zeros on the upper left side and many ones on the
lower left side of the subset (see the left matrix in Figure 4). This regularity must be
removed. If not, some parity bits will lose the capability to detect a fault. To eliminate
this phenomenon, every even row from the beginning of the set is mutually exchanged
with a corresponding even row from the end (see Figure 10).

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⇒

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1111
1010
1011
1110
1101
0101
1001
0011
0110
0111
1100

1111
0111
1011
0011
1101
0101
1001
1110
0110
1010
1100

Figure 9. Generating left side of matrix

The number of vectors in the set is the same as the number of rows in the appropriate
Hamming matrix. Then we generate circuits for checking bits xk (Equation 1).

The third experiment is based on Hamming code (63, 57), where the maximum number
of data bits is 57 and the number of checking bits is 6. The experimental results are
shown in Table 8.

Table 8. Application of Hamming code (63, 57)

Redundancy
part Data part

c432 36 7 6 5569 5544 99,55 77 69
c499 41 32 6 17791 17791 100,00 116 88
c880 60 26 6 27109 27106 99,99 140 112
c1355 41 32 6 68647 68647 100,00 117 87
c1908 33 25 6 123651 123376 99,78 145 120

Area occupation[LUT]
Circuit Inputs Outputs Redundancy

parity bits
All tested

faults Detected faults Detected
faults[%]

The fault coverage for c499 and c1355 benchmarks is 100%. This means that Hamming
code (63, 57) is appropriate. We should mention here that the fault coverage depends
on the generated minimal test. If the minimal test created by Atalanta does not cover all
faults, we cannot say that the simulated circuits are 100% fault covered. In other words,

33

some faults cannot be detected because the minimal test set does not cover all faults.
This Hamming code cannot be used for benchmark c2670 because the number of its
outputs is greater than the Hamming code can cover.

The fourth experiment is based on Hamming code (255, 247). The maximum number of
data bits is 247 and the number of checking bits is 8. In our case only 7 outputs are
used. The experimental results are shown in Table 9.

Table 9. Application of Hamming code (255,247)

Redundancy
part Data part

c432 36 7 7 5694 5602 98,38 74 69
c499 41 32 7 18003 18003 100,00 111 88
c880 60 26 7 30277 30277 100,00 134 112
c1355 41 32 7 69634 69634 100,00 104 87
c1908 33 25 7 135402 134600 99,41 138 120
c2670 233 140 7 160092 160061 99,98 314 175

Area occupation[LUT]Detected
faults[%]Detected faultsAll tested

faults
Redundancy

parity bitsOutputsInputsCircuit

In summary, all of our experiments indicate that 100% fault coverage can be achieved
using more redundancy outputs generated by special codes. The Hamming code can be
used as a suitable code to generate parity bits. The type that is used depends on the
number of outputs and on the complexity of the original circuit. More complex circuits
need a greater number of parity outputs. Due to the fact that only a minimal test set was
used, the final fault coverage reflects only the ST property. The exhaustive test set must
be used to obtain the FS property. The new fault classification was used to better
describe whether the circuit satisfies ST and FS properties.

4.2. Methods Using the New Fault Classification

To determine whether the circuit satisfies the TSC property, detectable faults belonging
to one of four classes A, B, C and D [A.5] have to be calculated, see section 3.

This fault classification can be used to calculate how much the circuit satisfies the FS or
ST properties and then to calculate the TSC property. This new approach to fault
classification leads to creation of a new fault simulator.

In our design methodology we evaluate FS and ST properties. For ST properties a
hidden fault is not assumed.

The evaluation of the FS property is independent of the set of allowed input words. If a
fault does not manifest itself as an incorrect codeword for all possible input words, it
cannot cause an undetectable error for any subset of input words. So we can use the
exhaustive test set for combinational circuits.

The exhaustive test set is generated to evaluate the ST property for combinational
circuits, where the set of input words is not defined. However, in a real situation some
input words may not occur. This means that some faults can be undetectable. This can
decrease the final fault coverage. Therefore, the number of faults that can be
undetectable is higher.
The fault simulation process is performed for circuits described by a netlist (for example
.edif).

34

4.2.1. Single Parity and Hamming-Like Codes

A parity predictor is used to generate the appropriate output code of the circuit in our
research, see Figure 1. These techniques ensure a small area overhead and a higher SEU
fault coverage, but the SEU fault coverage that is achieved is not 100% [27, 5, 28].

The circuit area overhead depends significantly on the parity codes that are used. If we
use a strong error detecting code, e.g., Hamming code or Berger code, the FS parameter
is almost 100% but the area overhead is high [A.3], [8].

The following FPGA structures are vulnerable to SEUs: mux select lines,
programmable interconnect point states, buffer enables, LUT values, and control bit
values.

Any changes to mux select lines, programmable interconnect point states or buffers lead
to a significant circuit function change, but the function change is hardly detected for
SEUs impacted in LUTs [29]. The probability of SEUs impacting routing resources
(mux select lines, programmable interconnect point states and buffers) is about 78%,
and only about 15-21% for LUTs. Thus, if there are many SEUs there will be a
significant circuit function change. But any change in LUTs is hardly detected because
of their small impact on the realized function. In some cases these faults may be
undetected.

4.2.1.1. Area Overhead Minimization

The benchmarks used in this paper are described by a two-level network. The final area
overhead depends on the minimization process. We used two different methods in our
approach. Both these methods are based on simple duplication of the original circuit.

Our first method is based on a modification of the circuit described by a two-level
network. The area of the parity bits predictor contributes significantly to the total area of
the TSC circuit. As an example, we consider a circuit with 3 inputs (c, b and a) and 2
outputs (f and e). The parity bits predictor uses the odd parity code to generate the parity
bits. In our example we have only one check bit x.

Our example is shown in Table 10. Output x was calculated from outputs e and f. We
have to generate the minimal form of the equation at this time. We can achieve the
minimal form using methods such as the Karnaugh map or Quine-McCluskey in our
example. We use other minimization methods to minimize benchmarks or real circuits.
After minimization we obtain three equations, one per output (f, e and x), where x
means an odd parity of outputs f and e. If we want to know whether the odd parity
covers all faults in our simple combinational circuit example, we have to generate the
exhaustive test set and simulate all faults in each net in this circuit.

Table 10. Example of parity generator
c b a f e x
0 0 0 0 1 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 0 1 0
1 1 0 1 1 1
1 1 1 0 0 1

35

The final equations are:

e = bc + a(b + c) (2)
f = ab + c(a + b) (3)
x = bc (4)

Our second method is based on a circuit modification, where the circuit is described by
the multi-level network. The parity bits are incorporated into the tested circuit as a tree
composed of XOR gates. The maximal area of the parity generator can be calculated as
the sum of the original circuit and the size of the XOR tree.

4.2.1.2. Experimental Evaluation Software

Figure 11 describes how the test is performed for each detecting code, where the circuit
modification is processed by the first method described above. The MCNC benchmarks
[36] were used in our experiments. These benchmarks are described by a truth table. To
generate the output parity bits, all the output values have to be defined for each
particular input vector. Only a limited number of values are specified for each multi-
dimensional input vector, and the rest are assigned as don’t cares; they are left to be
specified by another term. Thus, in order to be able to compute the parity bits, we have
to split the intersecting terms, so that all the terms in the truth table are disjoint.

In the next step, the original primary outputs are replaced by parity bits. Two different
error codes were used to calculate the output parity bits (single even parity code and
Hamming code). Another tool was used in the case where the original circuit was
modified in multilevel logic. This tool is described in [A.1]. Two circuits generated in
the first step (the original circuit and the parity circuit) are processed separately to avoid
sharing any part of the circuit. Each part is minimized by the Espresso tool [34]. The
final area overhead depends on the software that was used in this step. Many tools were
used to achieve a small area of the parity bits generator. Only Espresso was used to
minimize the final area of the circuit described by the two level network. In this step the
area overhead is known for implementation to ASIC. For FPGAs the area overhead is
known after the synthesize process has been performed.

The “pla” format is converted into the “bench” format in the next step. The “bench”
format was used because the tool which generates the exhaustive test set uses this
format. An exhaustive test set has 2n patterns, and we used it to evaluate the TSC goals.

Another conversion tool is used to generate two VHDL codes and the top level. The top
level is used for incorporating the original and parity circuit generator. In the next step,
the synthesis process is performed by Synplify [37]. The constraint properties set during
the synthesis process express the area overhead and the fault coverage. If the maximum
frequency is set too high, the synthesize process causes hidden faults to occur during the
fault simulation. The hidden faults are caused by circuit duplication or by the constant
distribution. The size of the area overhead is obtained from the synthesize process. The
final netlist is generated by the Leonardo Spectrum [38] software. The fault coverage
was obtained by simulation using our software.

36

Generate PLA
with

parity bits

PLA to BENCH
convert

Fault injection
 & Simulation

MCNC
benchmark

Fault
coverage

Test
set

original parity

original + parity

BENCH to VHDL
convert

original parity

Generate
exhaustive

test set

Synthesize VHDL
Synplify

original parity

original parity

Synthesize VHDL
Leonardo Spectrum

original
+

parity

Minimization
Espresso

original parity

Split
intersection

terms

Figure 10. Design scheduling of a self-checking circuit

The format converting software and the parity generator software were written in
Microsoft Visual C++.

4.2.1.3. Experiments and Results

The combinational MCNC benchmarks [36] were used for all the experiments. These
benchmarks are based on real circuits used in large designs.

Since the whole circuit will be used for reconfiguration in FPGA, only small circuits
were used. Real designs that have a large structure must be partitioned into several
smaller parts. For large circuits, the process of area minimization and fault simulation
takes a long time. This disadvantage prevents us examining more methods of designing
the check bits generator.

The evaluated area, FS and ST properties depend on circuit properties such as the
number of inputs and outputs, and the circuit complexity. The experimental results
show that a more important property is the structure of the circuit. Two basic properties
are described in Table 11.

37

Table 11. Description of the tested benchmarks
Circuit Inputs Outputs

alu1 12 8
apla 10 12
b11 8 31
br1 12 8
al2 16 47

alu2 10 8
alu3 10 8
c17 5 2

In the first set of experiments our goal was to obtain one hundred percent of the FS and
ST property, while we measured the area overhead. In this case, the maximum of the
parity bits was used.

Generate BENCH
with

parity bits
PLA to BENCH

convert

MCNC
benchmark

Split
intersection

terms

Split
intersection

terms

originaloriginal parityparity

Generate PLA
with

parity bits

Generate PLA
with

parity bits

originaloriginal

originaloriginal parityparity

PLA to BENCH
convert

originaloriginal parityparity

a) b)

Minimization
Esspreso

originaloriginal parityparity

Minimization
Espresso

originaloriginal

Figure 11. Two different flows for creating a parity generator

This task was divided into two experiments, see Figure 11. In the first experiment the
two-level network was being modified, see Figure 11a. The results are shown in Table
12.

Table 12. Hamming code – PLA

Circuit Parity
nets

Original
[LUT]

Parity
[LUT]

Overhead
[%] ST FS

alu1 4 8 84 1050 100 100
apla 5 45 105 233 100 98,3
b11 6 38 38 100 100 99,7
br1 4 50 59 118 100 95,9
al2 7 51 54 106 100 98,8
alu2 4 30 127 423 100 100
alu3 4 28 94 336 100 100
c17 2 2 3 150 100 100

38

The ST property was fulfilled in 7 cases and the FS property was fulfilled in 4 cases.
The area overhead in many cases exceeds 100%. This means that the cost of one
hundred percent fault coverage is too high. In these cases the TSC goal is satisfied for
most tested benchmarks.

Table 13. Hamming code – XOR

Circuit Parity
nets

Original
[LUT]

Parity
[LUT]

Overhead
[%] ST FS

alu1 4 8 13 163 100 100
apla 5 45 114 253 100 97,2
b11 6 38 73 192 100 99
br1 4 50 85 170 100 96,5
al2 7 52 109 210 100 99,1

alu2 4 30 52 173 100 100
alu3 4 28 44 157 100 100
c17 2 2 3 150 100 100

We then used an old method, where the original circuit described by a multi-level
network is modified by additional XOR logic, see Figure 11b [A.1].

The results obtained from this experiment are shown in Table 13. The FS properties and
the ST properties were fulfilled in the same cases as in the first experiment, but the
overhead is in some cases smaller.

In the second set of experiments we tried to obtain a small area overhead, and the fault
coverage was measured. In this case the minimum of parity bits is used (single even
parity).The experiments are divided into two groups, a) and b), see Figure 11. The
procedure is the same as described above.

Table 14. Single even parity – PLA

Circuit Parity
nets

Original
[LUT]

Parity
[LUT]

Overhead
[%] ST FS

alu1 1 8 271 3388 100 98,9
apla 1 46 23 50 99,5 82,6
b11 1 37 3 8 89,9 77,3
br1 1 54 10 19 86,9 62,1
al2 1 52 4 8 97,3 91,7

alu2 1 29 47 162 100 91,2
alu3 1 26 32 123 100 92
c17 1 2 2 100 100 100

In the first experiment the two-level network of the original circuit was modified
(Figure 11a). The results are shown in Table 14. The ST property is achieved in four
cases, but the area overhead is smaller in five cases. The FS property is satisfied in one
case.

In the last experiment, we modified the circuit described by a multilevel network
(Figure 11b). The ST property was satisfied in four cases and the FS property in two
cases. The area overhead is higher than 100% for most benchmarks, but the fault
coverage did not increase, Table 15.

39

Table 15. Single even parity – XOR

Circuit Parity
nets

Original
[LUT]

Parity
[LUT]

Overhead
[%] ST FS

alu1 1 8 10 125 100 100
apla 1 46 56 122 99,7 87,2
b11 1 37 36 97 93,9 81,4
br1 1 54 61 113 92,7 69
al2 1 52 23 44 97,9 93,2

alu2 1 29 44 152 100 91,1
alu3 1 26 39 150 100 91,6
c17 1 2 2 100 100 100

4.2.1.4. Summary

This chapter describes one part of the automatic design process methodology for a
dynamic reconfiguration system. We designed concurrent error detection (CED) circuits
based on FPGAs with a possible dynamic reconfiguration of the faulty part. The
reliability characteristics can be increased by reconfiguration after error detection. The
most important criterion is the speed of the fault detection and the safety of the whole
circuit with respect to the surrounding environment.

In summary, FS and ST properties can be satisfied for the whole design, including the
checking parts. This is achieved by using more redundancy outputs generated by the
special codes.

All of our experiments apply combinational circuits only. Sequential circuits can be
disjoint to the simple combinational parts separated by flip-flops. Therefore, the
restriction to combinational circuits only does not reduce the quality of our methods and
experimental results.

The FS property depends on class B. A low number of faults belonging to class B leads
to a low FS property. The FS values for the MCNC [36] and ISCAS [23, 30]
benchmarks used to validate our modified duplex system are shown in Table 16. Here
“C” is benchmark circuit, “IN” is number of inputs, “OUT” is number of outputs, “AO”
is area overhead, “FS” is the probability that a fault is detected by a code word, and
“Ass” is the steady-state availability.

Table 16. Single even parity – PLA

C IN OUT ORIG
[LUT]

AO
[%]

FS
[%]

alu1 12 8 8 688 100
apla 10 12 45 53 83
b11 8 31 38 8 75
br1 12 8 50 20 63
al2 16 47 52 12 94
alu2 10 8 30 140 92
alu3 10 8 28 121 90
s1488 14 25 312 13 86
s1494 14 25 317 13 86
s2081 18 9 24 125 96
s27 7 4 4 75 72
s298 17 20 39 49 91
s386 13 13 51 39 71

40

The FS property expresses the probability that an existing fault is detected on a primary
output of the circuit. If FS is fully satisfied (to 100%), a fault occurring in a circuit is
always detected.

Special tools had to be developed to evaluate the area overhead and fault coverage. In
addition to some commercial tools such as Leonardo Spectrum [38] and Synplify [37]
we used format converting tools, parity circuit generator tools and simulation tools.

4.2.2. Single Parity and Parity Net Grouping

It is always necessary to perform some kind of decomposition when designing complex
VLSI circuits, taking into account available components. Most methods proposed in the
past start with a two-level Boolean network (sum-of-products) and try to decompose it
into a multi-level network. The Boolean function is manipulated in order to extract
subfunctions common to several of its parts. This is done either algebraically, by finding
the function’s common divisors (kernels) [39], by using computationally demanding
Boolean methods [40, 41], or by functional decomposition [42, 43], recently based on
BDDs [44, 45]. Nowadays, functional bi-decomposition plays a big role, and is
generally usable for most applications [46, 47, 48].

Most of the methods mentioned above are primarily intended for single-output
functions, even when they can be extended to multi-output functions. However, there is
no method that strictly determines the relations between the outputs of the multi-output
Boolean function. However, a method for selecting an appropriate code based on
multiple net grouping described in [51] is slower than ours, and also the final
modification is processed on a circuit described by multi-level logic. My partitioning
method is based on grouping of output variables. There can be a relationship between
several outputs of the function found. The proposed method is based on computing a
measure of the “similarity” of the functions. When two Boolean functions are similar,
there is a big probability they may efficiently share many logics. Thus, grouping these
“similar” functions together could be advantageous, when output decomposition is
needed. If appropriate output grouping is found, the resulting logic of the overall design
is reduced to a minimum.

The method found its next application in on-line BIST (Built-in Self-Test) design [A.3,
A.8]. Here the functions are grouped together to form the parity bits of the parity
predictor. The parity groups are generated from the original circuit outputs, by
successively XOR-ing them. The choice of outputs to be XORed plays an important
role in the resulting area overhead.

4.2.2.1. Output Grouping

Let us assume there is a need to divide a circuit into several stand-alone blocks having a
limited number of outputs (e.g., into PLAs, PALs, GALs). These blocks will have to be
synthesized separately, since they cannot share internal signals. The blocks can share
the input variables only. Such a case of decomposition will be denoted as single-level
partitioning, since the number of levels of the circuit remains the same, see Figure 12.

41

Figure 12. Single-level partitioning

Our task is to determine which outputs should be grouped together, i.e., to find an
output grouping. If the outputs that are to be grouped together are properly determined,
the complexity of the individual blocks is reduced.

Since the blocks cannot share the group terms (or subfunctions when they are designed
as multi-level), the total complexity of the overall design must be increased, in
comparison to the all-in-one design. When our technique is used, this cost of the
decomposition is reduced to a minimum.

4.2.2.2. Similarity-Based Output Grouping

The method is based on the idea of joining functions (i.e., outputs of multi-output
functions) that are somehow similar. Then there should be a big probability that the two
functions will share a many logics. The task is to determine how to compute the
measure of similarity of two Boolean functions.

The main idea is based on the following straightforward observations:

(I) Two equal functions are “very similar”

(II) Two inverse functions are also very similar, since they differ by one inverter
only in the final design

These two criteria can be combined to form a new criterion:

(III) Two functions are similar, if a change in the value of one input variable

induces a change in the values of both the functions, or the values of both
functions do not change. This should be checked for all possible input variable
changes.

To quantify the vague term “similarity” of two Boolean functions, a scoring function
is introduced. To compute the value of the scoring function, all the minterms of the
functions are processed. For each minterm each input variable value is switched and
values of the outputs of the two functions are observed. If both values remain
unchanged, the scoring function is increased by one, since these two functions have
demonstrated the same behavior. If both values change, regardless the logic values, the
scoring function is increased by one as well. In other cases, when one output value
changes and the other does not, the score remains unchanged.

42

The complexity of the described algorithm is O(n.2n), where n is the number of input
variables. For all the 2n minterms n variable swaps are explored. The actual complexity
can be reduced to ½ n.2n. Only 0->1 swaps can be considered, since all the reverse
swaps will yield the same result, thus doubling the score.

Two equal functions will obtain the highest score by this algorithm. Two inverse
functions will also obtain the highest score.

This approach is straightforward, but it is inefficient, due to its prohibitively high
complexity. However, we used it in our measurements, since functions described by
minterms were needed for on-line BIST design [A.8].

Nevertheless, there is a much more efficient way to compute the scoring function: by
using a Boolean difference. The Boolean difference of a function f(x0, …xn), with
respect to an input variable xi can be computed as:

),...,0,...,(),...,1,...,(),...,(
00

0
nini

i

n xxxfxxxf
x

xxf
=⊕==

∂
∂ (5)

As a result we obtain a Boolean function which is equal to 1, if a change of xi induces a
change of f(x0, …xn). Thus, the size of the Boolean difference function (i.e., number of
its 1-minterms) describes the number of 1-minterms of f(x0, …xn) for which a change of
xi induces a change of f(x0, …xn). To derive the cubes for which two functions
simultaneously change their value by changing the value of xi, we compute the Boolean
differences of these two functions with respect to xi and compute their intersection, i.e.,
a Boolean product. The size of this product will correspond to the number of minterms
for which both functions will change a value if xi changes.

Similarly, the number of minterms for which both functions will not change a value if xi
changes can be computed using a Boolean indifference, i.e., a negation of a Boolean
difference:

),...,0,...,(),...,1,...,(),...,(
00

0
nini

i

n xxxfxxxf
x

xxf
=⇔==

∂
∂ (6)

As a result, the scoring function for functions f(x0, …xn) and g(x0, …xn) is computed as:

i

n

i

n

i

n

i

n

x
xxg

x
xxf

x
xxg

x
xxfs

∂
∂
⋅

∂
∂

+
∂

∂
⋅

∂
∂

=
),...,(),...,(),...,(),...,(0000 (7)

Note that the complexity of the computation of the score is a polynomial with n, so it
can be used for any problem sizes.

4.2.2.3. Scoring Matrix

By computing a scoring function for each pair of output variables we obtain a scoring
matrix. This is a symmetric matrix of dimensions (m, m), where m is the number of

43

output variables. The value in a cell [i, j] represents the scoring function value of
variables i and j. The outputs of the multi-output function are grouped together
according the scoring matrix values. The output-grouping algorithm proceeds as
follows:

1. Assign the first output variable to the first block.

2. Find the maximum scoring matrix value corresponding to outputs i and j. These

outputs should be grouped together, since they have the highest “similarity
value”.

3. If one of these outputs is already assigned to a block, append the second output,

if possible (the maximum number of outputs of the block is not exceeded).

4. If none is assigned, try to find an empty block and assign both outputs to this

block.

5. If no free block is available, try to put them both into some block.

6. If there is not enough place to put both the outputs into one block, assign them

randomly.

This simple algorithm yields an assignment of all output variables to the blocks, while
the function’s similarity is maximally exploited.

4.2.2.4. Experimental Results

We evaluated the efficiency of the algorithm on the MCNC benchmarks [36]. For each
of the benchmark circuits we performed three experiments:

• First, the respective benchmark circuit was minimized by BOOM [35]. This

experiment was performed to estimate the circuit size when partitioning is used.

• In the second group of experiments we divided the circuit into several blocks (b),

and all the output variables were assigned to the individual blocks purely at
random. Then the circuit was minimized by BOOM. One hundred experiments
were performed and an average value was taken, to ensure sufficient statistical
values.

• Finally the similarity-based output grouping method was used. We performed a

similar experiment to the previously described one, but output variables were
assigned to the blocks using the proposed method.

These three experiments show the differences between the all-in-one implementation of
the benchmark circuit, the circuit divided into several blocks with randomly assigned
outputs and our method. The number of blocks was selected according to the number of
outputs of the circuit, to be somehow balanced with the number of outputs. However,
any circuit may be divided into an arbitrary number of blocks without losing the
efficiency of the algorithm.

44

The benchmark results are shown in Table 17. After the benchmark name the numbers
of the primary inputs (i) and outputs (o) of the circuit are presented. The next column
gives the number of gate equivalents [49] of the minimized circuit. Next, there is the
number of blocks into which the circuit is being decomposed. The numbers of outputs
of all the blocks are equal. The “Random output grouping” column shows the
minimization results, for the experiment where the outputs are assigned to the blocks
randomly. The “Similarity-based output grouping” labeled columns describe the results
obtained by our newly proposed method. The last column, “impr.” shows the
improvement against the previous (random) method.

Table 17. Output grouping results
 No

decomp.
 Random output

grouping
Similarity-based output

grouping
bench i o GEs blocks GEs GEs impr.

al2 16 47 206.5 5 244.0 218.0 10.7%
amd 14 24 334.5 3 460.0 429.0 6.7%
b2 16 17 989.5 4 2018.5 1807.5 10.5%
b7 8 31 81.0 4 105.0 88.5 15.7%

b11 8 31 81.0 4 105.5 87.5 17%
br1 12 8 130.0 3 215.0 186.5 13%

dk17 10 11 70.5 3 84.0 72.5 13.7%
exps 8 38 910.0 4 1473.0 1256.0 14.7%
luc 8 27 162.5 3 244.0 228.0 6.6.%

4.2.3. Parity Net Grouping and the Self-Checking Circuit

The above-described algorithm can be very efficiently applied to on-line BIST (Built-in
Self-Test). The parity predictor is used to generate a proper output parity, see Figure 1.
The parity predictor is designed by duplicating an original combinational circuit. The
output nets of the duplicate circuit are XORed together to obtain output check bits. The
predictor outputs are sequentially XORed, until one parity output is obtained (see Figure
13). Only two nets are XORed, together in each step, according to the scoring function
that is computed.

Figure 13. The parity prediction

45

4.2.3.1. Parity Bits Grouping Algorithm

An algorithm used for grouping the circuit outputs to form parity bits is described here.
The selection of outputs to be joined by an XOR gate is of key importance for the final
design area overhead.

Since the parity predictor is constructed by gradually joining the original circuit outputs
by 2-input XOR gates, our primary task is to properly choose the two outputs to be
joined in each step. The function similarity-based approach can be exploited very well.
The basic idea of the algorithm depends on the following facts and assumptions:

(1) When two equal functions are joined by an XOR gate, the resulting value will be

‘0’ for all minterms. If the values of two functions differ in a couple of minterms
only, there will be only a small number of ‘1’ values in the resulting XORed
function. Experiments show that a low number of ‘1’s at the output is very
advantageous for the subsequent minimization process (Figure 15).

(2) Two inverse functions, when XORed, yield a ‘1’ value for each minterm. If the

output values of two functions are inverse but few minterms, there will be only a
few ‘0’ values in the result. This is also advantageous for minimization (Figure
15).

(3) And, consequently, if two functions are “similar”, there is a big probability that

they will share a lot of logic in the implemented design. If these functions are
joined together, an overall area reduction is very probable.

The first two statements were based on the assumption that it is advantageous for
minimization when the function values are either ‘0’s or ‘1’s for most of the minterms.
This is documented in Figure 14. The typical dependency of an area overhead on the
number of ‘1’ values in the output is shown. 100-input and 20-output functions with 100
terms defined were minimized in this experiment. The number of ‘1’s in the output
varied between 10% and 90% while measuring the number of gate equivalents [49] of
the circuit obtained after a minimization using BOOM [35]. We can see that low or high
values of the ratio of ‘1’s to ‘0’s produce the best solutions.

10% 20% 30% 40% 50% 60% 70% 80% 90%
100

150

200

250

300

350

400

450

G
Es

% of 1's in the output

Figure 14. Dependency of the area overhead on the ratio of output ‘1’s

46

The functions are described by the values of all minterms, i.e., functionally, not by a
netlist. Thus, the final checker design has to be synthesized “from scratch”. This gives
us an advantage, since the synthesis process is able to recognize the similarity of the
functions and to design the decoder efficiently.

4.2.3.2. Experimental Results

As in the previous set of experiments, our method is compared with a purely
randomized method. All the values are measured as gate equivalents [49], obtained
after synthesis. The area reduction obtained by the proposed method, in comparison
with the random method, is shown in the “Red.” column. The random assignments were
run 500 times, and the values were averaged.

In some cases there is a very significant improvement in comparison with the random
method, see Table 18.

Table 18. Comparison results
Circuit Random

[GEs]
Similarity

[GEs] Red.

alu1 967 156 83.9 %
apla 128 76 40.6 %
b11 36 21 41.7 %
br1 80 68 15 %
alu2 418 40 90.4 %
alu3 433 320 26.1 %

s1488 364 241 33.8 %
s386 87 73 16.1 %

The results obtained by our design methodology for a highly reliable system was
validated on the MCNC [36] and ISCAS [30] benchmarks. The results are shown in
Table 19. Availability calculation methodology is described in Section 7.

Table 19. Availability parameters

CIRCUIT AO
[LUT]

PARITY
NETS AO [%] C D Ass [%]

DIFFERENCE
FROM

DUPLEX
alu1 55 1 687 0 0 1 0,000022
alu1 16 2 200 0 0 1 0,000022
apla 24 1 53 1 109 0,999991 0,000013
apla 22 2 49 1 92 0,999993 0,000015
b11 3 1 8 42 59 0,999994 0,000016
b11 7 2 18 38 52 0,999994 0,000016
br1 10 1 20 47 154 0,999988 0,000010
br1 23 2 46 41 142 0,999987 0,000009
alu2 42 1 140 0 58 0,999991 0,000013
alu2 40 2 133 0 52 0,999991 0,000013
alu3 34 1 121 0 63 0,99999 0,000012
alu3 33 2 118 0 63 0,999989 0,000011

s1488 41 1 13 94 321 0,999996 0,000018
s1488 94 2 30 80 267 0,999996 0,000018
s386 20 1 39 15 176 0,999988 0,000010
s386 25 2 39 8 149 0,999989 0,000011

Here ”Circuit” is benchmark circuit, ”AO” is area overhead, ”PN” is number of parity
nets, ”C” and ”D” is number of undetected faults that are not detected by the code word,
and ”Ass” is steady-state availability

47

4.2.3.3. Summary

A novel circuit decomposition and output grouping method has been presented here. It
is based on an evaluation of the “similarity” of Boolean functions. Functions that are
found to be “similar” share a lot of logic. Therefore, when they are grouped together,
many resources are saved. The output grouping retains the two-level nature of the
circuit; hence we call it single-level partitioning.

A very efficient application of the method to on-line BIST design is proposed. Here the
circuit outputs are joined together by XOR gates to form a parity predictor. The parity
predictor outputs are compared with the outputs of the original circuit, and thus the
proper circuit function is checked. The proposed method helps to minimize the parity
predictor logic overhead. The area overhead is sometimes reduced by more than 90% in
comparison with a random method.

The results obtained using our method are presented and compared with a random-
based approach. Standard MCNC [36] and ISCAS [30] benchmarks were used.

48

5. Architecture of a Modified Duplex System (MDS)
The TMR structure is unsuitable when a high area overhead is unacceptable. Some
hybrid architecture must be used. TMR architecture and a hybrid system, e.g., the
modified duplex system with a comparator and some CED technique are compared in
[59, 61]. A technique based on Duplication With Comparison (DWC) and the
Concurrent Error Detection (CED) technique are described in [60, 62].

The fault tolerant system proposed in this chapter is based on DWC-CED with
reconfiguration. This thesis is devoted to methods for maximally increasing the
dependability parameters with maintaining the minimal area overhead. The complex
structure implemented in each FPGA is divided into small blocks, where every block
satisfies TSC properties. This approach can detect a fault before the fault is detected by
the output comparator.

Our previous results show that it is difficult to satisfy the TSC property on 100%, so we
have proposed a new structure (MDS) based on two FPGAs , see Figure 15.

Each FPGA has one primary input, one primary output and two pairs of checking
signals OK/FAIL. The probability of the information correctness depends on the FS
property. When the FS property is satisfied only to 75%, the correctness of the checking
information is also 75%. This means that the “OK” signal gives correct information for
75% of the errors that have occurred errors (the same probabilities for both “OK” and
“FAIL” signals).

To increase the dependability parameters we must add two comparators, one for each
FPGA. The comparator compares the outputs of the two FPGAs. The fail signal is
generated when the output values are different. This information is not sufficient to
determine which TSC circuit is wrong. Additional information to mark out the wrong
circuit is generated by the original TSC circuit. The probability of information
correctness depends on the FS property, and in many cases it is higher than 75%. When
the outputs are different and one of the TSC circuits signals a fail function, the wrong
FPGA is correctly recognized. Correct outputs are processed by the next circuit.

Primary
output 1

OK / FAIL

RECONFIG.
UNIT

FPGA 1

=TSC2

OK / FAIL

Primary
input

=

Primary
output 2FPGA 2

OK / FAIL

OK / FAIL

TSC1

Figure 15. MDS architecture

49

The reconfiguration process is initiated after a fault is detected. The reconfiguration
solves two problems: localization and correction of the faulty part. The time needed to
localize the faulty part is not negligible and must be included in the calculation of the
dependability parameters. We select only the faulty FPGA and we reconfigure it in our
solution. This means that we do not localize the faulty block inside the compound
design. The time taken to localize a fault and to reconfigure the faulty part can be
similar to the time taken to reconfigure the whole FPGA. The whole FPGA
reconfiguration also repairs the faults which occurred in an unused logic. The
reconfiguration process can also be initiated when one of the two FPGAs produces the
“FAIL” signal. This situation occurs when a fault is detected by one of the small TSC
blocks inside the compound design. Fault propagation to the primary outputs may take a
long time.

When the outputs are different, and both circuits signalize a correct function, we must
stop the circuit function and the reconfiguration process is initiated for both FPGA
circuits. After the reconfiguration process is performed, the states of the two FPGAs are
synchronized. This means that our modified duplex system can be used in an
application where system reset synchronization is possible.

5.1. Implementation of TSC Based on MDS

Each FPGA contains a TSC circuit and a comparator. The TSC circuit is composed of
small blocks, where each block satisfies the TSC property. The structure of the
compound design satisfying the TSC property is shown in Figure 16.

Checker

Primary
output

Primary
input

Totally Self-Checking circuit N-1

Output
Check bits
(circuit N-1)

OK
(circuit N-2)

FAIL
(circuit N-2)

Input
Check bits
(circuit N-2) Checker

Primary
output

Primary
input

Totally Self-Checking circuit N

Output
Check bits
(circuit N)

OK
(circuit N-1)

FAIL
(circuit N-1)

Input
Check bits
(circuit N-1)

Original
combinational

circuit

Original
combinational

circuit

Check bits
generator

Check bits
generator

1

4

2

5

6

3

Figure 16. Proposed structure of TSC circuits implemented in FPGA

We can assume six places where an error is observable for this compound design. We
assume, for simplicity, that an error occurring in the check bit generator will be
observable at the parity nets (number 1), and an error occurring in the original circuit
will be observable at the primary outputs (number 5).

The checker in block N will detect the error if it occurs in net number 1, 2, 4 or 5. If an
error occurs in net number 3 or 6, it will be detected in the next checker (N+1). The
method used to satisfy the TSC property for the compound design is described in
greater detail in [A.16].

50

Not every small block (in the compound design) satisfies the TSC property to 100%.
The TSC property depends on the FS and ST properties, which are also not satisfied to
100%. For availability computations, we find the block with the lowest FS property
value in the compound design.

5.2. HW Emulation of MDS in FPGA

Every reaction to an input vector change must by calculated in SW simulation. Each
simulation step takes many processor cycles especially for circuits with many gates. On
the other hand if we process one simulation step, the time needed for calculation is
equal to one system cycle. However, the results should be compared and evaluated
concurrently. This leads us to utilize the HW emulator.

A fault injection into the implemented circuit allows us to calculate the dependability
parameters more precisely. Moreover, some faults such as interconnection faults can be
tested only for a really implemented circuit. The SW simulator is not able to test faults
of this type, because the final circuit structure is not known. HW emulation enables
more types of faults to be tested.

The FPGA circuit selection process depends on the demands on the tested structure and
on the granularity of the reconfiguration [10, 13, 14, 15]. Atmel AT40K satisfies all
these requirements. It allows fine grain dynamical reconfiguration of the implemented
circuit. The reconfiguration process is controlled and realized by an on-chip AVR
microcontroller. This microcontroller also stores the tested vectors and simulation
results.

clk

sreset

start

vectorSelect

userVector

finish

u

v

TestGenerator

sreset

start

clk

testVector
finish

0

1

DFF

clk

D Q

TestedCircuit1

testVector Result

TestedCircuit2

testVector Result

DFF

clk

D Q

DFF

clk

D Q

Checker

result codeword

Comparator

result1 equal
result2

V

U

Sum1bit

in Sum_U
start
sreset
clk

Sum1bit

in Sum_V
start
sreset
clk

Figure 17. Final structure for the benchmark test

51

The HW emulator consists of a collection of SW tools and the Atmel AT40K testing
board. The SW tools are used to convert benchmarks from “.pla” format to “.vhdl”
format. These SW tools also enable the self-checking modification of the original
circuit. Synthesis and the mapping process are fulfilled manually by the Atmel FPSLIC
design tool. The final bitstream is put into Atmel FPGA. Finally the tested vectors are
loaded into the AVR microcontroller. The exhaustive test must be processed for the on-
line test. For this case the testing vectors are generated automatically and only the set of
tested faults is loaded.

The test is divided into two parts. These parts are composed of a safe test set and a risk
test set. The risk test set is composed of interconnection tests and can cause shorts. Our
HW emulator can test only a part of the safe test set composed mainly of look-up-table
tests. This test set covers only 11% of the AT40K bitstream size. The other parts belong
to the interconnection between the cells (23%), the interconnection inside the cells
(36%) and other configuration bits used, e.g., clock distribution, the input/output cell
and the RAMs (30%).

The test structure implemented in FPGA can be divided into four parts: circuit under
test, test vectors generator, check block and results processing block (Figure 17). The
self-checking testing part is shown in greater detail in Figure 18. The two most
important blocks are highlighted in light gray.

Figure 18. Design scheduling of the self-checking circuit

The final testing area of the implemented design is calculated individually for each
important block. These blocks are the parity checker, the original benchmark, the parity
generator and the comparator. The area of the parity checker and the comparator
depends on the number of checked or compared nets, and can be calculated before final
implementation.

5.2.1. Checker

The final area of the even parity checker is shown in Figure 19. The final area does not
depend on the realized structure, and is equal to both the optimal and the unbalanced

52

variant. Only the final delay depends on the realized structure. There is a smaller delay
for the optimal tree structure than for the unbalanced tree structure, see Table 20.

in3

in5

in2

in4

Codeword

in1

in0

Optimal tree

in3

in4

in2

in5
Codeword

in1

in0

Unbalanced tree

Figure 19. Even parity checker and length of tree

The solution presented above is for the even parity checker realizing only the
“CheckOK” signal. The odd parity checker must be used to generate the “CheckFAIL”
signal. The final area of the checker is the sum of the even and odd parity checkers. The
area of even and odd parity is equivalent.

Table 20. Even parity checker and length of tree
Tree Net length

Optimal tree ⎡ ⎤nL 2log=
Unbalanced tree 1−= nL

The number of LUTs M used for the even parity checker is:

⎥⎥
⎤

⎢⎢
⎡ −

=
3

1nM
 (8)

where M is the number of LUTs and n is the number of inputs.
Even and odd parity can by calculated by the follow equations:

a) Even parity 1210 −⊕⊕⊕⊕= ninininincodeword K (9)

b) Odd parity 1210 −⊕⊕⊕⊕= ninininncodeword K (10)

5.2.2. Comparator

The structure of the comparator is shown in Figure 20. The comparator in this simulator
is used to analyze whether the primary output is correct. In the final solution, the
comparator is used only for outputs leaving an FPGA. Only checkers are used inside the
design.

53

Figure 20. Comparator

The output of the comparator can be calculated by the following equation:

11221100 ... −− ⊕⋅⋅⊕⋅⊕⋅⊕= nn srsrsrsrequal . (11)

The final area does not depend on the realized structure, and it is equal for both the
optimal and the unbalanced variant. Only the final delay depends on the realized
structure. There is a smaller delay for the optimal tree structure than for the unbalanced
tree structure, see Table 21.

Table 21. Length of tree
Tree Net length

Optimal tree ⎥
⎥

⎤
⎢
⎢

⎡
⎥⎥
⎤

⎢⎢
⎡+=
2

log1 4
nL

Unbalanced tree

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡
−⎥⎥

⎤
⎢⎢
⎡

+=
3

1
21

n

L

The solution described above is only for the “CheckOK” signal. For the “CheckFAIL”
signal, the solution must be doubled and one inverter must be added. The number of
LUTs M used for the comparator is:

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡
−⎥⎥

⎤
⎢⎢
⎡

+⎥⎥
⎤

⎢⎢
⎡=

3

1
2

2

n
n

M

 (12)

where M is the number of LUTs and n is the number of inputs.

54

5.3. Emulation Process

The MCNC benchmarks [36] are converted, modified and tested by the simulation
design flow shown in Figure 21.

The white blocks in the design flow are used for both SW simulator and HW emulator.
The gray blocks are used only for HW emulation. The VHDL code in the last white
block is synthesized for XILINX Virtex FPGA in cases when an SW simulator is used.
The Atmel FPSLIC FPGA is used as the HW emulator.

Figure 21. Emulation Process

55

5.4. Emulation Results

The simulation design methodology shown above was used to generate the bitstream for
many MCNC benchmarks [36]. The benchmark’s bitstream was loaded into Atmel
FPGA. The faults were injected only into the used parts of LUTs. Fault injection into
unused logic would only increase the number of undetected faults. The unused logic is
generated in cases when fever than 4-inputs LUTs are used. It is obvious that the faults
in unused logic are hidden, because there is no way of detecting them.

Table 22. Results obtained from our HW emulator without routing cells

C
irc

ui
t

In
pu

t

O
ut

pu
t

O
rig

in
al

 c
irc

ui
t [

LU
Ts

]

Pa
rit

y
ge

ne
ra

to
r [

LU
Ts

]

A
re

a
ov

er
he

ad
 [%

]

N
um

be
r o

f a
ll

fa
ul

ts

A
 (h

id
de

n
fa

ul
ts

)

B
 (d

et
ec

te
d

fa
ul

ts
)

C
 (u

nd
et

ec
te

d
fa

ul
ts

)

D
 (t

em
po

ra
ry

 d
et

ec
te

d)

ST
 c

ov
er

ag
e[

%
]

FS
 c

ov
er

ag
e

[%
]

Te
st

 ti
m

e
[s

]

alu1 12 8 8 47 587.5 656 0 656 0 0 100.00 100.00 0.68
alu2 10 8 44 47 106.8 1072 109 935 0 28 89.83 97.39 0.29
alu3 10 8 45 45 100.0 1044 130 877 8 29 86.78 96.46 0.29
apla 10 12 48 25 52.1 900 141 625 5 129 83.78 85.11 0.25
br1 12 8 50 15 30.0 810 141 456 69 144 74.07 73.70 0.84

s1488 14 25 310 50 16.1 4286 638 3060 85 503 83.13 86.28 17.64
s1494 14 25 276 53 19.2 3938 645 2785 67 441 81.92 87.10 16.21
s2081 18 9 22 25 113.6 536 22 494 0 20 95.90 96.27 35.14
s386 13 13 57 18 31.6 976 170 646 25 135 80.02 83.61 2.02

The HW emulation results are shown in Table 22. Here “Circuit” refers to the
benchmark circuit, “Input and Output” are the numbers of primary inputs and primary
outputs, “Original circuit” is the number of LUTs used for the original circuit, “Parity
generator” is the number of LUTs used for the parity generator, “Area overhead” is the
area needed for the parity generator as a percentage, “Number of all faults” are all tested
faults, “A, B, C, D” are the classes derived by our fault classification, “ST, FS” are self-
testing and fault secure properties, and “Test time” is the time needed for full test
execution.

Table 23. SW simulation/HW emulation time

 Inputs
SW

simulation
[s]

HW
estimation

[s]

HW
emulation

[s]

SW/HW
time
rate

alu1 12 34.0 0.92 0.92 37.0
alu2 10 9.0 0.40 0.41 22.0
alu3 10 6.9 0.39 0.41 16.8
apla 10 6.0 0.32 0.34 17.6
b11 8 0.8 0.05 0.06 13.3
br1 12 18.0 1.08 1.10 16.4

s1488 14 2406.3 23.76 23.82 101.0
s1494 14 2518.9 21.79 21.84 115.3
s2081 18 1217.9 49.30 49.30 24.7
S27 7 0.1 0.01 0.03 3.3
s386 13 677.7 2.48 2.49 272.2

56

The results show that for all benchmarks the FS property is higher than 70% of fault
coverage. The area overhead depends on the benchmarks that are tested. For 50% of the
benchmarks the area overhead is less than 50%. The “alu” benchmarks are a typical
problem for a single parity generator. The area overhead decreases rapidly when the two
parity groups are used for “alu” benchmarks.

The SW simulator is slower than the HW emulator. The simulation time results are
shown in Table 23.

57

6. Proof of MDS Optimality
To evaluate the influence of a sequence of SEU faults, a more precise definition of a
“single fault” is needed. We use availability computation for dependability analysis. In
the following text we will assume that “damage to a single data item” is defined as
follows:

• It will occur at a single time that is arbitrarily located on the time axis.

• The fault can change a data item located within the FPGA configuration

memory. Both FPGAs can be affected with the same probability. We assume the
single fault changes only one bit of the FPGA configuration memory. Each bit in
the FPGA configuration memory can be attacked with the same probability.

• The time between any two single faults is long enough for a single fault to be

successfully detected and corrected. Otherwise, it is a multiple fault.

Some basic rules are defined to calculate the availability parameters. We assume that:

• There is at least one input vector coming between two SEUs that make an output

differ from the normal operation.

• SEUs impacting an unused logic do not change the function of the part that is

used. These faults are hidden faults.

• The comparator and the checker are fully TSC.

• The area overhead of the comparator and the checker is negligible.

• The reconfiguration unit loads correct configuration data after a fault is detected.

• The time needed to reconfigure the faulty part depends on the configuration data

size.

• A fault that occurred in unused logic does not damage the whole FPGA.

6.1. Reliability Model

The Markov model shown in Figure 22 describes our architecture.

OF
2λs(1-FS)

μs/2

2λsFS

μs H

Figure 22. Model of our modified duplex system

58

There are three states (O, F, H).

The O state (operational) represents the regular fault-free state of the system, where
both FPGAs are operating correctly. This means that the fail function is signalized
neither by the TSC circuit nor by the comparator.

There is a transition from the O state to the F state (one FPGA is faulty) corresponding
to the situation when a fault occurs in one FPGA and this fault is detected by one of the
TSC circuits. The system enters this state with a probability FS. λ is the failure rate for
one bit of a configuration memory and s is the size of a configuration memory. Number
2 (in the 2λsFS expression) means that one of two FPGAs can be affected by SEUs. The
reconfiguration process is initiated only for the faulty FPGA. The repair rate is
represented by μ. The second FPGA is running correctly and performs the function of
the system.

Some faults are not detected when the output vector is an incorrect codeword. The
probability that an occurred fault causes an incorrect codeword is equal to 1-FS. In this
case the system comes to the state H.

The H (hazard) state means that the system is in the hazard state. The hazard state is
detected (e.g., by comparators), because the output vectors are not identical. Both
FPGAs have to be reconfigured in this case. The repair rate is equal to μ/2, because we
reconfigure each FPGA separately. If we are able to reconfigure both FPGAs at the
same time, the availability parameters will increase.

()

1

012
2

02

0
2

2

=++

=−−

=−

=−−

HFO

O
H

OF

H
FO

ppp

pFSsps
pFSsps

pspsps

λμ
λμ

μμλ

 (13)

The model described here introduces four parameters: failure rate (λ), repair rate (µ),
fault security (FS) and the configuration memory size (s). These parameters are
discussed in the next section. Now let us transform the Markov model into a system of
equations describing the steady state probabilities of each of the states (Equations 13).
The system of equations is completed by a normalisation condition.

FOSS ppA += (14)

The value of the steady-state availability ASS is the sum of probabilities for all working
states (Equation 14).

59

6.2. Evaluation of the Reliability Model

First, we discuss the model parameters. The failure rate (λ) depends on the probability
that the impacting SEUs will change a bit in the FPGA configuration memory. Due to
this fact we took into account the result presented in [4] and set the failure rate to:

][8.1 15 −−= heλ (15)

The repair rate (µ) depends on the time needed for reconfiguring an FPGA. The clock
frequency was set to 25 MHz. The configuration memory size s (needed for each
benchmark) was calculated as the product of the configuration memory size for
AT94K40 ATMEL FPSLIC and the circuit area overhead (AO[%]).

][233 bitsAOks ⋅= (16)

The graphs in Figures 23, 24, 25, 26 were constructed by solving equations (13) and
(14). We used equations (13) and (14) for the following calculations. Firstly the circuit
area overhead was fixed to 50 percent. The FS parameter varies from 0 to 100% FS.
The availability parameter increases with higher FS, see Figure 23.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.999955

0.99996

0.999965

0.99997

0.999975

0.99998

0.999985

0.99999

0.999995

1

Fault Security

A
va

ila
bi

lit
y

Figure 23. Availability for 50% overhead

The curve in Figure 23 is generally described by equation (17).

μλλ
μλ
+−

+
=

FS
FSASS 24

2
 (17)

In the second case, FS is 80% and the area overhead varies from 0 to 100%.

Figure 24 shows that a higher area overhead means a low availability parameter, but the
availability parameter decreases more slowly than in our first case, when the value of
the FS parameter is changing.

60

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.999984

0.999986

0.999988

0.99999

0.999992

0.999994

0.999996

0.999998

1

Overhead

A
va

ila
bi

lit
y

Figure 24. Availability for 80% FS

In the third case, we show the relation between the area overhead, the FS property and
the availability. The results are shown in Figure 25. One point (number 1 in Figure 25)
corresponds to the standard duplex system. The availability of the standard duplex
system is 0,999978248.

When both the area overhead and FS are 0% (the front corner in Figure 25), the
availability of our system would be the same as for the standard duplex system without
any detection of a faulty FPGA.

0%
20%

40%
60%

80%
100%

0%
20%

40%
60%

80%
100%

0.99992

0.99994

0.99996

0.99998

1

Fault SecurityOverhead

A
va

ila
bi

lit
y

Figure 25. Availability 3D graph

The graph in Figure 25 describes the dependency of AO on FS parameterized by the
availability. One curve (number 1 in Figure 25, Figure 26) corresponds to the standard
duplex system. Due to this, when FS is 50%, the area overhead must be less than 40%.
In other cases the system is worse than the standard duplex system with respect to
availability.

Arrow 2 in Figure 26 shows the area where the system is worse than a standard duplex
system with respect to availability. Arrow 3 shows where the system is better than a
standard duplex system with respect to availability. Each curve in Figure 26 represents
one value of the availability parameter.

1

61

Fault Security

O
ve

rh
ea

d

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 26. Curves of availability values

6.3. Main results

The results obtained by our case study were validated on the MCNC [36] and ISCAS
[30] benchmarks. Our results are shown in Table 23. The fault security (FS) and the
area overhead (AO) are summarized in Table 24, where the results obtained by the
computation of the models are also included.

Here “CIRCUIT” is benchmark circuit, “AO” is area overhead, “FS” is the probability
that a fault is detected by code word, and “Ass” is steady-state availability.

Table 24. Availability parameters

CIRCUIT AO [%] FS [%] ASS [%]

alu11 687,5 100 1
apla 53,3 82,8 0.9999912
b11 7,9 75,5 0.9999938
br1 20,0 62,9 0.9999847
al2 11,5 94,3 0.9999985

alu2 140,0 92,5 0.9999906
alu3 121,4 90,3 0.9999897

s1488 13,1 86,3 0.9999962
s1494 12,9 86,3 0.9999962
s2081 125,0 96,2 0.9999958
s27 75,0 72,2 0.9999815
s298 48,7 91,0 0.9999957
s386 39,2 71,1 0.9999878

1

2

3
0.99998

0.99999

0.99997

62

6.4. Generalization

The availability of the original duplex system is 0,999978248, and the availability of
TMR architecture is 1. If we compare the original duplex system with our modified
duplex system we increase the availability parameter for all tested benchmarks. The
availability parameter is the same as for a triplex system in case when the FS property is
100%. We found that availability depends more on the FS property than on the area
overhead. When the FS is not 100% achieved, the area overhead is strictly limited by
the availability value of the standard duplex system. When this value is surpassed, the
availability is inferior to the standard duplex system. We can summarize that for the
benchmarks tested, the availability parameters have increased. For example, when
“apla” has 82.8 % of FS and 53 % of the area overhead, the time when the system is
unavailable is about 2.5 times shorter than for the standard duplex system. The
dependability parameters of our modified duplex system are better than the standard
duplex system and a little worse than or equal to the TMR system (which has a greater
area overhead than our reconfigurable and duplex system).

63

7. Design Methodology
The design methodology for creating a TSC circuit is shown in Figure 27. To generate
the output parity bits, all the output values have to be defined for each particular input
vector. Unfortunately, the benchmark definition files do not do this. Only some output
values are specified for each multi-dimensional input vector, while the rest are assigned
as don’t cares; they are left to be specified by another term. Thus, to be able to compute
the parity bits, we have to split the intersecting terms, so that all the terms in the truth
table are disjoint.

MCNC
benchmarks

& ISCAS

Synthesize VHDL
Synplify

original

Modification on
two level network /
multi level network

Synthesize VHDL
Leonardo Spectrum

Minimization
Boom / Espresso

Area
overhead

Split
intersecting

terms

Original
circuit

Single
parity

predictor

Multiple
parity

predictor

Hamming-like
code parity
predictor

Simple
duplication

Conversion
two level on
multi level
network

Minimization
Boom /

Espresso

PLA

BENCH

PLA

PLA Check bits
predictor

BENCH

Conversion
to VHDL

original Predictor

Generate
exhaustive

test set

SUEs fault
 injection &
Simulation

Fault
coverage

original Predictor

Test
set

EDIF

Modification on
multi level
network

Modification on
two level
 network

Figure 27. Design methodology flow

In the next step the original primary outputs are replaced by parity bits. Two different
error codes were used to calculate the output parity bits (single even parity code and

64

multiple parity code), but our design methodology also enables the use of Hamming-
like code or standard duplication. Another tool was used in the case where the original
circuit was modified in the multilevel logic. This tool is described in [A.1]. The two
circuits generated in the first step (original circuit and parity circuit) are processed
separately to avoid sharing any part of the circuit. Each part can be minimized by the
BOOM [35] or Espresso tool [34]. The final area overhead depends on the software that
was used in this step. Many tools were used to reduce the area of the parity bits
generator. BOOM was used to minimize the final area. In this step the area overhead is
known, but we can decide whether the fault coverage is sufficient.

In the next step, “pla” format is converted into “bench” format. “Bench” format was used
because the tool that generates the exhaustive test set uses this format. An exhaustive
test set has 2n patterns and we used it to evaluate the TSC goals.

Another conversion tool is used to generate two VHDL codes and the top level. The top
level is used for incorporating the original and parity circuit generator. In the next step
the synthesis process is performed by the Synplicity Synplify Pro tool. The constraint
properties set during the synthesis process express the area overhead and the SEU fault
coverage. If the maximal frequency is too high, hidden faults occur during fault
simulation. The hidden faults are caused by circuit duplication. The size of the area
overhead is obtained from the synthesis process. The final netlist is generated by the
Leonardo Spectrum software. The fault coverage was obtained by simulation using our
software [31].

To evaluate the area overhead and the fault coverage special tools had to be developed.
In addition to some commercial tools such as Leonardo Spectrum and Synplify, we used
format converting tools, parity circuit generator tools and simulation tools.

At first, the area minimization and term splitting is performed for the original circuit by
BOOM [35]. The Hamming code generator (or single parity generator) is generated by
the second software. These two circuits are minimized again with BOOM. The next two
tools convert the two-level format into a multi-level format. The first of them converts a
“pla” file to “bench”, and the second converts “bench” to VHDL. The second software is
used for generating the final circuit in ”bench” format due to its further usage in the
exhaustive test set generator. The format converting software and parity generator
software were written in Microsoft Visual C++. The netlist fault simulator was written
in Java. The parser source code was used to parse the netlist generated by the two
commercial tools mentioned above.

Our modified duplex system based on two FPGAs with a highly reliable system design
methodology has been presented here. The design methodology enables an appropriate
code to be selected, taking into account the system requirements.

Our methods we can use for designing a totally self checking circuit. The selected
method depends on the final area overhead and the SEU fault coverage. When a highly
reliable system is required and the area overhead can be high, it is better to use
duplication or a Hamming-like code. These two methods ensure that fault security is
fulfilled one hundred percent, and the Ass parameter is also equal to hundred percent.

When a low area overhead and a highly reliable system are required, it is better to use
the simple or multiple parity predictor.

Our highly reliable structure ensures that the final system is better than a standard
duplex system with 0,999978248 of Ass [A.6].

65

8. Conclusions and Future Work
A modified duplex system based on two reconfigurable FPGAs has been presented. Our
MDS architecture increases the dependability parameters in comparison with the
standard duplex system. The dependability parameters have been increased due to the
reconfiguration process and the two methods of SEU detection that are used. The first
method compares the primary outputs of each FPGA, and the second signalizes the
faulty FPGA.

The whole proposed system has been described by a dependability Markov model. This
model was used for computing the reliability and availability parameters for SEU fault
models. The results for the MCNC [36] and ISCAS [30] benchmarks have been
compared with those of the standard duplex system. We found that availability depends
more on the FS property than on the area overhead. When the FS is not 100% achieved,
the area overhead is strictly limited by the availability value of the standard duplex
system. When this value is surpassed, the availability is inferior to the standard duplex
system. We can summarize that for the benchmarks tested, the availability parameters
have increased. For example, when “apla” has 82.8 % of FS and 53 % of the area
overhead, the time when the system is unavailable is about 2.5 times shorter than for the
standard duplex system. The dependability parameters of our modified duplex system
are better than the standard duplex system and a little worse than or equal to the TMR
system (which has a greater area overhead than our reconfigurable and duplex system).

Single parity is most suitable code for the self-checking circuit, due to its low area
overhead and high fault coverage. Other error detection codes lead to higher fault
coverage, but the area overhead and the number of possible faults are also higher.
Single parity is good trade-off between the area overhead and fault coverage.

Faulty FPGA can be reconfigured as a whole rather than partially. Partial
reconfiguration involves initiating the localization process. The partial reconfiguration
process with fault localization takes a longer time than the whole FPGA reconfiguration
process without fault localization. Moreover, hidden faults that have occurred in unused
logic are fixed because the FPGA reconfiguration (reprogramming) includes unused
logic. The circuit design implemented in both FPGA must enable the self
synchronization process which synchronizes both FPGAs after one of them is
reconfigured. In many applications, it is sufficient to reset both FPGAs.

A new fault classification has been proposed. The four classes were proposed to
describe possibility of all situations of occurred faults.

8.1. Contribution of the dissertation:

The main result of the dissertation thesis is a fault tolerant design methodology based on
self-checking circuits implemented with using FPGAs. The methodology describes the
design steps of the fault tolerant system realization. The main contribution of this work
can be divided into two groups: primary results and secondary results.

The primary results are: design methodology steps, fault classification, self-checking
and fault tolerant structures and etc.

66

Fault classification: This work supports the design process of CED circuits
implemented in FPGAs. A new fault classification was proposed. Briefly, our
classification leads to more accurate evaluation of the fault coverage, and it is possible
to determine whether the tested circuit satisfies the FS and ST properties. We can also
evaluate how many of the faults violate the FS and ST property. The proposed fault
classification is used in our experiments. The classification enables us to distinguish
which ED code is suitable for the chosen synthesis method with respect to the used fault
model.

Self-checking circuit suitable for a fault tolerant system: Previous works has shown
that the area overhead depends on the used ED codes. To obtain the minimal area
overhead and 100 percent of fault coverage, the appropriate ED code has to be chosen
(selected). It may increase the dependability parameters. Single parity is most suitable
code for the self-checking circuit, due to its low area overhead and high fault coverage.
Other error detection codes lead to higher fault coverage, but the area overhead and the
number of possible faults are also higher. A single parity is good trade-off between the
area overhead and a fault coverage.

Single parity and parity net grouping: A very efficient application of the on-line
BIST design was proposed. Here the circuit outputs are joined together by XOR gates,
to form a parity predictor. The parity predictor outputs are compared with the outputs of
the original circuit, and thus the appropriate circuit function is checked. The proposed
method helps to minimize the parity predictor logic overhead.

Modified duplex system (MDS): CED techniques are not able to increase
dependability parameters sufficiently. A new structure based on the DWC-CED
technique has been developed. An appropriate ED code was selected to ensure a trade-
off between area overhead and fault coverage. The dependability parameters depend on
these two criteria.

MDS Implementation with TSC: Our methodology for fault tolerant design is based
on SC circuits. It assumes a combinational circuit with up to 16 primary inputs, because
simulation time grows by the square of the number of inputs. Therefore there is a need
of the compound design architecture. The proposed architecture enables combinational
circuits and sequential circuits to be combined in this compound design.

HW emulation of MDS: Each reaction to an input vector change must be calculated in
the SW simulation. Each simulation step takes many processor cycles, especially for
circuits with many gates. One simulation step is processed, and the time needed for
calculation is equal to one system cycle. However the results need to be compared and
evaluated concurrently. We therefore decided to use an HW emulator. The HW
emulation allow to us calculate the final area of individual parts of MDS structure e.g.,
parity predictor, checker and area overhead. The HW emulator was programmed with
respect to the Atmel FPSLIC FPGA design process.

Proof of MDS optimality: The system was described by a Markov dependability
model. This model was used for computing of availability parameters for the SEU fault

67

model. The results of MCNC [36] and ISCAS [30] benchmarks used in our modified
duplex, reconfigurable and on-line testing design method were compared with the result
for the standard duplex and TMR systems. It was found that for availability the FS
property is more important than the area overhead. When the FS is not 100% achieved,
the area overhead is strictly limited by the availability value of the standard duplex
system. When this value is surpassed, the availability is inferior to the standard duplex
system.

Design methodology: A fault tolerant system design methodology is presented with the
aim to obtain results from individual parts of this study. The design methodology
enables to use the system in mission-critical applications, where the dependability
parameter requirements are very high.

The secondary results are: implementation, modification and other tools.

SW simulator: Because a new fault classification is being presented here, a new fault
simulator is needed. This SW simulator has been written in Java programming
language.

HW emulator: The new HW emulator was designed to evaluate faults more precisely.
The HW emulator was programmed with respect to the Atmel FPSLIC FPGA design
process.

Tools that add single parity nets: Some special tools for modifying benchmark
circuits had to be used in this work. Utilities allowing circuit modification were
programmed. The circuit was described by two-level networks and also by multilevel
networks. Utilities enabling us to simulate and calculate fault coverage were
implemented.

Tools that add multiple parity nets: A tool enabling modifications of the
combinational circuit and selection of the appropriate ED code was programmed. This
tool can generate a single event parity predictor, a multiple parity predictor and a
Hamming-like code predictor. The BOOM [35] and Espresso [34] minimization tools
were used to evaluate the area overhead and thus to select the appropriate ED code.

8.2. Future work

Our future work will deal with several practical case studies (e.g., railway applications).
The dependability parameters will be calculated more precisely using assumptions
about routing resources impacted by SEUs. We will use a hardware fault emulator
based on the ATMEL FPSLIC circuit.

68

9. References
[1] Nicolaidis, M., Zorian, Y.: ”On-Line Testing for VLSI - A Compendium of

Approaches to On-Line Testing for VLSI”, Kluwer Academic Publisher,
London 1998, ISBN 0-7923-8132-7.

[2] QuickLogic Corporation.: “Single Event Upsets in FPGAs”,
www.quicklogic.com, 2003.

[3] Bellato, M., Bernardi, P., Bortalato, D., Candelaro, A., Ceschia, M.,
Paccagnella, A., Rebaudego, M., Sonza Reorda, M., Violante, M., Zambolin, P.:
“Evaluating the effects of SEUs affecting the configuration memory of an
SRAM-based FPGA.” Design Automation Event for Electronic System in
Europe 2004, pp. 584-589.

[4] Normand, E.: “Single Event Upset at Ground Level,” IEEE Transactions on
Nuclear Science, vol. 43, 1996, pp. 2742-2750.

[5] Mitra, S., McCluskey E. J.: "Which Concurrent Error Detection Scheme To
Choose?" Proc. International Test Conf. 2000, pp. 985-994.

[6] Mitra, S., McCluskey, E., J.: “Diversity Techniques for Concurrent Error
Detection Center for Reliable Computing”, Dept. of Electrical Engineering and
Computer Science, Stanford University.

[7] Mitra, S., Saxena, N., R., McCluskey, E., J.: “Common-Mode Failures in
Redundant VLSI Systems”, A Survey IEEE Trans. Reliability, 2000.

[8] Bolchini, C., Salice, F., and Sciuto, D.:”Designing Self-Checking FPGAs
through Error Detection Codes”, 17th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT’02), pp. 60, Canada.

[9] Elshafey, K., Hlavicka, J.: “On-Line Detection and Location of Faulty CLBs in
FPGA-Based Systems”, IEEE DDECSWorkshop, Brno, Czech Republic, April
17-19, 2002, pp. 183-190.

[10] Xilinx Corp.: “Virtex Series Configuration Architecture User Guide”, XAPP
151 (v1.5), 2000.

[11] Abramovici, M., Stroud, C., Hamiliton, C., Wijesuriya, S., Verma, V.: “Using
Roving STARs for On-Line Testing and Diagnosis of FPGAs in Fault-Tolerant
Applications”, Proceeding of IEEE International Test Conference, pp. 973-982,
1999.

[12] Lee, H., K., Ha, D. S.: “Atalanta: an Efficient ATPG for Combinational
Circuits”, Technical Report, 93-12, Department of Electrical Eng., Virginia
Polytechnic Institute and State University, Blacksburg, Virginia, 1993.

[13] Atmel Corp.: “AT40K Series Configuration”, 2002.

[14] Xilinx Corp.: “Virtex FPGA Series Configuration and Readback”, XAPP 138
(v2.5), Xilinx Corp., 2001.

[15] Xilinx Corp.: “Status and Control Semaphore Registers Using Partial
Reconfiguration”, XAPP 153 (v1.0), 1999.

69

[16] Adamek, J.: “Foundations of coding”, A Wiley-Interscience Publication, John
Wiley & Sons, Inc, United States of America 1991, ISBN 0-471-62187-0.

[17] Stroud, Ch., E.: “A Designer’s Guide to Built-In Self-Test”, Kluwer Academic
Publisher, London 2002, ISBN 1-4020-7050-0.

[18] Bushnell, M., L., Agrawal, V., D.: “Essentials of Electronic Testing for Digital,
Memory, and Mixed-Signal VLSI Circuits”, Kluwer Academic Publisher,
London 2000, ISBN 0-7923-7991-8.

[19] Pradhan, D., K.: “Fault-Tolerant Computer System Design”, Prentice Hall PTR,
Upper Saddle River, New Jersey 1996, ISBN 0-7923-7991-8.

[20] Paschalis, A., Gizopoulos, D., Gaitanis, N.: “Concurrent Delay Testing in
Totally Self-Checking System”, On-Line Testing for VLSI, Kluwer Academic
Publisher, London, 1998.

[21] Piestrak, S., J.: “Design of Self-Testing Checkers for m-out-of-n Codes Using
Parallel Counters”, On-Line Testing for VLSI, Kluwer Academic Publisher,
London, 1998.

[22] Nikolos, D.: “Self-Testing Embedded Two-Rail Checkers”, On-Line Testing for
VLSI, Kluwer Academic Publisher, London, 1998.

[23] Brglez, F., Fujiwara, H.: “A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortan”, Proc. of International Symposium on
Circuits and Systems, pp. 663-698, 1985.

[24] Dobias, R., Kubatova, H.:“FPGA Based Design of Raiway's Interlocking
Equipment”, In Proceedings of EUROMICRO Symposium on Digital System
Design. Piscataway: IEEE, 2004, pp 467-473.

[25] Sterpone, L., Violante, M.: “A design flow for protecting FPGA-based systems
against single event upsets “, DFT2005, 20th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, pp. 436 – 444, 2005.

[26] Pradhan, D. K., Fault-Tolerant Computer System Design, Prentice-Hall, Inc.,
New Jersey, 1996, ISBN 0-13-057887-8.

[27] Drineas, P., Makris, Y.: "Concurrent Fault Detection in Random Combinational
Logic”, Proceedings of the IEEE International Symposium on Quality Electronic
Design (ISQED), 2003, pp. 425-430.

[28] Mohanram, K., Sogomonyan, E. S., Gössel, M., Touba, N. A.: "Synthesis of
Low-Cost Parity-Based Partially Self-Checking Circuits", Proceedings of the 9th
IEEE International On-Line Testing Symposium 2003, pp. 35.

[29] Graham, P., Caffrey, M., Zimmerman, J., Sundararajan, P., Johnson, E.,
Patterson, C.:"Consequences and Categories of SRAM FPGA Configuration
SEUs", Military and Aerospace Programmable Logic Devices International
Conference, Washington DC, MAPLD 2003 Paper C6.

[30] Brglez, F., Bryan, D., Kozminski, D.: “Combinational Profiles of Sequential
Benchmark Circuits”, Proc. of International Symposium of Circuits and
Systems, pp. 1929-1934, 1989.

[31] Kafka, L.: Design of TSC circuits implemented in FPGA, CTU FEE, 2004.

70

[32] Bolchini, C., Salice, F., Sciuto, D.: “Fault Analysis for Networks with
Concurrent Error Detection”, IEEE Design & Test 15, 4 (Oct. 1998), pp. 66-74,
1998.

[33] Bolchini, C., Salice, F., Sciuto, D.,Zavaglia R.: An Integrated Design Approach
for Self-Checking FPGAs, 18th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFT'03), 2003, pp. 443.

[34] Brayton, R. K. et al. (1984). Logic minimization algorithms for VLSI synthesis,
Boston, MA, Kluwer Academic Publishers, 192 pp.

[35] Hlavicka, J. and Fiser, P.: BOOM - a Heuristic Boolean Minimizer. Proc.
International Conference on Computer-Aided Design ICCAD 2001, San Jose,
California (USA), pp. 439-442.

[36] Yang, S.: “Logic synthesis and optimization benchmarks user guide”, Technical
Report 3, Microelectronics Center of North Carolina, 1991.

[37] http://www.synplicity.com

[38] http://www.mentor.com

[39] Brayton, R., K., McMullen, C.T.: “The Decomposition and Factorization of
Boolean Expressions”, In Proc. of the IEEE International Symposium on
Circuits and Systems, pp. 49-54, 1982.

[40] Muroga, S., Kambayashi, Y., Lai, J., C., Culliney, J., N.: “The Transduction
Method – Design of Logic Networks Based on Permissible Functions”, IEEE
Trans. on Computers, C-38(10), pp. 1404-1424, 1989.

[41] Stanion, T., Sechen, C.: “Boolean Division and Factorization using Binary
Decision Diagrams”, IEEE Trans on CAD, CAD-13(9), pp. 1179-1184, 1994.

[42] Ashenhurst, R., L.: “The Decomposition of Switching Functions”, In Proc. of
International Symposium on the Theory of Switching, pp. 74-116, 1957.

[43] Roth, J., P., Karp, R., M.: “Minimization over Boolean Graphs”, IBM Journal of
Research and Development, Vol. 6, No. 2, pp. 227-238, 1962.

[44] Bryant, R., E.: “Graph-Based Algorithms for Boolean Function Manipulation”,
IEEE Trans. on Computers, C-35(8), pp. 677-691, 1986.

[45] Lai, Y., T., Pedram, M., Vrudhula, S.: “BDD Based Decomposition of Logic for
Functions with Applications to FPGA Synthesis”, In Proc. Design Automation
Conference, pp. 642-647, 1993.

[46] Sasao, T., Butler, J., T.: “On Bi-Decompositions of Logic Functions”,
ACM/IEEE International Workshop on Logic Synthesis, Tahoe City, California,
1997.

[47] Mischenko, A., Steinbach, B., Perkowski, M.: “An Algorithm for Bi-
decomposition of Logic Functions”, In Proc. of Design Automation Conference,
pp. 103-108, 2001.

[48] Jozwiak, L., Bieganski, S.: “Information Trans-coders in Information-driven
Circuit Synthesis”, Proc. 30th Euromicro Symposium on Digital Systems Design
(DSD'04), Rennes (FR), 31.8. - 3.9.04, pp. 288-297.

[49] De Micheli, G.: “Synthesis and Optimization of Digital Circuits“. McGraw-Hill,
1994.

71

[50] Lee, H., K., Ha, D. S.: “HOPE: An Efficient Parallel Fault Simulator for
Synchronous Sequential Circuits”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 15, No. 9, pp. 1048- 1058,
September 1996.

[51] Touba, N. A., McCluskey, E. J.:”Logic Synthesis Techniques for Reduced Area
Implementation of Multilevel Circuits with Concurrent Error Detection”, Proc.
of ACM/IEEE International Conference on Computer-Aided Design (ICCAD),
1994, pp. 651-654.

[52] Novak, O., Gramatova, E., Ubar, R.: “Handbook of Electronic Testing”, ČVUT,
2005, ISBN 80-01-03318-X.

[53] Leveugle, R. and Cercueil, R.: “High Level Modifications of VHDL
Descriptions for On-Line Test or Fault Tolerance”, In Proceedings of the IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems
(Dft'01), (October 24 - 26, 2001), IEEE Computer Society, Washington, DC, pp.
84, 2001.

[54] Entrena, L., Lopez, C., Olias, E.: “Automatic insertion of fault-tolerant
structures at the RT level”, In Proceedings of Seventh International On-Line
Testing Workshop, 9-11 July, pp. 48–50, 2001.

[55] Abramovici, M., Stroud, C., Hamiliton, C., Wijesuriya, S., Verma, V.: “On-Line
Testing and Diagnosis of FPGAs with Roving STARs”, In Proceedings of IEEE
International On-Line Testing Workshop, Rhodes, Greece, July 5-7, 1999.

[56] Piestrak, J., S.: "Self-Checking Design in Eastern Europe," IEEE Design and
Test of Computers, vol. 13, no. 1, pp. 16-25, 1996.

[57] Bernardi, P., Reorda, M. S., Sterpone, L., Violante, M.,: "On the evaluation of
SEU sensitiveness in SRAM-based FPGAs," IOLTS2004: IEEE International
On-Line Testing Symposium, pp. 115-120, 2004.

[58] Nakahara, K., Kouyama, S., Izumi, T., Ochi, H., Nakamura, Y.: “Autonomous-
repair cell for fault tolerant dynamic-reconfigurable devices”, In Proceedings of
the 2006 ACM/SIGDA 14th International Symposium on Field Programmable
Gate Arrays, Monterey, California, USA, February 22 - 24, FPGA '06, pp. 224-
224, 2006.

[59] Kastensmidt, de L., G., F., Neuberger, G., Hentschke, F., R., Carro, L., Reis, R.:
"Designing Fault-Tolerant Techniques for SRAM-Based FPGAs", IEEE Design
and Test of Computers ,vol. 21, no. 6, pp. 552-562, November/December, 2004.

[60] Lima, F., Carro, L., Reis, R.: “Designing Fault Tolerant Systems into SRAM-
based FPGAs” In Proceedings of the 40th Design Automation Conference,
DAC'03, pp. 650, June 2003.

[61] Yu, S.-Y., McCluskey, E., J.: "Permanent Fault Repair for FPGAs with Limited
Redundant Area", In Proceedings of the IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, DFT01, pp. 125, 2001.

[62] Mitra, S., Huang, W.-J., Saxena, R., N., Yu, S.-Y., McCluskey, J., E.:
“Reconfigurable Architecture for Autonomous Self-Repair”, IEEE Design and
Test of Computers, pp. 228-240, May 2004.

[63] Berg, M.: “Fault Tolerance Implementation within SRAM Based FPGA Design
Based upon the Increased Level of Single Event Upset Susceptibility”, In

72

Proceedings of the 12th IEEE International On-Line Testing Symposium,
IOLTS'06, pp. 89-91, July 2006.

[64] Wirthlin, M., Johnson, E., Rollins, N., Caffrey, M., Graham, P.: “The Reliability
of FPGA Circuit Designs in the Presence of Radiation Induced Configuration
Upsets”, In Proceedings of the 11th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM, pp. 133- 142, April 2003.

[65] Touba, N., A., McCluskey E., J.: "Logic Synthesis of Multilevel Circuits with
Concurrent Error Detection", IEEE Transactions on Computer-Aided Design,
Vol. 16, No. 7, pp. 783-789, Jul. 1997.

73

10. Publications of the author

10.1. Refereed publications relevant for the thesis

[A.1] Kubalik, P., Kubatova, H.:“Design of Self Checking Circuits Based on FPGA“, In
Proceedings of 15th International Conf. on Microelectronics, Cairo, Cairo University,
2003, pp. 378-381. Work portion 50%.

[A.2] Kubalik, P., Kubatova, H.: “On-line Testing for FPGA”, In Proceedings of the
Sixth International Scientific Conference Electronic Computers and Informatics, ECI
2004, Technical University Kosice, 2004, pp. 194-199. Work portion 50%.

[A.3] Kubalik, P., Fiser, P., Kubatova, H.: “Minimization of the Hamming Code
Generator in Self Checking Circuits”, In Proceedings of the International Workshop on
Discrete-Event System Design DESDes'04, Zielona Gora: University of Zielona Gora,
2004, pp. 161-166. Work portion 33%.

[A.4] Kubalik, P., Kubatova, H.: “Parity Codes Used for On-line Testing in FPGA”, In
Acta Polytechnica, 2005, vol. 45, no. 6, pp. 53-59. Work portion 50%.

[A.5] Kafka L., Kubalik P., Kubatova H., Novak O.: “Fault Classification for Self-
checking Circuits Implemented in FPGA”, In Proceedings of IEEE Design and
Diagnostics of Electronic Circuits and Systems Workshop DDECS2005, Sopron
University of Western Hungary, 2005, pp. 228-231. Work portion 25%.

[A.6] Dobias, R., Kubalik, P., Kubatova, H.: “Dependability Computations for Fault-
Tolerant System Based on FPGA”, In Proceedings of the 12th International Conference
on Electronics, Circuits and Systems ICECS2005,, IEEE Circuits and Systems Society,
2005, vol. 1, pp. 377-380. Work portion 33%.

[A.7] Kubalik, P., Dobias, R., Kubatova, H.: “Dependability Computation for Fault
Tolerant Reconfigurable Duplex System”, In Proceedings of the 2006 IEEE Workshop
on Design and Diagnostics of Electronic Circuits and Systems DDECS2006, CTU
Prague 2006, vol. 1, pp. 100-102. Work portion 33%.

[A.8] Kubalik, P., Fiser, P., Kubatova, H.: “Fault Tolerant System Design Method
Based on Self-Checking Circuits”, In Proceedings of the 12th IEEE International On-
Line Testing Symposium IOLTS 2006, Los Alamitos: IEEE Computer Society, 2006,
pp. 185-186. Work portion 33%.

[A.9] Kubalik, P., Dobias, R., Kubatova, H.: “Dependable Design for FPGA based on
Duplex System and Reconfiguration”, In Proceedings of 9th Euromicro Conference on
Digital System Design, Los Alamitos: IEEE Computer Society, 2006, pp. 139-145.
Work portion 33%.

[A.10] Fiser, P., Kubalik, P., Kubatova, H.: ”Output Grouping Method Based on a
Similarity of Boolean Functions”, In Proceedings of the 7th International Workshop on
Boolean Problems, Technische Universität Bergakademie, Freiberg, 2006, pp. 107-113.
Work portion 33%.

[A.11] Kubalik, P., Kubatova, H.: ”Design Methodology for a Highly Reliable System”,
In Proceedings of the Seventh International Scientific Conference on Electronic
Computers and Informatics ECI 2006, Technical University, Košice, 2006, pp. 274-279.
Work portion 50%.

74

10.2. Unrefereed publications

[A.12] Kubalik, P., Bucek, J.: “FPGA Implementation of USB 1.1 Device Core”, In
Proceedings of Workshop 2003, CTU Prague, 2003, pp. 304-305. Work portion 50%.

[A.13] Kubalik, P., Bucek, J.: “FPGA Implementation of USB 1.1 Device Core”, Poster
2003, CTU Prague 2003, pp. IC22. Work portion 50%.

[A.14] Kubalik, P., Kubatova , H.: “Design of Self Checking Circuits Implemented in
FPGA”, Postgraduate Study Report 2004, CTU FEE Prague 2004. Work portion 50%.

[A.15] Kubalik, P.: “Fault Tolerant Design Methodology”, POSTER2004, CVUT FEL
Praha, 2004, CDROM. Work portion 100%.

[A.16] Kubalik, P., Kubatova, H.: “High Reliable FPGA Based System Design
Methodology”, In Proceedings of the Work in Progress Session, DSD 2004, Johannes
Kepler University, Linz, 2004, pp. 30-31. Work portion 50%.

[A.17] Kubalik, P., Kubatova, H.: “Design of Self-Testing Circuits Using Parity
Codes”, In Proceedings of Workshop 2005, CTU Prague 2005, pp. 214-215. Work
portion 50%.

[A.18] Kubalik, P., Kubatova, H.: “Highly Reliable Design Based on TSC Circuits”, In
Proceedings of Pocitacove architektury & diagnostika, CTU FEE Prague 2005, pp. 101-
106. Work portion 50%.

[A.19] Kubalik, P., Kubatova, H.: “Reconfigurable Duplex System Increasing Fault
Tolerance for Circuits Based on FPGAs”, In Proceedings of the Work in Progress
Session, DSD2005, Johannes Kepler University, Linz, 2005, pp. 13-14. Work portion
50%.

10.3. Citations

No citations or responses are known to the author.

