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Abstract 
 

This thesis presents the structure and design principles of a new highly reliable fault 
tolerant system. The proposed system structure is based on cooperation between two 
identical FPGA systems each including self-checking circuits. The main idea is based 
on a standard duplex system combined with fault-tolerant design principles and 
reconfiguration (static or dynamic).  

The system combines two individual FPGA circuits with identical design, where each 
FPGA is a totally self-checking circuit that enables fault detection. Because the 
hardware redundancy techniques obviously lower the dependability parameters, this 
system is designed as reconfigurable. The correct design is repeatedly loaded into a 
faulty FPGA, when the fault is detected. A totally self-checking circuit is based on error 
detection codes for which one hundred percent faulty coverage and low area overhead 
are difficult to achieve. The type of code is discussed, and it is experimentally verified 
that in many cases single parity is enough for our purpose. Single parity keeps a low 
area overhead with relatively high fault coverage. The whole system contains two 
totally self-checking comparators for cases, when the fault is not detected. One totally 
self-checking comparator is used for each FPGA. The comparators compare the primary 
outputs. When the outputs are different and no fail signal from the totally self-checking 
circuit is detected, both FPGAs are reconfigured.  

The design methodology for this system is also presented in this thesis. The new fault 
classification was proposed to obtain better view on various fault types. A Markov 
model is presented to evaluate the dependability parameters of the proposed system. 
The proposed modified duplex system is more reliable than the original duplex system, 
and has a lower area overhead than a triple module redundancy system. 

 
 

Keywords: 
 
on-line testing, self-checking circuits, fail-safe circuits, error detecting codes, FPGA, 
highly reliable design, fault tolerant design, reconfiguration. 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 

Acknowledgements 
 

First of all, I would like to express my gratitude to my thesis supervisor, Hana 
Kubátová. She has been a constant source of encouragement and insight during my 
research. Her continued support is gratefully acknowledged.  Her efforts as thesis 
supervisor contributed substantially to the quality and completeness of the thesis. 
Together with Prof. Ondřej Novák, she has provided me with numerous opportunities 
for professional advancement. I have learned a great deal from both of them.   
 
Many other people have influenced my work. In particular I wish to thank to Petr Fišer, 
Jan Schmidt and Radek Dobiáš. 
 

The staff of the Department of Computer Science and Engineering has provided a 
pleasant and flexible environment for my research.  Especially, I would like to thank 
Prof. Pavel Tvrdík, head of the department, for taking care of my financial support.  My 
work has been partially supported by grants from the GACR grant agency. 
 
Finally, my greatest thanks go to my family and friends.  
 



v 

Contents 
1. INTRODUCTION............................................................................................................................ 1 

1.1. MOTIVATION ............................................................................................................................. 1 
1.2. RELATED WORK......................................................................................................................... 2 
1.3. CONTRIBUTION OF THIS DISSERTATION THESIS .......................................................................... 6 
1.4. ORGANIZATION OF THE THESIS .................................................................................................. 8 

2. THEORETICAL BACKGROUND................................................................................................ 9 
2.1. REDUNDANCY TECHNIQUES .................................................................................................... 10 

2.1.1. Hardware Redundancy ...................................................................................................... 10 
2.1.2. Information Redundancy.................................................................................................... 11 
2.1.3. Time Redundancy............................................................................................................... 11 
2.1.4. Software Redundancy......................................................................................................... 11 

2.2. FAULT MODELS CLASSIFICATION ............................................................................................. 12 
2.3. DESIGN OF FUNCTIONAL BLOCKS............................................................................................ 12 
2.4. FAIL-SAFE DESIGN .................................................................................................................. 13 
2.5. ERROR DETECTION CODES....................................................................................................... 14 

2.5.1. Parity code......................................................................................................................... 14 
2.5.2. Dual-Rail code ................................................................................................................... 14 
2.5.3. M-out-of-n code ................................................................................................................. 14 
2.5.4. Berger code........................................................................................................................ 15 
2.5.5. Arithmetic codes................................................................................................................. 15 
2.5.6. Hamming codes.................................................................................................................. 15 

2.6. DESIGN OF CHECKERS ............................................................................................................. 16 
2.6.1. Code-Disjoint..................................................................................................................... 16 
2.6.2. Self-Testing ........................................................................................................................ 16 

2.7. PERTURBATION TOLERANT MEMORIES ................................................................................... 17 
2.8. AVAILABILITY ......................................................................................................................... 17 
2.9. RELIABILITY MODELING ......................................................................................................... 18 

3. NEW FAULT CLASSIFICATION SCHEME ............................................................................ 20 
3.1. THE NEW PROPOSED APPROACH ............................................................................................. 20 
3.2. EXPERIMENTAL VERIFICATION................................................................................................ 22 

3.2.1. Combinational Circuits...................................................................................................... 22 
3.2.2. Sequential Circuits............................................................................................................. 23 

3.3. SW SIMULATOR ...................................................................................................................... 24 
4. CONCURRENT ERROR DETECTION ..................................................................................... 26 

4.1. METHOD USING THE OLD FAULT CLASSIFICATION ................................................................. 27 
4.1.1. Single Parity and Hamming-Like Codes............................................................................ 27 

4.2. METHODS USING THE NEW FAULT CLASSIFICATION............................................................... 33 
4.2.1. Single Parity and Hamming-Like Codes............................................................................ 34 
4.2.2. Single Parity and Parity Net Grouping.............................................................................. 40 
4.2.3. Parity Net Grouping and the Self-Checking Circuit .......................................................... 44 

5. ARCHITECTURE OF A MODIFIED DUPLEX SYSTEM (MDS) .......................................... 48 
5.1. IMPLEMENTATION OF TSC BASED ON MDS ............................................................................ 49 
5.2. HW EMULATION OF MDS IN FPGA........................................................................................ 50 

5.2.1. Checker .............................................................................................................................. 51 
5.2.2. Comparator........................................................................................................................ 52 

5.3. EMULATION PROCESS.............................................................................................................. 54 
5.4. EMULATION RESULTS.............................................................................................................. 55 

6. PROOF OF MDS OPTIMALITY ................................................................................................ 57 
6.1. RELIABILITY MODEL ............................................................................................................... 57 
6.2. EVALUATION OF THE RELIABILITY MODEL ............................................................................. 59 
6.3. MAIN RESULTS ........................................................................................................................ 61 
6.4. GENERALIZATION.................................................................................................................... 62 



vi 

7. DESIGN METHODOLOGY......................................................................................................... 63 
8. CONCLUSIONS AND FUTURE WORK.................................................................................... 65 

8.1. CONTRIBUTION OF THE DISSERTATION: ................................................................................... 65 
8.2. FUTURE WORK......................................................................................................................... 67 

9. REFERENCES............................................................................................................................... 68 
10. PUBLICATIONS OF THE AUTHOR .................................................................................... 73 

10.1. REFEREED PUBLICATIONS RELEVANT FOR THE THESIS............................................................. 73 
10.2. UNREFEREED PUBLICATIONS ................................................................................................... 74 
10.3. CITATIONS............................................................................................................................... 74 

 



vii 

List of Figures 

Figure 1. CED scheme ...................................................................................................... 3 
Figure 2. Fault classification scheme.............................................................................. 22 
Figure 3. Fault model...................................................................................................... 27 
Figure 4. Fault Model – Example ................................................................................... 28 
Figure 5. Generating matrix for Hamming code (15, 11) ............................................... 29 
Figure 6. Right part of the generating matrix ................................................................. 29 
Figure 7. Circuit duplication and code word generation ................................................ 30 
Figure 8. Automatic fault insertion and checking code word......................................... 31 
Figure 9. Generating left side of matrix.......................................................................... 32 
Figure 10. Design scheduling of a self-checking circuit ................................................ 36 
Figure 11. Two different flows for creating a parity generator ...................................... 37 
Figure 12. Single-level partitioning ................................................................................ 41 
Figure 13. The parity prediction ..................................................................................... 44 
Figure 14. Dependency of the area overhead on the ratio of output ‘1’s ....................... 45 
Figure 15. MDS architecture .......................................................................................... 48 
Figure 16. Proposed structure of TSC circuits implemented in FPGA .......................... 49 
Figure 17. Final structure for the benchmark  test .......................................................... 50 
Figure 18. Design scheduling of the self-checking circuit ............................................. 51 
Figure 19. Even parity checker and length of tree.......................................................... 52 
Figure 20. Comparator.................................................................................................... 53 
Figure 21. Emulation Process ......................................................................................... 54 
Figure 22. Model of our modified duplex system .......................................................... 57 
Figure 23. Availability for 50% overhead ...................................................................... 59 
Figure 24. Availability for 80% FS ................................................................................ 60 
Figure 25. Availability 3D graph.................................................................................... 60 
Figure 26. Curves of availability values ......................................................................... 61 
Figure 27. Design methodology flow ............................................................................. 63 
 



viii 

List of Tables 

Table 1. Classification of faults for SC circuits.............................................................. 21 
Table 2. Experiment 1 – combinational circuits and Hamming like code...................... 23 
Table 3. Experiment 2 – combinational circuits and even parity ................................... 23 
Table 4. Results of Experiment 3 – sequential circuits and even parity ......................... 24 
Table 5. Results of Experiment 4 – sequential circuits and M-out-of-N code ............... 24 
Table 6. Application of even parity code........................................................................ 31 
Table 7. Application of double even parity code............................................................ 31 
Table 8. Application of Hamming code (63, 57)............................................................ 32 
Table 9. Application of Hamming code (255,247)......................................................... 33 
Table 10. Example of parity generator ........................................................................... 34 
Table 11. Description of the tested benchmarks............................................................. 37 
Table 12. Hamming code – PLA .................................................................................... 37 
Table 13. Hamming code – XOR ................................................................................... 38 
Table 14. Single even parity – PLA................................................................................ 38 
Table 15. Single even parity – XOR............................................................................... 39 
Table 16. Single even parity – PLA................................................................................ 39 
Table 17. Output grouping results .................................................................................. 44 
Table 18. Comparison results ......................................................................................... 46 
Table 19. Availability parameters................................................................................... 46 
Table 20. Even parity checker and length of tree ........................................................... 52 
Table 21. Length of tree.................................................................................................. 53 
Table 22. Results obtained from our HW emulator without routing cells...................... 55 
Table 23. SW simulation/HW emulation time................................................................ 55 
Table 24. Availability parameters................................................................................... 61 
 
 



1 

1. Introduction 
VLSI testing has been dominated by the need to achieve high quality manufacture 
testing with acceptable cost. With the rapidly increasing complexity of VLSI circuits, 
this goal has become increasingly difficult and has biased the effort of the test 
community in the direction of manufacturing testing [1]. 

However, important industrial applications require protection against field failures, and 
require an on-line testing solution. At first these needs concerned specific products 
destined for safety critical applications and fault tolerant computing, which were 
produced in small quantities. At the same time, there were not enough applications to 
make it attractive for CAD vendors to develop tools specific to the design of on-line 
testable ICs. The lack of such tools has dramatically increased the effort needed design 
on-line testable ICs. Low-volume production of such applications often does not justify 
the high development cost, which will have a dramatic impact on the per product unit 
cost. In practice, techniques using off-the-shelf components, such as duplication or 
triplication, are more often adopted, since the development cost is much lower, although 
the production cost is relatively high. 

We can expect this situation to start changing. Various industrial sectors have rapidly 
increasing needs for on-line testing. Such sectors include railway control, satellites, 
avionics, telecommunications, control of critical automotive functions, medical 
electronics, industrial control, etc. We can also expect wider sectors of the electronics 
industry to demand on-line testing solutions in order to ensure the welfare of the users 
of electronic products. Some of these applications involve high volume production and 
should support the standardization of such techniques, in the same way that the 
increasing needs of VLSI testing have transformed DFT and BIST into standard design 
techniques, and have supported the development of the specific tools now offered by 
most CAD vendors. 

Since silicon is "cheap", such tools should greatly popularize the design of on-line 
testable circuits. In addition to these trends, the high complexity of present-day systems 
requires more efficient solutions. The complex multi-chip systems of yesterday have 
become present-day single-chip components. Indeed, the fault tolerant and fail-safe 
system designs of yesterday have to be integrated at chip level, calling for on-line 
testing techniques for VLSI. 

A large variety of on-line testing techniques for VLSI have been developed and are still 
being enriched by new developments. They can respond efficiently to the needs 
expressed above, provided that available CAD tools simplify their implementation. 
Such techniques include self-checking design and signature monitoring. 
 

1.1. Motivation 

FPGAs are typically based on SRAMs. This means that the functional bitstream is not 
permanently saved in FPGA and must be loaded after FPGA is powered on. Because the 
FPGA configuration is saved in volatile memory, FPGAs are more sensitive to faults. 
High fault sensitivity is particularly important in aviation and astronautics, due to the 
long distances from the ground and the low level of the earth’s shield. 
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Nowadays transistor sizes are decreasing, power voltage is decreasing, and the threshold 
is decreasing. These properties decrease the noise immunity and increase the SEU 
sensitivity of FPGA. This is a good reason to focus on SEU detection, localization and 
correction. 

Higher energy particles impacting on an FPGA die can cause various faults. A typical 
example is a function circuit change due to the impact of high energy particles on the 
transistor drain. These types of faults are called Single Event Upsets (SEU) [2, 3, 4]. 
This change occurs after high energy particles impact digital or analog parts. These 
faults are nondestructive, and after resetting or the correct bitstream load, the 
functionality of FPGA is restored. The fault can appear as a short pulse or as a change 
in the flip-flop. The volume of the final errors depends on the structure implemented in 
FPGA, and on the place where the fault appears. A configuration memory bit change is 
another example of an SEU effect. These faults are temporary and can be corrected after 
the new bitstream is loaded into FPGA. 

1.2. Related work 

Previous approaches benefited from the fact that it was possible to work at 
functional/logical level, by providing the necessary fault observability properties to each 
node constituting the functional description of the device under consideration. With 
ASIC, even when mapping with different technological libraries, commercial tools are 
able to maintain the functional description of each node constituting the network. Thus 
a TSC device is produced even when the gates that are used are not exactly those 
identified by the Boolean equations. With FPGA, the nodes constituting the network are 
collapsed and merged to better suit the basic CLB elements constituting the FPGA 
resources, in order to minimize the used area. This operation modifies the observability 
of each fault, thus potentially not fulfilling the required and previously provided fault-
error relation. Hence no assumptions can be made on the observability of each fault on 
the primary outputs, so that subsequent TSC fault analysis and re-design steps are 
necessary. 

The goal of the investigation proposed here is to explore the suitability of Concurrent 
Error Detection (CED) techniques based on Error Detection Codes for the FPGA 
platform. Attention is therefore initially given to Single Event Upsets (SEUs) that may 
corrupt the internal memory or the LUTs. 

The FGPA configuration is stored in SRAM, and any changes to this memory may lead 
to a malfunction of the implemented circuit. SEUs caused by high-energy particles 
impacting sensitive parts are one way that configuration memory can be change. Some 
results of SEU effects on the FPGA configuration memory are described in [2, 3, 29, 57, 
64]. These changes are described as soft errors and cannot be detected by an offline test 
without interrupting the circuit function. 

Concurrent Error Detection (CED) techniques are widely used to increase the system 
dependability parameters. Almost all CED techniques are based on the original circuit 
contains the primary inputs and outputs, as well as another unit which independently 
predicts some special characteristic of the primary system outputs for every input 
sequence. Finally, a checker unit checks whether the special characteristic of the output 
actually produced by the system in response to the input sequence is the same as the 
predicted response, and produces an error signal when a mismatch occurs. Some 
examples of the characteristics can be: single parity, a number of 1s or a number of 0s. 
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The architecture of a general CED scheme is shown in Figure 1. It is important to note 
that the general architecture of the CED scheme, as shown in Figure 1, makes use of 
some form of hardware redundancy (predictor and checker circuits) for error-detection. 
Time redundancy techniques such as alternate-data-retry and recomputation with shifted 
operands can also be used for concurrent error detection. Time redundancy directly 
affects the system performance, but the hardware cost is generally lower than the cost of 
hardware redundancy. 

Original
Function

Primary
Inputs }

Characteristic
or Parity
Predictor

Predicted Output
Characteristic

Checker

Primary
Outputs }

N

M

Ok

Fail

Code
Word

 
Figure 1. CED scheme 

Several CED schemes for reliable computing system design have been proposed and 
used commercially. These techniques differ mainly in their error-detection capabilities 
and in the constraints required for the system design. There are many publications on 
system design with concurrent error detection [5, 6, 9, 20, 27, 28, 32, 33, 56]. They 
include designs of datapath circuits (e.g., adders, multipliers), and general 
combinational and sequential logic circuits with concurrent error detection. Almost all 
publications on CED focus on their area/performance overhead. However, the systems 
considered here are restricted to those with redundancy through replication. All the 
above-mentioned CED techniques guarantee system data integrity against single faults. 
However, these CED schemes are vulnerable to multiple faults and common-mode 
failures. Common-mode failures are a special and very important cause of multiple 
faults. 

Common-mode failures (CMFs) produce multiple faults, which generally occur due to a 
single cause; system data integrity is not guaranteed in the presence of CMFs. They 
include design mistakes and operational failures that may be due to external causes 
(e.g., EMI, power-supply disturbances and radiation) or internal causes. CMFs in 
redundant VLSI systems are surveyed in [5, 7].  

Another approach focusing on CED techniques using hardware redundancy is presented 
in [5, 6, 9, 20, 27, 28, 32, 33, 56]. Concurrent error detection (CED) techniques (based 
on hardware duplication, parity codes, etc.)[16] are widely used to enhance system 
dependability parameters. All CED techniques introduce some form of redundancy. 
Redundant systems are subject to common-mode failures (CMFs). While most studies 
of CED techniques focus on the area overhead, few analyze the CMF vulnerability of 
these techniques.  

The next approach was presented in [8]. This paper addresses the issue of self-checking 
FPGA design, based on the adoption of error detection codes (e.g., Berger code, Parity 
code) as an evolution of the traditional approaches developed in past years for the ASIC 
platform. Research was done on the applicability of design techniques introducing 
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hardware fault detection properties in a combinational network through information 
redundancy at functional/gate level. This approach is the starting point for the design of 
a more complete methodology of dynamically reconfigurable FPGAs in response to a 
fault, once it has been detected. Furthermore, the original fault-error analysis tool was 
adapted at the circuit description level. Therefore fault-error relation enforcement can be 
directly suited for FPGA, due to better control of the effects of manipulations of 
commercial tools and the presence of unused logic. 

The characteristics predictor is not the only unit that is important for realizing the CED 
scheme. The Checker also plays an important role in the CED scheme. The Checker 
depends on the characteristics predictor. Many papers have been published on this topic 
[21, 22]. 

In many publications the quality of a self-checking circuit is characterized by the 
number of detected faults. In many cases, however when the fault coverage is high 
(almost 100%) the area overhead is too high. The high area overhead decreases the fault 
tolerant properties, and it was important to find some trade-off between the area 
overhead and the used code. These requirements have been taken into account in this 
dissertation. 

CED techniques based on ED codes are widely used. However many research groups 
have not evaluated the Totally Self-Checking parameter, fault Secure and Self Testing 
property of the final circuit. Many publications describe only the TSC parameter. But 
this parameter provides insufficient information about all faults in a circuit implemented 
in FPGA. The hidden faults are not taken into account. Therefore a new fault 
classification has been proposed to describe faults in FPGA caused by SEU. 

A fault tolerant system can satisfy fault masking requirements. A fault occurring in such 
a system is detected and does not lead to an incorrect function. If no techniques for error 
correcting are used, the system must be stopped after the next fault is detected. A fault 
tolerant system protected against SEU must also be reliable. Additional techniques must 
be taken into account to increase the reliability parameters. However, CED techniques 
increase the final area, and techniques to increase the reliability parameters based on a 
single FPGA are not sufficient. Some publications have focused on reliable systems 
based on a single FPGA using a TMR structure [25, 58, 63]. 

The TMR structure is unsuitable when a high area overhead is unacceptable. Some 
hybrid architecture must be used. TMR architecture and a hybrid system, e.g., the 
modified duplex system with a comparator and some CED technique are compared in 
[59, 61]. A technique based on Duplication With Comparison (DWC) and the 
Concurrent Error Detection (CED) technique are described in [60, 62]. 

The fault tolerant system proposed in this work is based on DWC-CED with 
reconfiguration. This thesis is devoted to methods for maximally increasing the 
dependability parameters with maintaining the minimal area overhead. The complex 
structure implemented in each FPGA is divided into small blocks, where every block 
satisfies TSC properties. This approach can detect a fault before the fault is detected by 
the output comparator. 

Design methodology plays an important role in fault tolerant systems based on a self-
checking circuit. The methodology of self-checking code selection was presented in [51, 
65]. Here the methodology assumes that the circuits are described by multilevel logic 
and are realized by ASICs. The synthesis process of this self-checking circuit is 
different from the classical method. Each part of the self-checking circuit is synthesized 
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individually, due to possible sharing of logic primitives among these blocks. The 
sharing logic decreases the number of detected faults. Some papers describing 
methodologies for VHDL automatic modification has been published [53, 54].  

A design flow for protecting an FPGA-based system against SEUs is presented in [25]. 
This paper presents a design flow composed of standard tools and also ad-hoc 
developed tools, which designers can use fruitfully for developing a circuit resilient to 
SEUs. Experiments are reported on benchmark circuits and on a realistic circuit to show 
the capabilities of the proposed design flow. 

There is another on-line testing approach that does not take the implemented design into 
account. The on-line test is processed for a whole FPGA, without disturbing the normal 
system operation. [11, 55].  
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1.3. Contribution of this dissertation thesis 

The main result of the dissertation thesis is a fault tolerant design methodology based on 
self-checking circuits implemented with using FPGAs. The methodology describes the 
design steps of the fault tolerant system realization. The main contribution of this work 
can be divided into two groups: primary results and secondary results. 

The primary results are: design methodology steps, fault classification, self-checking 
and fault tolerant structures and etc. 

• Fault classification 
This work supports the design process of CED circuits implemented in FPGAs. We 
have proposed a new fault classification. Briefly, our classification leads to more 
accurate evaluation of the fault coverage, and we can determine whether the tested 
circuit satisfies the FS and ST properties. We can also evaluate how many of the faults 
violate the FS and ST property. The proposed fault classification is used in our 
experiments. The classification enables us to distinguish which ED code is suitable for 
the chosen synthesis method for the fault model that is used. 

• Self-checking circuit suitable for a fault tolerant system 
Previous works show that the area overhead depends on the ED codes that are used. To 
obtain the minimal area overhead and 100% of fault coverage, we have proposed 
method to select the appropriate ED code, which may increase the dependability 
parameters. 

• Single parity and parity net grouping 
We propose a very efficient application of on-line BIST design. Here the circuit outputs 
are joined together by XOR gates, to form a parity predictor. The parity predictor 
outputs are compared with the outputs of the original circuit, and thus the appropriate 
circuit function is checked. The proposed method helps to minimize the parity predictor 
logic overhead.  

 

 

• Modified duplex system (MDS) 
CED techniques are not able to increase the dependability parameters sufficiently. A 
new structure based on the DWC-CED technique has been developed. An appropriate 
ED code was selected to ensure a trade-off between area overhead and fault coverage. 
The dependability parameters depend on these two criteria. 

• MDS Implementation with TSC  
Our methodology for fault tolerant design is based on SC circuits. It assumes a 
combinational circuit with up to 16 primary inputs, because simulation time grows by 
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the square of the number of inputs. Therefore a compound design architecture has been 
proposed. The proposed architecture enables combinational circuits and sequential 
circuits to be combined in compound design. 

• HW emulation of MDS 
Each reaction to an input vector change must be calculated in the SW simulation. Each 
simulation step takes many processor cycles, especially for circuits with many gates. 
One simulation step is processed, and the time needed for calculation is equal to one 
system cycle. However the results need to be compared and evaluated concurrently. We 
therefore decided to use an HW emulator. The HW emulatorr was programmed with 
respect to the Atmel FPSLIC FPGA design process.  

• Proof of MDS optimality 
We describe the MDS system using Markov dependability model. This model is used 
for computing the availability parameters for the SEU fault model. The results of 
MCNC [36] and ISCAS [30] benchmarks used in our MDS, reconfigurable and on-line 
testing design method are compared with the result for the standard duplex system and 
TMR. 

• Design metodology 
A fault tolerant system design methodology is presented with the aim of obtaining 
results from individual parts of this study. The design methodology enables to use the 
system in a mission-critical application, where the dependability parameter 
requirements are very high. 

 

The secondary results are: implementation, modification and other tools. 

• SW simulator 
Because a new fault classification is being presented here, a new fault simulator is 
needed. This SW simulator has been written in Java programming language. 

• HW emulator 
The new HW emulator was designed to evaluate faults more precisely. The HW 
emulator was programmed with respect to the Atmel FPSLIC FPGA design process.  

• Tools that add single parity nets 
Some special tools for modifying benchmark circuits need to be used in this work. We 
programmed some utilities allowing circuit modification where circuit is described by 
two-level networks and also multilevel networks. We designed some utilities enabling 
us to simulate and calculate fault coverage. 

• Tools that add multiple parity nets 
We have programmed a tool enabling modification of the combinational circuit and 
selection of the appropriate ED code. This tool can generate a single event parity 
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predictor, a multiple parity predictor and a Hamming-like code predictor. The BOOM 
[35] and Espresso [34] minimization tools are used to evaluate the area overhead and 
thus select the appropriate ED code. 

 

1.4. Organization of the thesis 

Chapter 1 - The motivation and related works are presented in this section. Works 
related to each part of the design methodology are described with references to 
publications by other research groups that have deal with related problems. 
 

Chapter 2 - This chapter describes the entire theoretical background and also defines 
all important terms in this area of research. 
 

Chapter 3 – In this chapter we introduce a new fault classification for use in comparing 
different techniques for designing TSC circuits. 
 

Chapter 4 - Concurrent checking methods verify circuits during normal operation. 
Because the outputs delivered by a circuit during its operations as a part of a system are 
unpredictable, we need to introduce an invariant property that we can check for this 
invariance. Self-checking (SC) design is used to achieve concurrent error detection 
(CED) using hardware redundancy. This chapter describes the self-checking circuit 
design methodology and the results obtained by SW simulation.  
 

Chapter 5 – This chapter focuses on the proposed MDS structure, and deals with issues 
in the design of a fault tolerant system. 
 

Chapter 6 – To evaluate the influence of a sequence of SEU faults, we need a more 
precise definition of a “single fault” is needed. We use availability computation for 
dependability analysis. This chapter describes the results of the dependability 
computations obtained from the proposed Markov model of our MDS fault tolerant 
structure. We compare the original duplex system and TMR with our proposed MDS 
system. 
 

Chapter 7 – A new design methodology is proposed in this chapter. All steps in this 
methodology are based on the results given in Chapter 3, 4, 5 and 7. 
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2. Theoretical Background 
When speaking about fault tolerant design, there are some important terms that need to 
be defined. Defect, fault, and error are key terms in the field of testing [1, 17, 18, 19 
,52]. 

 

Defects can occur anywhere on the die, on one of multiple layers, packages, boards, etc. 
Generally, a defect (failure mechanism) in an electronic system is an unintended 
physical difference between the implemented hardware and its intended design. A 
defect may cause s deviation from the given device specifications. Defects occur either 
during manufacture or during the use of devices and systems [52]. 

 

Faults are defined as representations of a defect at the abstracted function level 
(electrical, Boolean or functional malfunction). The difference between a defect and a 
fault is rather subtle. They are imperfections in the hardware and in the function, 
respectively [52]. 

 

Errors are wrong output signals produced by a defective system (an incorrect response 
in circuit behavior). Therefore an error is any behavioral effect caused by a physical 
defect [52]. Errors can be divided into two groups: soft errors and hard errors. 

 

Soft errors are errors occurring temporarily in a device, and can be corrected. The 
correction process depends on the fault that generated the soft error. The fault is 
typically caused by a change in a device under the test parameters (e.g. temperature, 
power consumption, cosmic rays, etc.) 

 

Hard errors are permanent errors caused by hard faults. When a hard error occurs, the 
device must be replaced or masked by some fault masking techniques. 

 

A fault-tolerant system is a system that provides some techniques to avoid failure after a 
fault has caused errors within the system. When the system satisfies fault tolerant 
requirements, the following four steps must be taken into account: 

 

Fault detection is the process of recognizing that a fault has occurred. This is often 
required before any recovery procedure can be implemented. 

 

Fault location is the process of determining where a fault has occurred, so that an 
appropriate recovery can be implemented. 

 

Fault containment is the process of isolating a fault and preventing the effects of that 
fault from propagation throughout a system. 
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Fault recovery is the process of repairing the faulty part of a system to put the system 
back into an operational state. 

 
Functional blocks can be tested by two basic methods: on-line tests and off-line tests. 
 

In an off-line test, the tested system is switched to the non-operational state, where the 
system is tested by an additional logic performing test. The system is inaccessible while 
it is being tested. This type of test is in many cases performed after the device has been 
manufactured. 

 

In an on-line test, the test is performed when the system is in the operational state. This 
test is performed continually during normal life of device. When a fault is detected, the 
system can stop the device and correct the fault. When a fault tolerant system is used, 
the faults are corrected without changing the functionality of the device. The recovery 
operation can be processed if the error is caused by a soft fault, or some redundant 
techniques can be used. 

Fault tolerant systems lead designers use some redundant techniques. The most 
important redundant techniques are described in the following section. 

2.1. Redundancy Techniques 

The concept of redundancy implies the addition of information, resources, or time 
beyond what is needed for normal system operation. Redundancy can take one of 
several forms, including hardware redundancy, software redundancy, information 
redundancy, and time redundancy. The use of redundancy can provide additional 
capabilities within a system. In fact, whenever fault tolerance or fault detection is 
required, some form of redundancy is also required. However, it should be understood 
that redundancy can have a very important impact on a system in the areas of 
performance, size, weight, power consumption, reliability, and others [19]. 

2.1.1. Hardware Redundancy 

Physical replication of hardware is perhaps the commonest form of redundancy used in 
systems. As semiconductor components have become smaller and less expensive, the 
concept of hardware redundancy has become commoner and more practical. The cost of 
replicating hardware within a system is decreasing, simply because the cost of hardware 
is decreasing. 

There are three basic forms of hardware redundancy. First, passive techniques use the 
concept of fault masking to hide the occurrence of faults and prevent the faults from 
resulting in errors. Passive approaches are designed to achieve fault tolerance without 
requiring any action on the part of the system or operator. In their most basic form, 
passive techniques do not provide fault detection. They simply mask the faults. 

The second form of hardware redundancy is the active approach, which is sometimes 
called the dynamic method. Active methods achieve fault tolerance by detecting the 
existence of faults and performing some action to remove faulty hardware from the 
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system. In other words, active techniques require that the system perform a 
reconfiguration to tolerate the faults. Active hardware redundancy uses fault detection, 
fault location, and fault recovery in an attempt to achieve fault tolerance. 

The final form of hardware redundancy is the hybrid approach. Hybrid techniques 
combine the attractive features of both the passive and active approaches. Fault masking 
is used in hybrid systems to prevent erroneous results from being generated. Fault 
detection, fault location, and fault recovery are also used in hybrid approaches to 
improve fault tolerance by removing faulty hardware and replacing it with spare 
hardware. Providing spares is one way of providing redundancy in a system. Hybrid 
methods are most often used in the critical-computation applications, where fault 
masking is required to prevent momentary errors, and high reliability must be achieved. 
Hybrid hardware redundancy is usually a very expensive form of redundancy to 
implement [19]. 

2.1.2. Information Redundancy 

Information redundancy is the addition of redundant information to data to allow fault 
detection, fault masking, or possibly fault tolerance. Good examples of information 
redundancy are error-detecting and error-correcting codes, formed by the addition of 
redundant information to data words, or by mapping data words into new 
representations containing redundant information [19].  

2.1.3. Time Redundancy 

The fundamental problem with the forms of redundancy is the penalty paid in extra 
hardware to implement the various techniques. Both hardware redundancy and 
information redundancy can require large amounts of extra hardware for their 
implementation. In an effort to decrease the hardware required to achieve fault detection 
or fault tolerance, time redundancy has recently received much attention. Time 
redundancy methods attempt to reduce the amount of extra hardware at the expense of 
using additional time. In many applications, time is of much less importance than 
hardware, because hardware is a physical entity that impacts weight, size, power 
consumption and cost. Time, on the other hand, may be readily available in some 
applications. It is important to understand that the selection of a particular type of 
redundancy is very dependent upon the application [19]. 

2.1.4. Software Redundancy 

In applications that use computers, many fault-detection and fault-tolerance techniques 
can be implement in software. The redundant hardware necessary to implement the 
capabilities can be minimal, while the redundant software can be substantial. Redundant 
software can occur in many forms; it is not necessary to replicate complete programs to 
have redundant software. Software redundancy can appear as several extra lines of code 
used to check the magnitude of a signal, or as a small routine used to periodically test a 
memory by writing and reading special locations. 
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2.2. Fault models classification 

It is known that not all faults are identical. The test techniques that are used depend on 
the assumed fault model. Nowadays, the following fault models are used in the testing 
process [1, 17, 18, 19, 52]. 
 

• Stuck-at faults (SAF) i.e., a type of logical faults affecting logical signal states. 
This is the commonest fault model for digital circuits at the logic level. 

• Bridging faults, or simply bridges or shorts, occur between two signals. Two 
types of bridging faults are recognized: inter-gate and intra-gate shorts. Shorts 
are the dominant cause of faults in present-day CMOS technologies. 

• Open faults mean that a physical conducting line in a circuit is broken. The 
resulting unconnected node is not laid to either power source “Vdd” or ground 
“GND”. The occurrence of such defects can provide “memory effect” or delay 
faults. 

• Delay faults mean that timing specifications are not fulfilled. Gate or path delay 
faults have to be investigated. 

• Parametric faults are defects causing changes in a device under the test 
parameters (e.g. current, Vdd and GND voltage, power consumption, 
temperature, etc.) 

• A Single Event Upset (SEU) is defined by NASA as "radiation-induced errors 
in microelectronic circuits caused when charged particles (usually from the 
radiation belts or from cosmic rays) lose energy by ionizing the medium through 
which they pass, leaving behind a wake of electron-hole pairs." [Ref: NASA 
Thesaurus] SEUs are transient soft errors, and are non-destructive. 

• A Single Event Latchup (SEL) is a condition that causes loss of device 
functionality due to a single-event induced current state. SELs are hard errors, 
and are potentially destructive (i.e., may cause permanent damage). 

• A Single Event Burnout (SEB) is a condition that can destroy a device due to a 
high current state in a power transistor. SEB causes the device to fail 
permanently. 

2.3. Design of Functional Blocks 

The following properties are required for a functional block 
 

• Fault Secure: Under each modeled fault the erroneous outputs that are produced 
do not belong to the output code. The reason for this property is obvious; if an 
erroneous output belongs to the code, the error is not detected and the TSC goal 
is not achieved. Thus, the fault secure property is the most important property 
required for the functional block. 

• Self-Testing: For each modeled fault there is an input vector occurring during 
normal operation that produces an output vector which does not belong to the 
code. In fact, this property avoids the existence of redundant faults. Such fault 
remain undetectable and could be combined with new faults occurring later in 
the circuits, resulting on multiple fault that could destroy the fault secure and the 
self-testing properties 
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• Totally Self-Checking: The circuits are both fault secure and self-testing. Totally 
self-checking properties offer the highest level of protection [1].  

 

The fault secure property guarantees that the first fault always generates detectable 
errors. Then, assuming that a sufficient time elapses between the occurrence of two 
faults so that the functional block receives all inputs required to test its faults (i.e., 
sufficiently long MTBF), the self-testing property guarantees that the first fault is 
detected before a second fault occurs in the S-C system. In this way the TSC goal is 
achieved for a TSC functional block. 

TSC can be generalized as the strongly fault secure property that defines the largest 
class of functional circuits achieving the TSC goal. 

The fault secure property is the most important property, since it guarantees error 
detection in the event of any single fault. However, it is also the most difficult property 
to achieve. The self-testing property can easily be achieved, especially for stuck-at 
faults, where it is enough to remove the redundant faults by simplifying the circuit. The 
most straightforward way to achieve the fault secure property is to duplicate the 
functional block and use a comparator to check the delivered outputs for equality. 

Since this solution raises the hardware cost, by at least 100%, sophisticated techniques 
are being developed to reduce this cost. These techniques use error detection codes that 
cost less than the duplication code. The codes are described in greater detail in [1, 17]. 

2.4. Fail-Safe Design 

The final stage of an electronic system often drives some actuators that control elements 
of the external world. Many systems have states that can be considered as safe. That is, 
they do not involve catastrophic events if they occur erroneously. A typical example of 
a safe state is a red traffic light. Nobody can go across the crossroad. In safety critical 
applications, each actuator must be controlled by a fail-safe signal, (i.e., a signal which 
in the event of failures is either correct or safe. Self-checking systems deliver groups of 
encoded signals and are not adequate for driving these actuators (since each actuator is 
controlled by a single line which must be fail-safe individually). Due to this particular 
requirement, it is not possible to implement fail-safe systems in VLSI. Therefore, 
existing fail-safe systems are composed of a self-checking or fault tolerant processing 
system (e.g., using error detecting codes, duplication, triplication, etc.), together with a 
fail-safe interface implemented using specific discrete components with very low 
probability of failing in the non-safe direction. 

This interface transforms the outputs of the processing system into fail-safe signals. The 
drawback of these interfaces is that they are very cumbersome and have a high cost. 
Furthermore, the use of discrete components results in lower MTTF in VLSI 
implementations, and system availability is reduced. It is therefore necessary to provide 
more compact fail-safe interfaces. However, few results have been published in this 
domain. 
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2.5. Error Detection codes 

Concurrent Fault Detection Circuits (CFDCs) are essential components for on-line 
testing in systems designed to be highly reliable, highly available, and diagnosable to a 
replaceable unit such as a PCB or chip. CFDCs are also referred to as concurrent error 
detection (CED) circuits. CFDCs are typically incorporated in VLSI and PCB designs to 
support system-level fault recovery and maintenance strategies. These circuits are 
typically applied in an ad hoc manner to ASIC design, and usually only to the data path 
circuits. Extensive use has been made of CFDCs in many digital systems, e.g., 
electronic switching systems. 

Many types of error detecting codes (EDCs) and error correcting codes (ECCs) are used 
in the design of CFDCs. Different types of CFDCs require varying degrees of 
information redundancy (extra bits) in the system circuitry for the EDC/ECC code 
word. However, not all of these codes are useful in practical system applications, 
because of the large area and performance penalties associated with their hardware 
implementation. Therefore, the choice of a CFDC has a considerable impact on the 
overall area and cost of the final system. Unlike fault tolerant hardware structures that 
use hardware redundancy such as N-tuple Modular Redundancy (NMR), CFDCs are 
based on information redundancy using EDCs or ECCs. While there are many types of 
EDCs and ECCs, not all of these are useful in practical system applications because of 
the area and performance penalties that result from the circuitry required to generate the 
code words. Code word generation is performed on the data at the data source before 
entering the CUT, and the code words are checked (which requires regeneration of the 
code word) at the output of the CUT. Partitioning a system into sub-circuits and 
inserting the code word check and regeneration circuits to detect faults at intermediate 
points facilitates effective fault isolation and diagnosis of replaceable units. 

2.5.1. Parity code 

Parity code detects all single errors and more generally all errors of odd multiplicity. It 
is the cheapest code since it adds only one check bit to the information part. This check 
bit is computed to make constant the parity of each code word. As a matter of fact, we 
can use an odd parity code (an odd number of 1’s in each code word) or an even parity 
code (an even number of 1’s in each code word) [1]. 

2.5.2. Dual-Rail code 

This is a variety of duplication code where the check bits are equal to the complements 
of the information bits. This code has very strong error detection capabilities, since it 
detects any errors affecting either the information part or its complement. However, it is 
quite expensive since it duplicates the information [1]. 

2.5.3. M-out-of-n code 

This is a non-separable code (the information and check bits are merged). It is 
composed of code words that have exactly m 1’s, (e.g., 2-out-of-4 code: 1100, 1010, 
1001, etc.) This code is an optimal non-separable unordered code (minimal redundancy 
for unordered coding) [1]. 
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2.5.4. Berger code 

Berger code [17] can detect all multiple unidirectional errors (where the bits in error fail 
as logic 1s or logic 0s, but not both in the same data word). However, it provides no 
error correction capability. 

The basic idea is to count the number of logic 1s in the data word and use the inverted 
binary count value as the code word. By inverting the count value for use as the code 
word, we are able to detect a stuck-at-0 fault on a serial data line since the Berger code 
bits would be all 1s to indicate an all 0s data word. The number of data bits to be 
serviced by the Berger code word can be variable but should be less than (2N), where N 
is the number of Berger code bits, to ensure optimal error detection. 

2.5.5. Arithmetic codes 

These codes are divided into separable and non-separable. In separable arithmetic codes 
of base A, the code words are obtained by associating to an information part X a check 
part X’ equal to the modulo A of the information part, that is X0 = |X|A (residue code), 
or X0 = A − |X|A (inverse residue code). 

In non-separable arithmetic codes of base A (or AN codes), the code words are equal to 
the product of the original (i.e., non-coded) word by base A. 

Arithmetic codes [1] are interesting for checking arithmetic operations, because they are 
preserved under such operations. The most useful arithmetic codes are separable codes, 
and they are most often implemented as low cost arithmetic codes, where check base A 
is equal to 2m−1. In this case an m-bit modulo A adder is realized by an m-bit adder 
having the carry-out signal feeding back the carry-in signal (carry end-around adder). 

Then, the check part generator for low cost arithmetic codes is realized as a modular 
network using these adders as building blocks. Low cost arithmetic codes detect 
variable arithmetic errors according to the value of the check base. 

2.5.6. Hamming codes 

Hamming codes [17] provide not only error detection but also an error correction 
capability based on an extension of the principles of parity. The Hamming code word is 
constructed from the parity bits of various combinations of data bits determined by the 
parity check matrix. Note that the decimal value of each bit position in the parity check 
matrix corresponds to the binary value of the parity check matrix. Also note that the 
Hamming code bits, Hi, occupy 2n positions in the parity check matrix and, as a result, 
have only a single 1 in any position in the column below Hi. It is easy to extend this 
matrix to accommodate any desired size data word with a new Hamming code bit 
introduced each time a new 2n value position is encountered. Each Hamming code bit is 
generated by the exclusive-OR of all the data bits, Di, that have a 1 in the same row at 
the corresponding Hamming bit. 

Hamming circuits are more complex than parity circuits in terms of the number of gates 
and the number of additional bits required for the code word. However, Hamming code 
is quite efficient in comparison with other error correcting codes in terms of the area 
overhead and the performance penalty required for the error correction process. 
Hamming circuit models are based on single-bit error-correcting parity codes which use 
M Hamming bits to detect and correct single-bit errors in N data bits. Given N data bits, 



16 

the required value of M can be calculated by the relationship 2M > M + N. If a single 
bit error is detected, the error can be corrected in the output data bus and the presence is 
indicated by the active error signal. 

2.6. Design of Checkers 

The task of a checker is to signal the occurrence of a code input (by generating on its 
output a correct operation indication), and the occurrence of a noncode input (by 
generating an error indication. The set of output words indicating the correct form of the 
output code space of the checker and the set of output words indicating error occurrence 
form the output noncode space. As an implication of this task the checker verifies the 
code disjoint property [1]. 

2.6.1. Code-Disjoint 

The checker maps code inputs into code outputs and noncode inputs into noncode 
outputs. 

Code-disjointness is not related to the testability of the checker. It simply reflects a 
functional property. However, a fault occurring in the checker may alter its ability to 
produce an error indication output under a noncode input. If this fault is not detected, 
another fault can later occur in the functional block. Then, an erroneous noncode output 
produced by this block will eventually not be signaled by the checker due to its own 
fault. To cope with this problem, the checker must verify the self-testing property [1]. 

2.6.2. Self-Testing 

For each modeled fault there is a code input that produces a noncode output. 

In the case of functional blocks, provided that there is a long Mean Time Between 
Failures (MTBF), the self-testing property guarantees that the fault is detected before 
the occurrence of another fault in the system. In this way the TSC goal is achieved. 

Self-testing code-disjoint checkers can be generalized into strongly code-disjoint 
checkers, which define the largest class of checkers allowing achieve the TSC goal. 

Self-testing checkers are difficult to design, because it is necessary to detect all the 
faults in the checker by applying only code inputs. Fortunately, we need to consider 
only a limited number of checker classes corresponding to the more useful error 
detecting codes. 

For these checkers, extensive investigations by numerous researches have accomplished 
this task. Thus, self-testing checkers are now available for all the error detecting codes 
used in self-checking design. 

An important implication of the self-testing property is that a checker must have at least 
two outputs. In a single-output checker, one output value (e.g., logic 0) must be used to 
indicate correct operation and the second (e.g., logic 1) for error indication. Then, a 
stuck-at fault on the value corresponding to the correct operation indication cannot be 
detected and the checker is non self-testing. Such a fault is very dangerous, since it will 
mask any subsequent fault occurring in the functional block. Because of this danger, the 
use of two output checkers is generally. In this case, the dual-rail indication is used for 
error indication. The error function is signalized by 00 and 11 values. [1]. 
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2.7. Perturbation Tolerant Memories 

Complex electronic systems are subject to transient faults provoked by various causes 
such as electromagnetic interference, cross-talk, alpha particles, cosmic rays, etc. 
Transients are the main cause of failures in complex electronic systems. In some 
particular applications, e.g., space application, protection against soft errors (SEUs 
caused by heavy ion strikes) is mandatory. There are strong requirements for protection 
against transients in fault tolerant systems and in safety critical applications. The 
introduction of deep submicron technologies also significantly increases the sensitivity 
of VLSI circuits to various causes of transients. As a matter of fact, hardware 
techniques for designing perturbation tolerant circuits may have a considerable impact 
on the design of a large number of electronics systems [1]. 

Memory elements are the most sensitive parts of a CMOS circuit, since static CMOS 
logic is drastically less sensitive than memory cells to various causes of transient faults. 
Thus, perturbation resistant/tolerant memory design is the key point for designing 
perturbation tolerant ICs. Perturbation tolerant design for large memory arrays (e.g., 
large RAMs, caches, etc.) can be efficiently achieved by means of error correcting 
codes. However, this solution cannot be used in the case of memory elements 
distributed across the logic of an IC. This is also a very expensive solution for 
implementing small embedded memories, because the cost of an error correcting code 
(check bits plus the error correction controller) will be very high. In these situations, the 
use of perturbation hardened memory cells is the most appropriate option. 

2.8. Availability 

Fault tolerance is an attribute that is designed into a system to achieve a design goal. 
Just as a design must meet many functional and performance goals, it must also satisfy 
numerous other requirements. The most prominent of the additional requirements are 
dependability, reliability, availability, safety, performability, maintainability, and 
testability; fault tolerance is a system attribute capable of fulfilling such requirement. 

 

Dependability is a term used to encapsulate the concepts of reliability, availability, 
safety, maintainability, performability, and testability. 
 

Reliability is a conditional probability, in that it depends on the system being 
operational at the beginning of the chosen time interval. The reliability of a system is a 
function of time R(t). 
 

Availability is a function of time A(t), defined as the probability that a system is 
operating correctly and is available to perform its functions at instant of time t. 
 

Safety is the probability S(t) that a system will either perform its functions correctly or 
will discontinue its functions in a manner that does not disrupt the operation of other 
systems or compromise the safety of any people associated with the system. 
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Performability of a system is a function of time P(L,t), defined as the probability that 
the system performance will be at or above some level L, at instance of time t. In many 
cases, it is possible to design systems that can continue to perform correctly after the 
occurrence of hardware and software faults, but the level of performance is somehow 
diminished. 
 

Maintainability is a measure if the ease with which a system can be repaired once it 
has failed. In more quantitative terms, maintainability is the probability M(t), that a 
failed system will be restored to an operational state within a period of time t. The 
restoration process includes locating the problem, physically repairing the system, and 
bringing the system back to its operational condition. 
 

Testability is simply the ability to test for certain attributes within a system. Measures 
of testability allow us to assess the ease with which certain tests can be performed. 
These parameters are described in greater detail in [26]. 
 

Applications of fault tolerant computing can be categorized into four primary areas: 
long-life applications, critical computations, maintenance postponement, and high 
availability. Each application presents differing design requirements and challenges 
[26]. 

 
• Long-life applications: space flight and satellites. 
• Critical-computation applications: aircraft flight control systems, military 

systems and certain types of industrial controllers. (Environmental cleanliness or 
equipment protection) 

• Maintenance postponement applications: remote processing stations and 
certain space applications. 

• High availability applications: banking, railway control and other time-shared 
systems 

2.9. Reliability Modeling 

Reliability is one of the most important attributes of systems. Almost all specifications 
for systems mandate that certain values for reliability be achieved and, in some way, 
demonstrated. The most popular reliability analysis techniques are analytical 
approaches. Of the analytic techniques, combinatorial modeling and Markov modeling 
are the two most commonly used approaches. Here, we consider both combinatorial and 
Markov modeling. 
 
Combinatorial models 
Combinatorial models use probabilistic techniques that enumerate the different ways in 
which a system can remain operational. The probabilities of events that lead to a system 
being operational are calculated to form an estimate of the system’s reliability. The 
reliability of a system is generally derived in terms of the reliabilities of the individual 
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components of the system. The two models of systems that are most common in 
practice are series models and parallel models. In a series system, each element of the 
system is required to operate correctly for the system to operate correctly. In a parallel 
system, on the other hand, only one of several elements must be operational for the 
system to perform its functions correctly. 
 
Markov models 
The primary difficulty with combinational models is that many complex systems cannot 
be modeled easily in a combinatorial fashion. Reliability expressions are often very 
complex. In addition, the fault coverage that we have seen to be extremely important in 
the reliability of a system is sometimes difficult to incorporate into the reliability 
expression in a combination model. Finally, the process of repair that occurs in many 
systems is very difficult to model in a combinatorial fashion. For these reasons, we 
often use Markov models, which are sometimes referred to as Markov chains. 

These types of models are described in greater detail in [26]. 
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3. New Fault Classification Scheme 
In this chapter we will introduce a new fault classification that can be used for the 
comparing different techniques for designing TSC circuits. New fault classification was 
published in [A.5]. 

 

The use of ED codes and possibly some special synthesis methods does not necessarily 
ensure the TSC property. We need to evaluate how many faults violate the FS and ST 
property to make a comparison of different methods. In common fault classifications, 
the faults are divided into two groups according to the testability of the faults. This 
classification is not sufficient for our purpose. It is necessary to distinguish whether the 
change to an output caused by a fault is detectable by the given ED code. 

3.1. The New Proposed Approach 

 Fault detection can be based on two different approaches – comparison of two 
values (duplication), and the use of ED codes. In the first case, the outputs of two units 
are compared. Assuming that one fault can occur at a time; at least one unit will produce 
correct values.  This means that when a fault-free comparator is assumed, each error 
caused by any fault in a unit will be detectable. Evaluating the error detection 
capabilities in the second case is more complicated. The correct output is not known 
during the processing. The fault detection ability depends only on the ED codes that are 
used. It is not sure that each fault causes a detectable error. It is necessary to use a 
different approach to fault classification. For each input vector, the responses of a 
circuit in the presence of a fault can be divided into three groups: 
  

1. No error – the fault does not affect the output values. The data is not corrupted, 
but the presence of a fault is not detected. 

 
2. Detectable error – the fault changes the outputs into a non-code word. This is 

the best case, because the presence of a fault is detected. 
 
3. Undetectable error – the output vector is a valid codeword, but is incorrect 

(incorrect codeword). This is the worst case, because the checker is not able to 
detect this error. 

 

Each circuit has a set of allowed input vectors. The faults can be divided into four 
classes, according to the reaction of the circuit to their presence. These classes are: 

 
 

• Class A - hidden faults. These are faults that do not affect the circuit output for 
any allowed input vector. Faults belonging to this class have no impact on the 
FS property. However, if this fault can occur, a circuit cannot be ST.  
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• Class B - faults that are detectable by at least one input vector and do not 
produce an incorrect codeword (a valid codeword, but incorrect) for other input 
vectors. These faults have no negative impact on the FS and ST property.  

 
• Class C - faults that cause an incorrect codeword for at least one input vector 

and are not detectable by any other input vector. Faults from this class cause 
undetectable errors. If any fault in the circuit belongs to this class, the circuit is 
neither FS nor ST.  

 
• Class D - faults that cause an undetectable error for at least one vector and a 

detectable error for at least one other vector. Although these faults are 
detectable, they do not satisfy the FS property and so they are also undesirable. 

 

In the following text we use the above mentioned class identifiers. The fault 
classification is shown in Table 1. Each row corresponds to one class. The columns 
contain the numbers iii zyx ,, of input vectors that cause the corresponding response at 
the output, DCBiNzyxzyx iiiiii ,, , ,0,, =≤++> , N is the number of allowed input 
vectors. 

Table 1. Classification of faults for SC circuits 

Class No errors Detectable 
errors 

Undetectable 
errors 

A N 0 0 
B xB yB 0 
C xC 0 zC 
D xD yD zD 

 
With regard to the definitions of the FS and ST properties, we define the following 

theorems: 
 
• A circuit will be FS and ST only if all the faults belong to class B. 
• A circuit will be FS only if all the faults belong to class A or B. 
• A circuit will be ST only if all the faults belong to class B or D. 
 
These theorems follow directly from the definitions of FS and ST. 
 

The FS property is achieved only when a special method of synthesis is used. However, 
if a much simpler method is used, the number of faults that violate the FS property may 
not be high. It may be useful to evaluate this value to compare different methods. We 
can use this value to evaluate how much the circuit satisfies the FS property. 

The evaluation of the FS property (the number of faults that belong to class A or B) is 
independent of the set of allowed input words. If a fault does not manifest itself as an 
incorrect codeword for all possible input words, it cannot cause an undetectable error 
for any subset of input words. So we can use the exhaustive test set for combinational 
circuits, and a test that uses all transitions for a sequential circuit. 
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The evaluation of the ST property (the number of faults that belong to class B or D) is 
more complicated due to the fact that some input words may not appear. For 
combinational circuits, where the set of input words is not defined, an exhaustive test 
set is generated. However, in a real situation, some input words may not occur. This 
means that some faults can be undetectable. This can decrease the final fault coverage. 
A similar situation can occur for sequential circuits. For the evaluation of ST we use all 
possible transition edges of the state transition graph. However, some transition edges 
can be unreachable from any state (e.g., some edges that are used after reset only). For 
this reason, there is a higher number of faults that can be undetectable. It is not possible 
to determine whether the circuit is ST without a good knowledge of the allowed input 
words. 

3.2. Experimental Verification 

In our experiments, we will use the proposed fault classification to evaluate the FS and 
ST property of some methods. The main aim is to show the advantages of the proposed 
fault classification. Our experiments focus on combinational and sequential MCNC 
benchmarks [36]. The benchmarks were implemented in Xilinx FPGA. The stuck-at-1 
and stuck-at-0 fault model was considered. Tables 12, 13, 14, 15 contain the results of 
the experiments. These tables contain the name of the tested benchmarks “Circuit”, the 
number of input pins “Inputs”, the number of output pins, including check bits 
“Outputs”, the number of state bits, including check bits “State bits”, the total number 
of considered faults (All faults), the number of faults that cause a change at the outputs 
(X) for one input vector at least and the number of faults according to our classification 
(A, B, C, D) in Table 1. The method of fault class calculation method is performed by 
scheme shown in Figure 2. 

 

 
Figure 2. Fault classification scheme 

3.2.1. Combinational Circuits 

The benchmarks presented here are based on real circuits used in large designs. The 
exhaustive test set generated for the combinational circuit is limited by the number of 
inputs of the circuit. The main drawback is that for a big number of inputs the 
exhaustive test set is too large. For circuits with more than 16 inputs the simulation time 
increases rapidly (doubles with every added input). Due to this restriction we use only 
circuits with fewer than 16 inputs for our experiments. 

The design technique for these experiments is based on the structure described in 
Figure x. As the first step we must fully define the outputs. Then we use a copy of the 
original circuit to create the predictor. The outputs of the copied circuit are replaced by 
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parity nets calculated from the original outputs. The original circuit and the parity 
predictor are synthesized individually, because the synthesis process can cause sharing 
of equivalent logic between the two circuits, and this can lead to lower fault coverage. 
The lower fault coverage is caused by the logic used for both the original circuit and the 
predictor. This means that for this shared part the parity bits are not calculated.  

Two experiments were carried out for combinational circuits, one with Hamming-like 
codes (Table 2) and the second with even parity (Table 3). 

 

Table 2. Experiment 1 – combinational circuits and Hamming like code 

Circuit Inputs Outputs All faults X A B C D 

alu1 12 12 1076 1076 0 1076 0 0 
apla 10 17 1434 1409 25 1409 0 0 
b11 8 37 736 734 2 734 0 0 
br1 12 12 1014 994 20 972 0 22 
al2 16 54 1180 1166 14 1166 0 0 
alu2 10 12 1784 1784 0 1784 0 0 
alu3 10 12 1344 1344 0 1344 0 0 

 

Table 3. Experiment 2 – combinational circuits and even parity 

Circuit Inputs Outputs All faults X A B C D 

alu1 12 9 2594 2566 28 2566 0 0 
apla 10 13 632 632 0 522 3 107 
b11 8 32 418 416 2 321 42 53 
br1 12 9 594 594 0 369 78 147 
al2 16 48 628 627 1 576 17 34 
alu2 10 9 830 819 11 757 0 62 
alu3 10 9 622 622 0 572 0 50 

 

More than 99% of the considered faults (X) cause a change of outputs for at least one 
input vector in both experiments. These results correspond to the common fault 
classification. In other words, we can say that these faults are testable when we use an 
external tester. The advantage of our classification is evident from the results of 
experiment 2. Although more than 99% of all the faults change the output for at least 
one input vector (X), only 85% of all faults satisfy the FS property (A + B). About 96% 
of all faults satisfy the ST property (B + D). When our classification is used, we can say 
that the method used in Experiment 1 is better than the method used in Experiment 2 
from the FS and ST point of view. 

3.2.2. Sequential Circuits 

In the experiments with sequential circuits, the state variables and outputs are coded by 
ED codes. The faults at the primary inputs are not considered. In Experiment 3 we use 
an even parity code and in Experiment 4 the M-out-of-N code (1 out of N for state 
variables and reduced M-out-of-N code for outputs). The KISS2 description was 
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modified according to the ED code that was used. KISS2 was translated to the VHDL 
code using our tool. The standard synthesis process was used. We used our fault 
simulator, as mentioned above. The results are shown in Table 4 and Table 5. 

 

Table 4. Results of Experiment 3 – sequential circuits and even parity 

Circuit State 
bits Outputs All faults X A B C D 

mc 3 6 174 168 6 147 21 0 
s386 7 8 746 727 19 529 115 83 

mark1 5 17 684 625 59 503 86 36 
beecount 4 5 292 274 18 253 17 4 

pma 6 9 1236 1131 105 826 99 206 
ex6 4 9 670 645 25 407 143 95 

 

Table 5. Results of Experiment 4 – sequential circuits and M-out-of-N code 

Circuit Sate 
bits Outputs All 

faults X A B C D 

mc 4 7 322 293 29 272 21 0 
s386 13 10 1018 988 30 943 45 0 

mark1 15 18 678 649 29 616 33 0 
beecount 7 4 306 296 10 275 17 4 

pma 24 15 1214 1185 29 1146 17 22 
ex6 8 14 790 760 30 725 24 11 

 

Approximately 96% of all faults (X) cause a change at the outputs for at least one input 
vector. Approximately 80% of all faults (A+B) in the case of even parity and 95% of all 
faults in the case of M-out-of-N code satisfy the FS property. Approximately 82% of all 
faults in the case of even parity and 91% of all faults in the case of M-out-of-N code 
satisfy the ST property (B + D). We can say that the use of M-out-of-n code produces 
better results. 

This work supports the design process of CED circuits implemented in FPGAs. We 
propose a new fault classification. We can summarize that our classification leads to a 
more accurate evaluation of the fault coverage, and we can determine whether the tested 
circuit satisfies the FS and ST properties. We can also evaluate how many of the 
considered faults violate the FS and ST property. The proposed fault classification was 
used in four experiments. The classification allows us to distinguish which ED code is 
suitable for the chosen synthesis method for the fault model that is used. 

3.3. SW Simulator 

If we want to compare different techniques for TSC circuit design, the distribution of 
the faults considered here into the above defined classes has to be obtained. A suitable 
fault simulator is needed. Most simulators (e.g. FSIM [12] or HOPE [50]) compare the 
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correct outputs with outputs when there is a fault. They cannot classify the faults as 
precisely as we need. These simulators are therefore not suitable. We used the simulator 
described in [31, A.13]. This simulator has the following features: 

 
• The simulation is performed for circuits described by a netlist format (EDIF). 
• Stuck-at-1 and stuck-at-0 faults on the inputs and outputs of components are 

considered. 
 
• Combinational and sequential circuits are supported. 
 
• This simulator supports circuits where inputs, outputs and internal states (in 

the case of a sequential circuit) are coded by even parity, multiple parity and 1 
out of N code. Multiple code groups can be used to ensure TSC. The 
simulator also supports Hamming-like codes and M out of N code. 

 
• Only Xilinx Virtex netlist format is supported. 

 



26 

4. Concurrent Error Detection  
Systems realized by FPGAs have become more and more popular due to several 
properties and advantages:  
 

• High flexibility in achieving multiple requirements such as cost, performance, 
turnaround time.  

• Possible reconfiguration and later changes of the implemented circuit, e.g., only 
via radio net connections.  

• Mission critical applications such as aviation, medicine, space missions, and also 
railway applications [24]. 

 

The design process for FPGAs differs from the design process for ASICs mainly in the 
“design time”, i.e., in the time needed from the idea to its realization. Moreover, FPGAs 
enable different design properties, e.g., in-system reconfiguration to correct functional 
bugs or update the firmware to implement new standards. For this reason, and due to the 
growing complexity of FPGAs, these circuits can also be used in mission-critical 
applications such as aviation, medicine or space missions. 

The process when high-energy particles impact sensitive parts is described as a Single 
Event Upsets (SEUs) [2]. SEUs can lead to bit-flips in SRAM. The FGPA configuration 
is stored in SRAM, and any changes to this memory may lead to a malfunction of the 
implemented circuit. Some results of SEU effects on FPGA configuration memory are 
described in [2, 3, 29, 57, 64]. 

CED techniques can enable faster detection of a soft error (an error which can be 
corrected by a reconfiguration process) caused by an SEU. SEUs can also change values 
in the embedded memory used in the design, and can cause data corruption. These 
changes are not detectable by off-line tests, only by some CED techniques. The FPGA 
fabrication process allows the use of sub-micron technology with smaller and smaller 
transistor size. Due to this fact the changes in FPGA memory contents, affected by 
SEUs, can therefore be observable even at sea level. This is another reason why CED 
techniques are important. 

 
There are three basic terms in the field of CED: 
 
• The Fault Security property (FS) means that for each modeled fault, the 

produced erroneous output vector does not belong to the proper output code 
word. 

 
• The Self-Testing property (ST) means that for each modeled fault there is an 

input vector occurring during normal operation that produces an output vector 
which does not belong to the proper output code word. 

 
• The Totally Self-Checking property (TSC) means that the circuit must 

satisfy FS and ST properties. 
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There have been many papers [5, 6, 9, 20, 27, 28, 32, 33, 56] on concurrent error 
detection (CED) techniques. CED techniques can be divided into three basic groups 
according to the type of redundancy. The first group focuses on area redundancy, the 
second group on time redundancy and the third group on information redundancy. 
When we speak about area redundancy, we assume duplication or triplication of the 
original circuit. Time redundancy is based on repetition of some computation. 
Information redundancy is based on error detecting (ED) codes, and leads either to area 
redundancy or to time redundancy. Next, we will assume the utilization of information 
redundancy (area redundancy) due to the use of ED codes. 

Concurrent checking verifies circuits during their normal operation. Because the outputs 
delivered by a circuit during its operations as a part of a system are unpredictable, we 
need to introduce some invariant property in order to be able to check for this 
invariance. Self-checking (S-C) design is used to achieve concurrent error detection 
using means of information (hardware) redundancy. A complex circuit is partitioned 
into its element functional blocks and each of these blocks is implemented according to 
the structure of Figure 1. 

The basic method for the proper choice of a CED model is described in [5]. Techniques 
using ED codes have also been studied by other research groups [32, 33].  

4.1. Method Using the Old Fault Classification 

4.1.1. Single Parity and Hamming-Like Codes 

There are many ways to generate checking bits. A single even parity code is the 
simplest code that can be used to get a code word at the output of the combinational 
circuit. This parity generator performs XOR over all primary outputs, and the 
modification is processed on a circuit described by a multi-level network. However, the 
single even parity code is mostly not appropriate to ensure the TSC goal. Nevertheless, 
our results show that parity code is most suitable for fault tolerant design, due to its low 
area overhead.  

Another error code is a Hamming-like code, which is in essence based on the single 
parity code (multi parity code). The Hamming code is defined by its generating matrix. 

4.1.1.1. The Fault Model 

All our experiments are based on FPGA circuits. The circuit implemented in an FPGA 
consists of individual memory elements (LUTs - look up tables). We can see 3 gates 
mapped into an LUT in Figure 3. 

Gates mapped into LUT
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LUT

0
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0
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•
•
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LUT

Redundant fault  
Figure 3. Fault model 
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The original circuit has two inner nets. The original set of test vectors covers all faults 
in these inner nets. These test vectors are redundant for an LUT. For circuits realized by 
LUTs a change (a defect) in the memory leads to a single event upset (SEU) at the 
primary output of the LUT. Therefore we can use the SEU fault model in our 
experiments to detect SEU – only some of the detected faults will be redundant. 
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Figure 4. Fault Model – Example 

Our SEU fault model is described by a simple example in Figure 4. For simplicity, only 
one LUT is used. This LUT implements a circuit containing 3 gates. The primary inputs 
from I0 to I1 are the same as the address inputs for LUT. When this address is selected 
its content is propagated to the output. 

We assume the following situation: first the content of this LUT can be changed, e.g., 
due to electromagnetic interference, cross-talk or alpha particles. The appropriate 
memory cell is set to ‘1’ and the wrong value is propagated to the output. This means 
that the realized function is changed and the output behaves as a single event upset. We 
can say that a change of any LUT cell leads to a stuck-at fault on the output, according 
to this example. This fault is observed only if the faulty cell is selected. This is the same 
situation as for circuits implemented by gates. Some faults can be masked and do not 
necessarily lead to an erroneous output. 

Some faults are masked, and they may appear when previously unused logic is being 
used. E.g., One bit of an LUT is changed. If appropriate bit in the LUT is selected by 
the address decoder, the erroneous output will appear. 

4.1.1.2. Parity Bits Predictor Using Hamming-Like Codes 

We used a matrix containing the unity sub-matrix on the left side for simplicity. The 
generating matrix of the Hamming code (15, 11) is shown in Figure 5. The values aij 
have to be defined. 

When a more complex Hamming code is used, more values have to be defined. The 
number of outputs oi used for the checking bits determines the appropriate code. For 
example, the benchmark alu1 [35] having 8 outputs requires at least the Hamming code 
(15, 11). Therefore 8 data bits and 4 checking bits are used. The definition of values aik 
is also important. 

Now we present a method for generating values aik. Let us mention the Hamming code 
(15, 11) with 4 checking bits. In our case (alu1) we have only 8 bits. Therefore the 
reduced Hamming matrix must be used.  
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Figure 5. Generating matrix for Hamming code (15, 11) 

The sub-matrix has only 8 rows and 4 columns after reduction. We can define eight 4-
bit vectors or four 8-bit vectors. The second case will be used here. The search for 
erroneous output is a similar method to a binary search. The first vector is composed of 
log. 1s only. The last vector is composed of log. 1s in the odd places and log. 0s in the 
even places. Each vector except the first contains the same number of 1s and the same 
number of 0s. An example of the possible content of the right part of the sub-matrix is 
shown in Figure 6. 
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Figure 6. Right part of the generating matrix 

The number of vectors in the set is the same as the number of rows in the appropriate 
Hamming matrix. The way to generate parity output for checking bit xk is described by 
equation 1: 

xk= a1ko1⊕ a2k o2⊕ ... ⊕ amkom,     (1) 

where o1...om are the primary outputs of the original circuit. 

4.1.1.3. Experiments 

The experiments in this section are based on a circuit modification described by the 
multi-level network. The parity bits are incorporated into the tested circuit as a tree 
composed of XOR gates. The maximum area of the parity generator can be calculated 
as the sum of the original circuit and the size of the XOR tree. These experiments are 
based on previous fault classification where only a minimal test set is used. 

Atalanta software was used to generate the minimal test [12]. This tool allows process 
ISCAC benchmarks based on equations. A tool for circuit optimization described by 
tables cannot be used in this case because table creation is difficult due to the large 
number of inputs. Special software was written in C language for automatic 
modification of the original circuit and adding the parity bits generator. The ISCAS 
benchmarks are loaded into inner form by this software. The form is composed of list of 
nets and gates. Some functions are written to modify this inner form and can add new 
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gates and nets, or can change the names of all nets. Net renaming enables duplication of 
an original circuit. After the original circuit is loaded into memory all nets are renamed 
and the original circuit is loaded again. To add parity bits the original circuit is loaded 
and modified by the corresponding function. Then all nets are renamed and the original 
circuit is loaded again. By this procedure the original circuit with predicted parity bits 
has been obtained. For each tested checking code, new functions modifying a circuit 
have been written. The even parity, double parity, multiple parity generated by the 
Hamming code are used in the experiments described here. When the original circuit is 
modified, two methods of output form can be generated. The first form is the ISCAS 
benchmark used for simulation. The second form is the VHDL source code, which 
allows a modified circuit to be synthesized. Variety circuits can be created by this tool. 
Each part of the final circuit is created separately and combined together with the same 
tool. If the area occupied by the circuit in FPGA is to be computed, then the VHDL 
output is selected and a synthesize tool is used. Then the original circuit and the 
modified circuit can be compared. In our case the VHDL code is used to obtain the area 
overhead by each checking code. Two VHDL codes are generated: the first for the 
original circuit and the second for the circuit generating parity bits. For simulation, the 
design contains both the original circuit and the parity bits generator (Figure 7). 
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inputs outputs
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code
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word

 
Figure 7. Circuit duplication and code word generation 

Atalanta software processes the modified circuit and generates the minimal fault test. 
Both files, minimal test and modified circuit, are put into the simulator, which enables 
the efficiency of the checking code to be computed. The same tool that enables the 
original circuit to be modified is used for simulation. The same form of circuit stored in 
memory is used. The new simulation functions are added to the source code of our tool, 
see Figure 8. With this modified tool we can simulate faults. Firstly, our tool simulates 
stuck-at-zero faults by consecutive fault insertion in every net. When a fault is inserted 
the whole set of patterns from the minimal test is applied to every net. The same steps 
are used for simulating stuck-at-one. The simulator does not simulate faults on primary 
inputs and outputs. For each step of the test, the outputs of circuits with and without 
inserted faults are processed. In cases when the outputs are incorrect a check of the code 
word is performed. 
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Figure 8. Automatic fault insertion and checking code word 

We have chosen codes, e.g. Hamming codes, even parity and double parity, for which 
the checking combinational part can be generated easily. Berger code is not used 
because it is difficult to generate the checking combinational part.  

Even parity, the simplest checking code, was used for the first experiment. The results, 
presented in Table 6, show that one parity bit cannot cover all faults inserted into the 
tested circuit. 

Table 6. Application of even parity code 

Redundancy 
part Data part

c432 36 7 1 5536 4626 83,56 72 69
c499 41 32 1 15150 14628 96,55 87 88
c880 60 26 1 24567 23998 97,68 117 112
c1355 41 32 1 64165 62472 97,36 92 87
c1908 33 25 1 134012 119280 89,01 125 120
c2670 233 140 1 105532 84840 80,39 166 175

Area occupation[LUT]
Circuit Inputs Outputs Redundancy 

parity bits
All tested 

faults Detected faults Detected 
faults[%]

 
 

Circuit c17 is not used for our experiments because of its simplicity.  

In the second experiment, double parity was used to generate checking bits. Even and 
odd bits of the outputs are coded separately by even parity. The results of this 
experiment are presented in Table 7. 

Table 7. Application of double even parity code 

Redundancy 
part Data part

c432 36 7 2 5433 5012 92,25 73 69
c499 41 32 2 13984 13750 98,33 99 88
c880 60 26 2 27495 27206 98,95 120 112
c1355 41 32 2 62834 62012 98,69 90 87
c1908 33 25 2 130140 124958 96,02 124 120
c2670 233 140 2 116220 111270 95,74 219 175

Area occupation[LUT]
Circuit Inputs Outputs Redundancy 

parity bits
All tested 

faults Detected faults Detected 
faults[%]

 
 

Both of these experiments failed to achieve 100% fault coverage of the tested circuits. 

The next way to generate checking bits is by using the Hamming code, which enables 
more checking bits to be added while retaining the quality of the Hamming code.  
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The Hamming code is defined by its generating matrix. For simplicity we use the matrix 
containing the unity submatrix on the left side. The generating matrix of Hamming code 
(15, 11) is shown in Figure 6. The values aij have to be defined. 

When a more complex Hamming code is used, more values have to be defined. The 
number of outputs oi used for the checking bits determines the appropriate code. For 
example, circuit c432, which has 7 outputs, requires at least Hamming code (15, 11). In 
this case we use 7 data bits and 4 checking bits. The definition of values aik is also 
important. 

Now we present a method for generating values aik. Let us mention Hamming code (15, 
11), which has 4 checking bits. We generate a set of all 4bit vectors. From all these 
vectors we remove vectors containing less than 2 binary ‘1’. The resulting subset is 
relatively regular - there are many zeros on the upper left side and many ones on the 
lower left side of the subset (see the left matrix in Figure 4). This regularity must be 
removed. If not, some parity bits will lose the capability to detect a fault. To eliminate 
this phenomenon, every even row from the beginning of the set is mutually exchanged 
with a corresponding even row from the end (see Figure 10). 
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Figure 9. Generating left side of matrix 

The number of vectors in the set is the same as the number of rows in the appropriate 
Hamming matrix. Then we generate circuits for checking bits xk (Equation 1). 

The third experiment is based on Hamming code (63, 57), where the maximum number 
of data bits is 57 and the number of checking bits is 6. The experimental results are 
shown in Table 8. 

Table 8. Application of Hamming code (63, 57) 

Redundancy 
part Data part

c432 36 7 6 5569 5544 99,55 77 69
c499 41 32 6 17791 17791 100,00 116 88
c880 60 26 6 27109 27106 99,99 140 112
c1355 41 32 6 68647 68647 100,00 117 87
c1908 33 25 6 123651 123376 99,78 145 120

Area occupation[LUT]
Circuit Inputs Outputs Redundancy 

parity bits
All tested 

faults Detected faults Detected 
faults[%]

 
 

The fault coverage for c499 and c1355 benchmarks is 100%. This means that Hamming 
code (63, 57) is appropriate.  We should mention here that the fault coverage depends 
on the generated minimal test. If the minimal test created by Atalanta does not cover all 
faults, we cannot say that the simulated circuits are 100% fault covered. In other words, 
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some faults cannot be detected because the minimal test set does not cover all faults. 
This Hamming code cannot be used for benchmark c2670 because the number of its 
outputs is greater than the Hamming code can cover. 

The fourth experiment is based on Hamming code (255, 247). The maximum number of 
data bits is 247 and the number of checking bits is 8. In our case only 7 outputs are 
used. The experimental results are shown in Table 9. 

Table 9. Application of Hamming code (255,247) 

Redundancy 
part Data part

c432 36 7 7 5694 5602 98,38 74 69
c499 41 32 7 18003 18003 100,00 111 88
c880 60 26 7 30277 30277 100,00 134 112
c1355 41 32 7 69634 69634 100,00 104 87
c1908 33 25 7 135402 134600 99,41 138 120
c2670 233 140 7 160092 160061 99,98 314 175

Area occupation[LUT]Detected 
faults[%]Detected faultsAll tested 

faults
Redundancy 

parity bitsOutputsInputsCircuit

 
 

In summary, all of our experiments indicate that 100% fault coverage can be achieved 
using more redundancy outputs generated by special codes. The Hamming code can be 
used as a suitable code to generate parity bits. The type that is used depends on the 
number of outputs and on the complexity of the original circuit. More complex circuits 
need a greater number of parity outputs. Due to the fact that only a minimal test set was 
used, the final fault coverage reflects only the ST property. The exhaustive test set must 
be used to obtain the FS property. The new fault classification was used to better 
describe whether the circuit satisfies ST and FS properties. 

4.2. Methods Using the New Fault Classification 

To determine whether the circuit satisfies the TSC property, detectable faults belonging 
to one of four classes A, B, C and D [A.5] have to be calculated, see section 3.  

This fault classification can be used to calculate how much the circuit satisfies the FS or 
ST properties and then to calculate the TSC property. This new approach to fault 
classification leads to creation of a new fault simulator. 

In our design methodology we evaluate FS and ST properties. For ST properties a 
hidden fault is not assumed.  

The evaluation of the FS property is independent of the set of allowed input words. If a 
fault does not manifest itself as an incorrect codeword for all possible input words, it 
cannot cause an undetectable error for any subset of input words. So we can use the 
exhaustive test set for combinational circuits. 

The exhaustive test set is generated to evaluate the ST property for combinational 
circuits, where the set of input words is not defined. However, in a real situation some 
input words may not occur. This means that some faults can be undetectable. This can 
decrease the final fault coverage. Therefore, the number of faults that can be 
undetectable is higher.  
The fault simulation process is performed for circuits described by a netlist (for example 
.edif). 
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4.2.1. Single Parity and Hamming-Like Codes 

A parity predictor is used to generate the appropriate output code of the circuit in our 
research, see Figure 1. These techniques ensure a small area overhead and a higher SEU 
fault coverage, but the SEU fault coverage that is achieved is not 100% [27, 5, 28]. 

The circuit area overhead depends significantly on the parity codes that are used. If we 
use a strong error detecting code, e.g., Hamming code or Berger code, the FS parameter 
is almost 100% but the area overhead is high [A.3], [8]. 

The following FPGA structures are vulnerable to SEUs: mux select lines, 
programmable interconnect point states, buffer enables, LUT values, and control bit 
values. 

Any changes to mux select lines, programmable interconnect point states or buffers lead 
to a significant circuit function change, but the function change is hardly detected for 
SEUs impacted in LUTs [29]. The probability of SEUs impacting routing resources 
(mux select lines, programmable interconnect point states and buffers) is about 78%, 
and only about 15-21% for LUTs. Thus, if there are many SEUs there will be a 
significant circuit function change. But any change in LUTs is hardly detected because 
of their small impact on the realized function. In some cases these faults may be 
undetected.  

4.2.1.1. Area Overhead Minimization 

The benchmarks used in this paper are described by a two-level network. The final area 
overhead depends on the minimization process. We used two different methods in our 
approach. Both these methods are based on simple duplication of the original circuit.  

Our first method is based on a modification of the circuit described by a two-level 
network. The area of the parity bits predictor contributes significantly to the total area of 
the TSC circuit. As an example, we consider a circuit with 3 inputs (c, b and a) and 2 
outputs (f and e). The parity bits predictor uses the odd parity code to generate the parity 
bits. In our example we have only one check bit x. 

Our example is shown in Table 10. Output x was calculated from outputs e and f. We 
have to generate the minimal form of the equation at this time. We can achieve the 
minimal form using methods such as the Karnaugh map or Quine-McCluskey in our 
example. We use other minimization methods to minimize benchmarks or real circuits. 
After minimization we obtain three equations, one per output (f, e and x), where x 
means an odd parity of outputs f and e. If we want to know whether the odd parity 
covers all faults in our simple combinational circuit example, we have to generate the 
exhaustive test set and simulate all faults in each net in this circuit. 

Table 10. Example of parity generator 
c b a f e x 
0 0 0 0 1 0 
0 0 1 1 0 0 
0 1 0 1 0 0 
0 1 1 1 0 0 
1 0 0 0 1 0 
1 0 1 0 1 0 
1 1 0 1 1 1 
1 1 1 0 0 1 
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The final equations are: 
 

e = bc + a(b + c)      (2) 
f = ab + c(a + b)      (3) 
x = bc        (4) 

 

Our second method is based on a circuit modification, where the circuit is described by 
the multi-level network. The parity bits are incorporated into the tested circuit as a tree 
composed of XOR gates. The maximal area of the parity generator can be calculated as 
the sum of the original circuit and the size of the XOR tree. 

4.2.1.2. Experimental Evaluation Software 

Figure 11 describes how the test is performed for each detecting code, where the circuit 
modification is processed by the first method described above. The MCNC benchmarks 
[36] were used in our experiments. These benchmarks are described by a truth table. To 
generate the output parity bits, all the output values have to be defined for each 
particular input vector. Only a limited number of values are specified for each multi-
dimensional input vector, and the rest are assigned as don’t cares; they are left to be 
specified by another term. Thus, in order to be able to compute the parity bits, we have 
to split the intersecting terms, so that all the terms in the truth table are disjoint. 

In the next step, the original primary outputs are replaced by parity bits. Two different 
error codes were used to calculate the output parity bits (single even parity code and 
Hamming code). Another tool was used in the case where the original circuit was 
modified in multilevel logic. This tool is described in [A.1]. Two circuits generated in 
the first step (the original circuit and the parity circuit) are processed separately to avoid 
sharing any part of the circuit. Each part is minimized by the Espresso tool [34]. The 
final area overhead depends on the software that was used in this step. Many tools were 
used to achieve a small area of the parity bits generator. Only Espresso was used to 
minimize the final area of the circuit described by the two level network. In this step the 
area overhead is known for implementation to ASIC. For FPGAs the area overhead is 
known after the synthesize process has been performed. 

The “pla” format is converted into the “bench” format in the next step. The “bench” 
format was used because the tool which generates the exhaustive test set uses this 
format. An exhaustive test set has 2n patterns, and we used it to evaluate the TSC goals.  

Another conversion tool is used to generate two VHDL codes and the top level. The top 
level is used for incorporating the original and parity circuit generator. In the next step, 
the synthesis process is performed by Synplify [37]. The constraint properties set during 
the synthesis process express the area overhead and the fault coverage. If the maximum 
frequency is set too high, the synthesize process causes hidden faults to occur during the 
fault simulation. The hidden faults are caused by circuit duplication or by the constant 
distribution. The size of the area overhead is obtained from the synthesize process. The 
final netlist is generated by the Leonardo Spectrum [38] software. The fault coverage 
was obtained by simulation using our software. 
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Figure 10. Design scheduling of a self-checking circuit 

The format converting software and the parity generator software were written in 
Microsoft Visual C++. 

4.2.1.3. Experiments and Results 

The combinational MCNC benchmarks [36] were used for all the experiments. These 
benchmarks are based on real circuits used in large designs. 

Since the whole circuit will be used for reconfiguration in FPGA, only small circuits 
were used. Real designs that have a large structure must be partitioned into several 
smaller parts. For large circuits, the process of area minimization and fault simulation 
takes a long time. This disadvantage prevents us examining more methods of designing 
the check bits generator. 

The evaluated area, FS and ST properties depend on circuit properties such as the 
number of inputs and outputs, and the circuit complexity. The experimental results 
show that a more important property is the structure of the circuit. Two basic properties 
are described in Table 11. 
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Table 11. Description of the tested benchmarks 
Circuit Inputs Outputs

alu1 12 8 
apla 10 12 
b11 8 31 
br1 12 8 
al2 16 47 

alu2 10 8 
alu3 10 8 
c17 5 2 

 

In the first set of experiments our goal was to obtain one hundred percent of the FS and 
ST property, while we measured the area overhead. In this case, the maximum of the 
parity bits was used.  
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Figure 11. Two different flows for creating a parity generator 

This task was divided into two experiments, see Figure 11. In the first experiment the 
two-level network was being modified, see Figure 11a. The results are shown in Table 
12. 

Table 12. Hamming code – PLA 

Circuit Parity 
nets

Original 
[LUT] 

Parity 
[LUT]

Overhead 
[%] ST FS 

alu1 4 8 84 1050 100 100 
apla 5 45 105 233 100 98,3 
b11 6 38 38 100 100 99,7 
br1 4 50 59 118 100 95,9 
al2 7 51 54 106 100 98,8 
alu2 4 30 127 423 100 100 
alu3 4 28 94 336 100 100 
c17 2 2 3 150 100 100 
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The ST property was fulfilled in 7 cases and the FS property was fulfilled in 4 cases. 
The area overhead in many cases exceeds 100%. This means that the cost of one 
hundred percent fault coverage is too high. In these cases the TSC goal is satisfied for 
most tested benchmarks. 

Table 13. Hamming code – XOR 

Circuit Parity 
nets

Original 
[LUT] 

Parity 
[LUT]

Overhead 
[%] ST FS 

alu1 4 8 13 163 100 100 
apla 5 45 114 253 100 97,2 
b11 6 38 73 192 100 99 
br1 4 50 85 170 100 96,5 
al2 7 52 109 210 100 99,1 

alu2 4 30 52 173 100 100 
alu3 4 28 44 157 100 100 
c17 2 2 3 150 100 100 

 

We then used an old method, where the original circuit described by a multi-level 
network is modified by additional XOR logic, see Figure 11b [A.1]. 

The results obtained from this experiment are shown in Table 13. The FS properties and 
the ST properties were fulfilled in the same cases as in the first experiment, but the 
overhead is in some cases smaller. 

In the second set of experiments we tried to obtain a small area overhead, and the fault 
coverage was measured. In this case the minimum of parity bits is used (single even 
parity).The experiments are divided into two groups, a) and b), see Figure 11. The 
procedure is the same as described above. 

Table 14. Single even parity – PLA 

Circuit Parity 
nets

Original 
[LUT] 

Parity 
[LUT]

Overhead 
[%] ST FS 

alu1 1 8 271 3388 100 98,9 
apla 1 46 23 50 99,5 82,6 
b11 1 37 3 8 89,9 77,3 
br1 1 54 10 19 86,9 62,1 
al2 1 52 4 8 97,3 91,7 

alu2 1 29 47 162 100 91,2 
alu3 1 26 32 123 100 92 
c17 1 2 2 100 100 100 

In the first experiment the two-level network of the original circuit was modified 
(Figure 11a). The results are shown in Table 14. The ST property is achieved in four 
cases, but the area overhead is smaller in five cases. The FS property is satisfied in one 
case. 

In the last experiment, we modified the circuit described by a multilevel network 
(Figure 11b). The ST property was satisfied in four cases and the FS property in two 
cases. The area overhead is higher than 100% for most benchmarks, but the fault 
coverage did not increase, Table 15. 
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Table 15. Single even parity – XOR 

Circuit Parity 
nets

Original 
[LUT] 

Parity 
[LUT]

Overhead 
[%] ST FS 

alu1 1 8 10 125 100 100 
apla 1 46 56 122 99,7 87,2 
b11 1 37 36 97 93,9 81,4 
br1 1 54 61 113 92,7 69 
al2 1 52 23 44 97,9 93,2 

alu2 1 29 44 152 100 91,1 
alu3 1 26 39 150 100 91,6 
c17 1 2 2 100 100 100 

4.2.1.4. Summary 

This chapter describes one part of the automatic design process methodology for a 
dynamic reconfiguration system. We designed concurrent error detection (CED) circuits 
based on FPGAs with a possible dynamic reconfiguration of the faulty part. The 
reliability characteristics can be increased by reconfiguration after error detection. The 
most important criterion is the speed of the fault detection and the safety of the whole 
circuit with respect to the surrounding environment. 

In summary, FS and ST properties can be satisfied for the whole design, including the 
checking parts. This is achieved by using more redundancy outputs generated by the 
special codes. 

All of our experiments apply combinational circuits only. Sequential circuits can be 
disjoint to the simple combinational parts separated by flip-flops. Therefore, the 
restriction to combinational circuits only does not reduce the quality of our methods and 
experimental results.  

The FS property depends on class B. A low number of faults belonging to class B leads 
to a low FS property. The FS values for the MCNC [36] and ISCAS [23, 30] 
benchmarks used to validate our modified duplex system are shown in Table 16. Here 
“C” is benchmark circuit, “IN” is number of inputs, “OUT” is number of outputs, “AO” 
is area overhead, “FS” is the probability that a fault is detected by a code word, and 
“Ass” is the steady-state availability. 

Table 16. Single even parity – PLA 

C IN OUT ORIG 
[LUT]

AO 
[%] 

FS 
[%] 

alu1 12 8 8 688 100 
apla 10 12 45 53 83 
b11 8 31 38 8 75 
br1 12 8 50 20 63 
al2 16 47 52 12 94 
alu2 10 8 30 140 92 
alu3 10 8 28 121 90 
s1488 14 25 312 13 86 
s1494 14 25 317 13 86 
s2081 18 9 24 125 96 
s27 7 4 4 75 72 
s298 17 20 39 49 91 
s386 13 13 51 39 71 
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The FS property expresses the probability that an existing fault is detected on a primary 
output of the circuit. If FS is fully satisfied (to 100%), a fault occurring in a circuit is 
always detected.  

Special tools had to be developed to evaluate the area overhead and fault coverage. In 
addition to some commercial tools such as Leonardo Spectrum [38] and Synplify [37] 
we used format converting tools, parity circuit generator tools and simulation tools. 

4.2.2. Single Parity and Parity Net Grouping 

It is always necessary to perform some kind of decomposition when designing complex 
VLSI circuits, taking into account available components. Most methods proposed in the 
past start with a two-level Boolean network (sum-of-products) and try to decompose it 
into a multi-level network. The Boolean function is manipulated in order to extract 
subfunctions common to several of its parts. This is done either algebraically, by finding 
the function’s common divisors (kernels) [39], by using computationally demanding 
Boolean methods [40, 41], or by functional decomposition [42, 43], recently based on 
BDDs [44, 45]. Nowadays, functional bi-decomposition plays a big role, and is 
generally usable for most applications [46, 47, 48]. 

Most of the methods mentioned above are primarily intended for single-output 
functions, even when they can be extended to multi-output functions. However, there is 
no method that strictly determines the relations between the outputs of the multi-output 
Boolean function. However, a method for selecting an appropriate code based on 
multiple net grouping described in [51] is slower than ours, and also the final 
modification is processed on a circuit described by multi-level logic. My partitioning 
method is based on grouping of output variables. There can be a relationship between 
several outputs of the function found. The proposed method is based on computing a 
measure of the “similarity” of the functions. When two Boolean functions are similar, 
there is a big probability they may efficiently share many logics. Thus, grouping these 
“similar” functions together could be advantageous, when output decomposition is 
needed. If appropriate output grouping is found, the resulting logic of the overall design 
is reduced to a minimum.  

The method found its next application in on-line BIST (Built-in Self-Test) design [A.3, 
A.8]. Here the functions are grouped together to form the parity bits of the parity 
predictor. The parity groups are generated from the original circuit outputs, by 
successively XOR-ing them. The choice of outputs to be XORed plays an important 
role in the resulting area overhead. 

4.2.2.1. Output Grouping 

Let us assume there is a need to divide a circuit into several stand-alone blocks having a 
limited number of outputs (e.g., into PLAs, PALs, GALs). These blocks will have to be 
synthesized separately, since they cannot share internal signals. The blocks can share 
the input variables only. Such a case of decomposition will be denoted as single-level 
partitioning, since the number of levels of the circuit remains the same, see Figure 12. 
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Figure 12. Single-level partitioning 

Our task is to determine which outputs should be grouped together, i.e., to find an 
output grouping. If the outputs that are to be grouped together are properly determined, 
the complexity of the individual blocks is reduced. 

Since the blocks cannot share the group terms (or subfunctions when they are designed 
as multi-level), the total complexity of the overall design must be increased, in 
comparison to the all-in-one design. When our technique is used, this cost of the 
decomposition is reduced to a minimum. 

4.2.2.2. Similarity-Based Output Grouping 

The method is based on the idea of joining functions (i.e., outputs of multi-output 
functions) that are somehow similar. Then there should be a big probability that the two 
functions will share a many logics. The task is to determine how to compute the 
measure of similarity of two Boolean functions. 

The main idea is based on the following straightforward observations: 
 

(I) Two equal functions are “very similar” 
 

(II) Two inverse functions are also very similar, since they differ by one inverter 
only in the final design 

 
These two criteria can be combined to form a new criterion: 

 
(III) Two functions are similar, if a change in the value of one input variable 

induces a change in the values of both the functions, or the values of both 
functions do not change. This should be checked for all possible input variable 
changes. 

To quantify the vague term “similarity” of two Boolean functions, a scoring function 
is introduced. To compute the value of the scoring function, all the minterms of the 
functions are processed. For each minterm each input variable value is switched and 
values of the outputs of the two functions are observed. If both values remain 
unchanged, the scoring function is increased by one, since these two functions have 
demonstrated the same behavior. If both values change, regardless the logic values, the 
scoring function is increased by one as well. In other cases, when one output value 
changes and the other does not, the score remains unchanged. 
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The complexity of the described algorithm is O(n.2n), where n is the number of input 
variables. For all the 2n minterms n variable swaps are explored. The actual complexity 
can be reduced to ½ n.2n. Only 0->1 swaps can be considered, since all the reverse 
swaps will yield the same result, thus doubling the score. 

Two equal functions will obtain the highest score by this algorithm. Two inverse 
functions will also obtain the highest score. 

 

This approach is straightforward, but it is inefficient, due to its prohibitively high 
complexity. However, we used it in our measurements, since functions described by 
minterms were needed for on-line BIST design [A.8]. 

Nevertheless, there is a much more efficient way to compute the scoring function: by 
using a Boolean difference. The Boolean difference of a function f(x0, …xn), with 
respect to an input variable xi can be computed as: 
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As a result we obtain a Boolean function which is equal to 1, if a change of xi induces a 
change of f(x0, …xn). Thus, the size of the Boolean difference function (i.e., number of 
its 1-minterms) describes the number of 1-minterms of f(x0, …xn) for which a change of 
xi induces a change of f(x0, …xn). To derive the cubes for which two functions 
simultaneously change their value by changing the value of xi, we compute the Boolean 
differences of these two functions with respect to xi and compute their intersection, i.e., 
a Boolean product. The size of this product will correspond to the number of minterms 
for which both functions will change a value if xi changes. 

Similarly, the number of minterms for which both functions will not change a value if xi 
changes can be computed using a Boolean indifference, i.e., a negation of a Boolean 
difference: 
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As a result, the scoring function for functions f(x0, …xn) and g(x0, …xn) is computed as: 
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Note that the complexity of the computation of the score is a polynomial with n, so it 
can be used for any problem sizes. 

4.2.2.3. Scoring Matrix 

By computing a scoring function for each pair of output variables we obtain a scoring 
matrix. This is a symmetric matrix of dimensions (m, m), where m is the number of 
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output variables. The value in a cell [i, j] represents the scoring function value of 
variables i and j. The outputs of the multi-output function are grouped together 
according the scoring matrix values. The output-grouping algorithm proceeds as 
follows: 

 
1. Assign the first output variable to the first block. 
 
2. Find the maximum scoring matrix value corresponding to outputs i and j. These 

outputs should be grouped together, since they have the highest “similarity 
value”. 

 
3. If one of these outputs is already assigned to a block, append the second output, 

if possible (the maximum number of outputs of the block is not exceeded). 
 
4. If none is assigned, try to find an empty block and assign both outputs to this 

block. 
 
5. If no free block is available, try to put them both into some block. 
 
6. If there is not enough place to put both the outputs into one block, assign them 

randomly. 
 

This simple algorithm yields an assignment of all output variables to the blocks, while 
the function’s similarity is maximally exploited. 

4.2.2.4. Experimental Results 

We evaluated the efficiency of the algorithm on the MCNC benchmarks [36]. For each 
of the benchmark circuits we performed three experiments: 

 
• First, the respective benchmark circuit was minimized by BOOM [35]. This 

experiment was performed to estimate the circuit size when partitioning is used. 
 
• In the second group of experiments we divided the circuit into several blocks (b), 

and all the output variables were assigned to the individual blocks purely at 
random. Then the circuit was minimized by BOOM. One hundred experiments 
were performed and an average value was taken, to ensure sufficient statistical 
values. 

 
• Finally the similarity-based output grouping method was used. We performed a 

similar experiment to the previously described one, but output variables were 
assigned to the blocks using the proposed method. 

 

These three experiments show the differences between the all-in-one implementation of 
the benchmark circuit, the circuit divided into several blocks with randomly assigned 
outputs and our method. The number of blocks was selected according to the number of 
outputs of the circuit, to be somehow balanced with the number of outputs. However, 
any circuit may be divided into an arbitrary number of blocks without losing the 
efficiency of the algorithm. 
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The benchmark results are shown in Table 17. After the benchmark name the numbers 
of the primary inputs (i) and outputs (o) of the circuit are presented. The next column 
gives the number of gate equivalents [49] of the minimized circuit. Next, there is the 
number of blocks into which the circuit is being decomposed. The numbers of outputs 
of all the blocks are equal. The “Random output grouping” column shows the 
minimization results, for the experiment where the outputs are assigned to the blocks 
randomly. The “Similarity-based output grouping” labeled columns describe the results 
obtained by our newly proposed method. The last column, “impr.” shows the 
improvement against the previous (random) method. 
 

Table 17. Output grouping results 
  No 

decomp. 
 Random output 

grouping 
Similarity-based output 

grouping 
bench i o GEs blocks GEs GEs impr. 

al2 16 47 206.5 5 244.0 218.0 10.7% 
amd 14 24 334.5 3 460.0 429.0 6.7% 
b2 16 17 989.5 4 2018.5 1807.5 10.5% 
b7 8 31 81.0 4 105.0 88.5 15.7% 

b11 8 31 81.0 4 105.5 87.5 17% 
br1 12 8 130.0 3 215.0 186.5 13% 

dk17 10 11 70.5 3 84.0 72.5 13.7% 
exps 8 38 910.0 4 1473.0 1256.0 14.7% 
luc 8 27 162.5 3 244.0 228.0 6.6.% 

4.2.3. Parity Net Grouping and the Self-Checking Circuit 

The above-described algorithm can be very efficiently applied to on-line BIST (Built-in 
Self-Test). The parity predictor is used to generate a proper output parity, see Figure 1. 
The parity predictor is designed by duplicating an original combinational circuit. The 
output nets of the duplicate circuit are XORed together to obtain output check bits. The 
predictor outputs are sequentially XORed, until one parity output is obtained (see Figure 
13). Only two nets are XORed, together in each step, according to the scoring function 
that is computed. 

 

 
Figure 13. The parity prediction 
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4.2.3.1. Parity Bits Grouping Algorithm 

An algorithm used for grouping the circuit outputs to form parity bits is described here. 
The selection of outputs to be joined by an XOR gate is of key importance for the final 
design area overhead. 

Since the parity predictor is constructed by gradually joining the original circuit outputs 
by 2-input XOR gates, our primary task is to properly choose the two outputs to be 
joined in each step. The function similarity-based approach can be exploited very well. 
The basic idea of the algorithm depends on the following facts and assumptions: 

 
(1) When two equal functions are joined by an XOR gate, the resulting value will be 

‘0’ for all minterms.  If the values of two functions differ in a couple of minterms 
only, there will be only a small number of ‘1’ values in the resulting XORed 
function. Experiments show that a low number of ‘1’s at the output is very 
advantageous for the subsequent minimization process (Figure 15). 

 
(2) Two inverse functions, when XORed, yield a ‘1’ value for each minterm. If the 

output values of two functions are inverse but few minterms, there will be only a 
few ‘0’ values in the result. This is also advantageous for minimization (Figure 
15). 

 
(3) And, consequently, if two functions are “similar”, there is a big probability that 

they will share a lot of logic in the implemented design. If these functions are 
joined together, an overall area reduction is very probable. 

 

The first two statements were based on the assumption that it is advantageous for 
minimization when the function values are either ‘0’s or ‘1’s for most of the minterms. 
This is documented in Figure 14. The typical dependency of an area overhead on the 
number of ‘1’ values in the output is shown. 100-input and 20-output functions with 100 
terms defined were minimized in this experiment. The number of ‘1’s in the output 
varied between 10% and 90% while measuring the number of gate equivalents [49] of 
the circuit obtained after a minimization using BOOM [35]. We can see that low or high 
values of the ratio of ‘1’s to ‘0’s produce the best solutions. 
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Figure 14. Dependency of the area overhead on the ratio of output ‘1’s 
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The functions are described by the values of all minterms, i.e., functionally, not by a 
netlist. Thus, the final checker design has to be synthesized “from scratch”. This gives 
us an advantage, since the synthesis process is able to recognize the similarity of the 
functions and to design the decoder efficiently. 

4.2.3.2. Experimental Results 

As in the previous set of experiments, our method is compared with a purely 
randomized method.  All the values are measured as gate equivalents [49], obtained 
after synthesis. The area reduction obtained by the proposed method, in comparison 
with the random method, is shown in the “Red.” column. The random assignments were 
run 500 times, and the values were averaged. 

In some cases there is a very significant improvement in comparison with the random 
method, see Table 18. 

Table 18. Comparison results 
Circuit Random 

[GEs] 
Similarity 

[GEs] Red. 

alu1 967 156 83.9 % 
apla 128 76 40.6 % 
b11 36 21 41.7 % 
br1 80 68 15 % 
alu2 418 40 90.4 % 
alu3 433 320 26.1 % 

s1488 364 241 33.8 % 
s386 87 73 16.1 % 

The results obtained by our design methodology for a highly reliable system was 
validated on the MCNC [36] and ISCAS [30] benchmarks. The results are shown in 
Table 19. Availability calculation methodology is described in Section 7. 

Table 19. Availability parameters 

CIRCUIT AO 
[LUT] 

PARITY 
NETS AO [%] C D Ass [%] 

DIFFERENCE 
FROM 

DUPLEX 
alu1 55 1 687 0 0 1 0,000022 
alu1 16 2 200 0 0 1 0,000022 
apla 24 1 53 1 109 0,999991 0,000013 
apla 22 2 49 1 92 0,999993 0,000015 
b11 3 1 8 42 59 0,999994 0,000016 
b11 7 2 18 38 52 0,999994 0,000016 
br1 10 1 20 47 154 0,999988 0,000010 
br1 23 2 46 41 142 0,999987 0,000009 
alu2 42 1 140 0 58 0,999991 0,000013 
alu2 40 2 133 0 52 0,999991 0,000013 
alu3 34 1 121 0 63 0,99999 0,000012 
alu3 33 2 118 0 63 0,999989 0,000011 

s1488 41 1 13 94 321 0,999996 0,000018 
s1488 94 2 30 80 267 0,999996 0,000018 
s386 20 1 39 15 176 0,999988 0,000010 
s386 25 2 39 8 149 0,999989 0,000011 

Here ”Circuit” is benchmark circuit, ”AO” is area overhead, ”PN” is number of parity 
nets, ”C” and ”D” is number of undetected faults that are not detected by the code word, 
and ”Ass” is steady-state availability 
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4.2.3.3. Summary 

A novel circuit decomposition and output grouping method has been presented here. It 
is based on an evaluation of the “similarity” of Boolean functions. Functions that are 
found to be “similar” share a lot of logic. Therefore, when they are grouped together, 
many resources are saved. The output grouping retains the two-level nature of the 
circuit; hence we call it single-level partitioning. 

A very efficient application of the method to on-line BIST design is proposed. Here the 
circuit outputs are joined together by XOR gates to form a parity predictor. The parity 
predictor outputs are compared with the outputs of the original circuit, and thus the 
proper circuit function is checked. The proposed method helps to minimize the parity 
predictor logic overhead. The area overhead is sometimes reduced by more than 90% in 
comparison with a random method. 

The results obtained using our method are presented and compared with a random-
based approach. Standard MCNC [36] and ISCAS [30] benchmarks were used. 
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5. Architecture of a Modified Duplex System (MDS) 
The TMR structure is unsuitable when a high area overhead is unacceptable. Some 
hybrid architecture must be used. TMR architecture and a hybrid system, e.g., the 
modified duplex system with a comparator and some CED technique are compared in 
[59, 61]. A technique based on Duplication With Comparison (DWC) and the 
Concurrent Error Detection (CED) technique are described in [60, 62]. 

The fault tolerant system proposed in this chapter is based on DWC-CED with 
reconfiguration. This thesis is devoted to methods for maximally increasing the 
dependability parameters with maintaining the minimal area overhead. The complex 
structure implemented in each FPGA is divided into small blocks, where every block 
satisfies TSC properties. This approach can detect a fault before the fault is detected by 
the output comparator. 

Our previous results show that it is difficult to satisfy the TSC property on 100%, so we 
have proposed a new structure (MDS) based on two FPGAs , see Figure 15. 

Each FPGA has one primary input, one primary output and two pairs of checking 
signals OK/FAIL. The probability of the information correctness depends on the FS 
property. When the FS property is satisfied only to 75%, the correctness of the checking 
information is also 75%. This means that the “OK” signal gives correct information for 
75% of the errors that have occurred errors (the same probabilities for both “OK” and 
“FAIL” signals). 

To increase the dependability parameters we must add two comparators, one for each 
FPGA. The comparator compares the outputs of the two FPGAs. The fail signal is 
generated when the output values are different. This information is not sufficient to 
determine which TSC circuit is wrong. Additional information to mark out the wrong 
circuit is generated by the original TSC circuit. The probability of information 
correctness depends on the FS property, and in many cases it is higher than 75%. When 
the outputs are different and one of the TSC circuits signals a fail function, the wrong 
FPGA is correctly recognized. Correct outputs are processed by the next circuit.  
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Figure 15. MDS architecture 
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The reconfiguration process is initiated after a fault is detected. The reconfiguration 
solves two problems: localization and correction of the faulty part. The time needed to 
localize the faulty part is not negligible and must be included in the calculation of the 
dependability parameters. We select only the faulty FPGA and we reconfigure it in our 
solution. This means that we do not localize the faulty block inside the compound 
design. The time taken to localize a fault and to reconfigure the faulty part can be 
similar to the time taken to reconfigure the whole FPGA. The whole FPGA 
reconfiguration also repairs the faults which occurred in an unused logic. The 
reconfiguration process can also be initiated when one of the two FPGAs produces the 
“FAIL” signal. This situation occurs when a fault is detected by one of the small TSC 
blocks inside the compound design. Fault propagation to the primary outputs may take a 
long time.  

When the outputs are different, and both circuits signalize a correct function, we must 
stop the circuit function and the reconfiguration process is initiated for both FPGA 
circuits. After the reconfiguration process is performed, the states of the two FPGAs are 
synchronized. This means that our modified duplex system can be used in an 
application where system reset synchronization is possible. 

5.1. Implementation of TSC Based on MDS 

Each FPGA contains a TSC circuit and a comparator. The TSC circuit is composed of 
small blocks, where each block satisfies the TSC property. The structure of the 
compound design satisfying the TSC property is shown in Figure 16. 
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Figure 16. Proposed structure of TSC circuits implemented in FPGA 

We can assume six places where an error is observable for this compound design. We 
assume, for simplicity, that an error occurring in the check bit generator will be 
observable at the parity nets (number 1), and an error occurring in the original circuit 
will be observable at the primary outputs (number 5). 

The checker in block N will detect the error if it occurs in net number 1, 2, 4 or 5. If an 
error occurs in net number 3 or 6, it will be detected in the next checker (N+1). The 
method used to satisfy the TSC property for the compound design is described in 
greater detail in [A.16]. 



50 

Not every small block (in the compound design) satisfies the TSC property to 100%. 
The TSC property depends on the FS and ST properties, which are also not satisfied to 
100%. For availability computations, we find the block with the lowest FS property 
value in the compound design. 

5.2. HW Emulation of MDS in FPGA 

Every reaction to an input vector change must by calculated in SW simulation. Each 
simulation step takes many processor cycles especially for circuits with many gates. On 
the other hand if we process one simulation step, the time needed for calculation is 
equal to one system cycle. However, the results should be compared and evaluated 
concurrently. This leads us to utilize the HW emulator. 

A fault injection into the implemented circuit allows us to calculate the dependability 
parameters more precisely. Moreover, some faults such as interconnection faults can be 
tested only for a really implemented circuit. The SW simulator is not able to test faults 
of this type, because the final circuit structure is not known. HW emulation enables 
more types of faults to be tested. 

The FPGA circuit selection process depends on the demands on the tested structure and 
on the granularity of the reconfiguration [10, 13, 14, 15]. Atmel AT40K satisfies all 
these requirements. It allows fine grain dynamical reconfiguration of the implemented 
circuit. The reconfiguration process is controlled and realized by an on-chip AVR 
microcontroller. This microcontroller also stores the tested vectors and simulation 
results.  
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Figure 17. Final structure for the benchmark  test  
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The HW emulator consists of a collection of SW tools and the Atmel AT40K testing 
board. The SW tools are used to convert benchmarks from “.pla” format to “.vhdl” 
format. These SW tools also enable the self-checking modification of the original 
circuit. Synthesis and the mapping process are fulfilled manually by the Atmel FPSLIC 
design tool. The final bitstream is put into Atmel FPGA. Finally the tested vectors are 
loaded into the AVR microcontroller. The exhaustive test must be processed for the on-
line test. For this case the testing vectors are generated automatically and only the set of 
tested faults is loaded. 

The test is divided into two parts. These parts are composed of a safe test set and a risk 
test set. The risk test set is composed of interconnection tests and can cause shorts. Our 
HW emulator can test only a part of the safe test set composed mainly of look-up-table 
tests. This test set covers only 11% of the AT40K bitstream size. The other parts belong 
to the interconnection between the cells (23%), the interconnection inside the cells 
(36%) and other configuration bits used, e.g., clock distribution, the input/output cell 
and the RAMs (30%). 

The test structure implemented in FPGA can be divided into four parts: circuit under 
test, test vectors generator, check block and results processing block (Figure 17). The 
self-checking testing part is shown in greater detail in Figure 18. The two most 
important blocks are highlighted in light gray.  

 
Figure 18. Design scheduling of the self-checking circuit 

The final testing area of the implemented design is calculated individually for each 
important block. These blocks are the parity checker, the original benchmark, the parity 
generator and the comparator. The area of the parity checker and the comparator 
depends on the number of checked or compared nets, and can be calculated before final 
implementation. 

5.2.1. Checker 

The final area of the even parity checker is shown in Figure 19. The final area does not 
depend on the realized structure, and is equal to both the optimal and the unbalanced 
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variant. Only the final delay depends on the realized structure. There is a smaller delay 
for the optimal tree structure than for the unbalanced tree structure, see Table 20. 
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Figure 19. Even parity checker and length of tree  

The solution presented above is for the even parity checker realizing only the 
“CheckOK” signal. The odd parity checker must be used to generate the “CheckFAIL” 
signal. The final area of the checker is the sum of the even and odd parity checkers. The 
area of even and odd parity is equivalent. 

Table 20. Even parity checker and length of tree  
Tree Net length 

Optimal tree ⎡ ⎤nL 2log=
Unbalanced tree 1−= nL  

 

The number of LUTs M used for the even parity checker is: 
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where M is the number of LUTs and n is the number of inputs. 
Even and odd parity can by calculated by the follow equations: 
 

a) Even parity  1210 −⊕⊕⊕⊕= ninininincodeword K        (9) 
 

b) Odd parity  1210 −⊕⊕⊕⊕= ninininncodeword K      (10) 

5.2.2. Comparator 

The structure of the comparator is shown in Figure 20. The comparator in this simulator 
is used to analyze whether the primary output is correct. In the final solution, the 
comparator is used only for outputs leaving an FPGA. Only checkers are used inside the 
design. 
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Figure 20. Comparator 

The output of the comparator can be calculated by the following equation: 
 

11221100 ... −− ⊕⋅⋅⊕⋅⊕⋅⊕= nn srsrsrsrequal .   (11) 
 

The final area does not depend on the realized structure, and it is equal for both the 
optimal and the unbalanced variant. Only the final delay depends on the realized 
structure. There is a smaller delay for the optimal tree structure than for the unbalanced 
tree structure, see Table 21. 

Table 21. Length of tree 
Tree Net length 
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The solution described above is only for the “CheckOK” signal. For the “CheckFAIL” 
signal, the solution must be doubled and one inverter must be added. The number of 
LUTs M used for the comparator is: 
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where M is the number of LUTs and n is the number of inputs. 
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5.3. Emulation Process 

The MCNC benchmarks [36] are converted, modified and tested by the simulation 
design flow shown in Figure 21. 

The white blocks in the design flow are used for both SW simulator and HW emulator. 
The gray blocks are used only for HW emulation. The VHDL code in the last white 
block is synthesized for XILINX Virtex FPGA in cases when an SW simulator is used. 
The Atmel FPSLIC FPGA is used as the HW emulator. 

 

 
Figure 21. Emulation Process 



55 

5.4. Emulation Results 

The simulation design methodology shown above was used to generate the bitstream for 
many MCNC benchmarks [36]. The benchmark’s bitstream was loaded into Atmel 
FPGA. The faults were injected only into the used parts of LUTs. Fault injection into 
unused logic would only increase the number of undetected faults. The unused logic is 
generated in cases when fever than 4-inputs LUTs are used. It is obvious that the faults 
in unused logic are hidden, because there is no way of detecting them.  

Table 22. Results obtained from our HW emulator without routing cells 

C
irc

ui
t 

In
pu

t 

O
ut

pu
t 

O
rig

in
al

 c
irc

ui
t [

LU
Ts

] 

Pa
rit

y 
ge

ne
ra

to
r [

LU
Ts

] 

A
re

a 
ov

er
he

ad
 [%

] 

N
um

be
r o

f a
ll 

fa
ul

ts
 

A
 (h

id
de

n 
fa

ul
ts

) 

B
 (d

et
ec

te
d 

fa
ul

ts
) 

C
 (u

nd
et

ec
te

d 
fa

ul
ts

) 

D
 (t

em
po

ra
ry

 d
et

ec
te

d)
 

ST
 c

ov
er

ag
e[

%
] 

FS
 c

ov
er

ag
e 

[%
] 

Te
st

 ti
m

e 
[s

] 

alu1 12 8 8 47 587.5 656 0 656 0 0 100.00 100.00 0.68 
alu2 10 8 44 47 106.8 1072 109 935 0 28 89.83 97.39 0.29 
alu3 10 8 45 45 100.0 1044 130 877 8 29 86.78 96.46 0.29 
apla 10 12 48 25 52.1 900 141 625 5 129 83.78 85.11 0.25 
br1 12 8 50 15 30.0 810 141 456 69 144 74.07 73.70 0.84 

s1488 14 25 310 50 16.1 4286 638 3060 85 503 83.13 86.28 17.64
s1494 14 25 276 53 19.2 3938 645 2785 67 441 81.92 87.10 16.21
s2081 18 9 22 25 113.6 536 22 494 0 20 95.90 96.27 35.14
s386 13 13 57 18 31.6 976 170 646 25 135 80.02 83.61 2.02  

The HW emulation results are shown in Table 22. Here “Circuit” refers to the 
benchmark circuit, “Input and Output” are the numbers of primary inputs and primary 
outputs, “Original circuit” is the number of LUTs used for the original circuit, “Parity 
generator” is the number of LUTs used for the parity generator, “Area overhead” is the 
area needed for the parity generator as a percentage, “Number of all faults” are all tested 
faults, “A, B, C, D” are the classes derived by our fault classification, “ST, FS” are self-
testing and fault secure properties, and “Test time” is the time needed for full test 
execution. 

Table 23. SW simulation/HW emulation time 

 Inputs 
SW 

simulation
[s] 

HW 
estimation

[s] 

HW 
emulation

[s] 

SW/HW 
time 
rate 

alu1 12 34.0 0.92 0.92 37.0 
alu2 10 9.0 0.40 0.41 22.0 
alu3 10 6.9 0.39 0.41 16.8 
apla 10 6.0 0.32 0.34 17.6 
b11 8 0.8 0.05 0.06 13.3 
br1 12 18.0 1.08 1.10 16.4 

s1488 14 2406.3 23.76 23.82 101.0 
s1494 14 2518.9 21.79 21.84 115.3 
s2081 18 1217.9 49.30 49.30 24.7 
S27 7 0.1 0.01 0.03 3.3 
s386 13 677.7 2.48 2.49 272.2 
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The results show that for all benchmarks the FS property is higher than 70% of fault 
coverage. The area overhead depends on the benchmarks that are tested. For 50% of the 
benchmarks the area overhead is less than 50%. The “alu” benchmarks are a typical 
problem for a single parity generator. The area overhead decreases rapidly when the two 
parity groups are used for “alu” benchmarks.  

The SW simulator is slower than the HW emulator. The simulation time results are 
shown in Table 23. 
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6. Proof of MDS Optimality 
To evaluate the influence of a sequence of SEU faults, a more precise definition of a 
“single fault” is needed. We use availability computation for dependability analysis. In 
the following text we will assume that “damage to a single data item” is defined as 
follows: 

 
• It will occur at a single time that is arbitrarily located on the time axis. 
 
• The fault can change a data item located within the FPGA configuration 

memory. Both FPGAs can be affected with the same probability. We assume the 
single fault changes only one bit of the FPGA configuration memory. Each bit in 
the FPGA configuration memory can be attacked with the same probability. 

 
• The time between any two single faults is long enough for a single fault to be 

successfully detected and corrected. Otherwise, it is a multiple fault. 
 
Some basic rules are defined to calculate the availability parameters. We assume that: 

 
• There is at least one input vector coming between two SEUs that make an output 

differ from the normal operation. 
 
• SEUs impacting an unused logic do not change the function of the part that is 

used. These faults are hidden faults. 
 
• The comparator and the checker are fully TSC. 
 
• The area overhead of the comparator and the checker is negligible. 
 
• The reconfiguration unit loads correct configuration data after a fault is detected. 
 
• The time needed to reconfigure the faulty part depends on the configuration data 

size. 
 
• A fault that occurred in unused logic does not damage the whole FPGA. 

 

6.1. Reliability Model 
 

The Markov model shown in Figure 22 describes our architecture. 
 

OF
2λs(1-FS)

μs/2

2λsFS

μs H
 

Figure 22. Model of our modified duplex system 
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There are three states (O, F, H). 

The O state (operational) represents the regular fault-free state of the system, where 
both FPGAs are operating correctly. This means that the fail function is signalized 
neither by the TSC circuit nor by the comparator. 

There is a transition from the O state to the F state (one FPGA is faulty) corresponding 
to the situation when a fault occurs in one FPGA and this fault is detected by one of the 
TSC circuits. The system enters this state with a probability FS. λ is the failure rate for 
one bit of a configuration memory and s is the size of a configuration memory. Number 
2 (in the 2λsFS expression) means that one of two FPGAs can be affected by SEUs. The 
reconfiguration process is initiated only for the faulty FPGA. The repair rate is 
represented by μ. The second FPGA is running correctly and performs the function of 
the system.  

Some faults are not detected when the output vector is an incorrect codeword. The 
probability that an occurred fault causes an incorrect codeword is equal to 1-FS. In this 
case the system comes to the state H. 

The H (hazard) state means that the system is in the hazard state. The hazard state is 
detected (e.g., by comparators), because the output vectors are not identical. Both 
FPGAs have to be reconfigured in this case. The repair rate is equal to μ/2, because we 
reconfigure each FPGA separately. If we are able to reconfigure both FPGAs at the 
same time, the availability parameters will increase.  
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The model described here introduces four parameters: failure rate (λ), repair rate (µ), 
fault security (FS) and the configuration memory size (s). These parameters are 
discussed in the next section. Now let us transform the Markov model into a system of 
equations describing the steady state probabilities of each of the states (Equations 13). 
The system of equations is completed by a normalisation condition. 

 

FOSS ppA +=       (14) 
 

The value of the steady-state availability ASS is the sum of probabilities for all working 
states (Equation 14). 
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6.2. Evaluation of the Reliability Model 

First, we discuss the model parameters. The failure rate (λ) depends on the probability 
that the impacting SEUs will change a bit in the FPGA configuration memory. Due to 
this fact we took into account the result presented in [4] and set the failure rate to: 

 

][8.1 15 −−= heλ      (15) 
 

The repair rate (µ) depends on the time needed for reconfiguring an FPGA. The clock 
frequency was set to 25 MHz. The configuration memory size s (needed for each 
benchmark) was calculated as the product of the configuration memory size for 
AT94K40 ATMEL FPSLIC and the circuit area overhead (AO[%]). 

 

][233 bitsAOks ⋅=                            (16) 
 

The graphs in Figures 23, 24, 25, 26 were constructed by solving equations (13) and 
(14). We used equations (13) and (14) for the following calculations. Firstly the circuit 
area overhead was fixed to 50 percent. The FS parameter varies from 0 to 100% FS. 
The availability parameter increases with higher FS, see Figure 23. 
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Figure 23. Availability for 50% overhead 

 
The curve in Figure 23 is generally described by equation (17).  
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In the second case, FS is 80% and the area overhead varies from 0 to 100%. 

Figure 24 shows that a higher area overhead means a low availability parameter, but the 
availability parameter decreases more slowly than in our first case, when the value of 
the FS parameter is changing. 
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Figure 24. Availability for 80% FS 

In the third case, we show the relation between the area overhead, the FS property and 
the availability. The results are shown in Figure 25. One point (number 1 in Figure 25) 
corresponds to the standard duplex system. The availability of the standard duplex 
system is 0,999978248. 

When both the area overhead and FS are 0% (the front corner in Figure 25), the 
availability of our system would be the same as for the standard duplex system without 
any detection of a faulty FPGA. 
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Figure 25. Availability 3D graph 

The graph in Figure 25 describes the dependency of AO on FS parameterized by the 
availability. One curve (number 1 in Figure 25, Figure 26) corresponds to the standard 
duplex system. Due to this, when FS is 50%, the area overhead must be less than 40%. 
In other cases the system is worse than the standard duplex system with respect to 
availability. 

Arrow 2 in Figure 26 shows the area where the system is worse than a standard duplex 
system with respect to availability. Arrow 3 shows where the system is better than a 
standard duplex system with respect to availability. Each curve in Figure 26 represents 
one value of the availability parameter. 

1
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Figure 26. Curves of availability values 

6.3. Main results 

The results obtained by our case study were validated on the MCNC [36] and ISCAS 
[30] benchmarks. Our results are shown in Table 23. The fault security (FS) and the 
area overhead (AO) are summarized in Table 24, where the results obtained by the 
computation of the models are also included. 

Here “CIRCUIT” is benchmark circuit, “AO” is area overhead, “FS” is the probability 
that a fault is detected by code word, and “Ass” is steady-state availability. 

 

Table 24. Availability parameters 

CIRCUIT AO [%] FS [%] ASS [%] 

alu11 687,5 100 1 
apla 53,3 82,8 0.9999912
b11 7,9 75,5 0.9999938
br1 20,0 62,9 0.9999847
al2 11,5 94,3 0.9999985

alu2 140,0 92,5 0.9999906
alu3 121,4 90,3 0.9999897

s1488 13,1 86,3 0.9999962
s1494 12,9 86,3 0.9999962
s2081 125,0 96,2 0.9999958
s27 75,0 72,2 0.9999815
s298 48,7 91,0 0.9999957
s386 39,2 71,1 0.9999878
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6.4. Generalization 

The availability of the original duplex system is 0,999978248, and the availability of 
TMR architecture is 1. If we compare the original duplex system with our modified 
duplex system we increase the availability parameter for all tested benchmarks. The 
availability parameter is the same as for a triplex system in case when the FS property is 
100%. We found that availability depends more on the FS property than on the area 
overhead. When the FS is not 100% achieved, the area overhead is strictly limited by 
the availability value of the standard duplex system. When this value is surpassed, the 
availability is inferior to the standard duplex system. We can summarize that for the 
benchmarks tested, the availability parameters have increased. For example, when 
“apla” has 82.8 % of FS and 53 % of the area overhead, the time when the system is 
unavailable is about 2.5 times shorter than for the standard duplex system. The 
dependability parameters of our modified duplex system are better than the standard 
duplex system and a little worse than or equal to the TMR system (which has a greater 
area overhead than our reconfigurable and duplex system). 
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7. Design Methodology 
The design methodology for creating a TSC circuit is shown in Figure 27. To generate 
the output parity bits, all the output values have to be defined for each particular input 
vector. Unfortunately, the benchmark definition files do not do this. Only some output 
values are specified for each multi-dimensional input vector, while the rest are assigned 
as don’t cares; they are left to be specified by another term. Thus, to be able to compute 
the parity bits, we have to split the intersecting terms, so that all the terms in the truth 
table are disjoint. 
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Figure 27. Design methodology flow 

In the next step the original primary outputs are replaced by parity bits. Two different 
error codes were used to calculate the output parity bits (single even parity code and 
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multiple parity code), but our design methodology also enables the use of Hamming-
like code or standard duplication. Another tool was used in the case where the original 
circuit was modified in the multilevel logic. This tool is described in [A.1]. The two 
circuits generated in the first step (original circuit and parity circuit) are processed 
separately to avoid sharing any part of the circuit. Each part can be minimized by the 
BOOM [35] or Espresso tool [34]. The final area overhead depends on the software that 
was used in this step. Many tools were used to reduce the area of the parity bits 
generator. BOOM was used to minimize the final area. In this step the area overhead is 
known, but we can decide whether the fault coverage is sufficient. 

In the next step, “pla” format is converted into “bench” format. “Bench” format was used 
because the tool that generates the exhaustive test set uses this format. An exhaustive 
test set has 2n patterns and we used it to evaluate the TSC goals. 

Another conversion tool is used to generate two VHDL codes and the top level. The top 
level is used for incorporating the original and parity circuit generator. In the next step 
the synthesis process is performed by the Synplicity Synplify Pro tool. The constraint 
properties set during the synthesis process express the area overhead and the SEU fault 
coverage. If the maximal frequency is too high, hidden faults occur during fault 
simulation. The hidden faults are caused by circuit duplication. The size of the area 
overhead is obtained from the synthesis process. The final netlist is generated by the 
Leonardo Spectrum software. The fault coverage was obtained by simulation using our 
software [31]. 

To evaluate the area overhead and the fault coverage special tools had to be developed. 
In addition to some commercial tools such as Leonardo Spectrum and Synplify, we used 
format converting tools, parity circuit generator tools and simulation tools. 

At first, the area minimization and term splitting is performed for the original circuit by 
BOOM [35]. The Hamming code generator (or single parity generator) is generated by 
the second software. These two circuits are minimized again with BOOM. The next two 
tools convert the two-level format into a multi-level format. The first of them converts a 
“pla” file to “bench”, and the second converts “bench” to VHDL. The second software is 
used for generating the final circuit in ”bench” format due to its further usage in the 
exhaustive test set generator. The format converting software and parity generator 
software were written in Microsoft Visual C++. The netlist fault simulator was written 
in Java. The parser source code was used to parse the netlist generated by the two 
commercial tools mentioned above. 

Our modified duplex system based on two FPGAs with a highly reliable system design 
methodology has been presented here. The design methodology enables an appropriate 
code to be selected, taking into account the system requirements. 

Our methods we can use for designing a totally self checking circuit. The selected 
method depends on the final area overhead and the SEU fault coverage. When a highly 
reliable system is required and the area overhead can be high, it is better to use 
duplication or a Hamming-like code. These two methods ensure that fault security is 
fulfilled one hundred percent, and the Ass parameter is also equal to hundred percent. 

When a low area overhead and a highly reliable system are required, it is better to use 
the simple or multiple parity predictor. 

Our highly reliable structure ensures that the final system is better than a standard 
duplex system with 0,999978248 of Ass [A.6]. 
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8. Conclusions and Future Work 
A modified duplex system based on two reconfigurable FPGAs has been presented. Our 
MDS architecture increases the dependability parameters in comparison with the 
standard duplex system. The dependability parameters have been increased due to the 
reconfiguration process and the two methods of SEU detection that are used. The first 
method compares the primary outputs of each FPGA, and the second signalizes the 
faulty FPGA. 

The whole proposed system has been described by a dependability Markov model. This 
model was used for computing the reliability and availability parameters for SEU fault 
models. The results for the MCNC [36] and ISCAS [30] benchmarks have been 
compared with those of the standard duplex system. We found that availability depends 
more on the FS property than on the area overhead. When the FS is not 100% achieved, 
the area overhead is strictly limited by the availability value of the standard duplex 
system. When this value is surpassed, the availability is inferior to the standard duplex 
system. We can summarize that for the benchmarks tested, the availability parameters 
have increased. For example, when “apla” has 82.8 % of FS and 53 % of the area 
overhead, the time when the system is unavailable is about 2.5 times shorter than for the 
standard duplex system. The dependability parameters of our modified duplex system 
are better than the standard duplex system and a little worse than or equal to the TMR 
system (which has a greater area overhead than our reconfigurable and duplex system).  

Single parity is most suitable code for the self-checking circuit, due to its low area 
overhead and high fault coverage. Other error detection codes lead to higher fault 
coverage, but the area overhead and the number of possible faults are also higher. 
Single parity is good trade-off between the area overhead and fault coverage. 

Faulty FPGA can be reconfigured as a whole rather than partially. Partial 
reconfiguration involves initiating the localization process. The partial reconfiguration 
process with fault localization takes a longer time than the whole FPGA reconfiguration 
process without fault localization. Moreover, hidden faults that have occurred in unused 
logic are fixed because the FPGA reconfiguration (reprogramming) includes unused 
logic. The circuit design implemented in both FPGA must enable the self 
synchronization process which synchronizes both FPGAs after one of them is 
reconfigured. In many applications, it is sufficient to reset both FPGAs. 

A new fault classification has been proposed. The four classes were proposed to 
describe possibility of all situations of occurred faults.  

8.1. Contribution of the dissertation: 

The main result of the dissertation thesis is a fault tolerant design methodology based on 
self-checking circuits implemented with using FPGAs. The methodology describes the 
design steps of the fault tolerant system realization. The main contribution of this work 
can be divided into two groups: primary results and secondary results. 

The primary results are: design methodology steps, fault classification, self-checking 
and fault tolerant structures and etc. 
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Fault classification: This work supports the design process of CED circuits 
implemented in FPGAs. A new fault classification was proposed. Briefly, our 
classification leads to more accurate evaluation of the fault coverage, and it is possible 
to determine whether the tested circuit satisfies the FS and ST properties. We can also 
evaluate how many of the faults violate the FS and ST property. The proposed fault 
classification is used in our experiments. The classification enables us to distinguish 
which ED code is suitable for the chosen synthesis method with respect to the used fault 
model. 
 

Self-checking circuit suitable for a fault tolerant system: Previous works has shown 
that the area overhead depends on the used ED codes. To obtain the minimal area 
overhead and 100 percent of fault coverage, the appropriate ED code has to be chosen 
(selected). It may increase the dependability parameters. Single parity is most suitable 
code for the self-checking circuit, due to its low area overhead and high fault coverage. 
Other error detection codes lead to higher fault coverage, but the area overhead and the 
number of possible faults are also higher. A single parity is good trade-off between the 
area overhead and a fault coverage. 

 

Single parity and parity net grouping:  A very efficient application of the on-line 
BIST design was proposed. Here the circuit outputs are joined together by XOR gates, 
to form a parity predictor. The parity predictor outputs are compared with the outputs of 
the original circuit, and thus the appropriate circuit function is checked. The proposed 
method helps to minimize the parity predictor logic overhead.  
 

Modified duplex system (MDS): CED techniques are not able to increase 
dependability parameters sufficiently. A new structure based on the DWC-CED 
technique has been developed. An appropriate ED code was selected to ensure a trade-
off between area overhead and fault coverage. The dependability parameters depend on 
these two criteria. 
 

MDS Implementation with TSC: Our methodology for fault tolerant design is based 
on SC circuits. It assumes a combinational circuit with up to 16 primary inputs, because 
simulation time grows by the square of the number of inputs. Therefore there is a need 
of the compound design architecture. The proposed architecture enables combinational 
circuits and sequential circuits to be combined in this compound design. 
 

HW emulation of MDS: Each reaction to an input vector change must be calculated in 
the SW simulation. Each simulation step takes many processor cycles, especially for 
circuits with many gates. One simulation step is processed, and the time needed for 
calculation is equal to one system cycle. However the results need to be compared and 
evaluated concurrently. We therefore decided to use an HW emulator. The HW 
emulation allow to us calculate the final area of individual parts of MDS structure e.g., 
parity predictor, checker and area overhead. The HW emulator was programmed with 
respect to the Atmel FPSLIC FPGA design process.  
 

Proof of MDS optimality: The system was described by a Markov dependability 
model. This model was used for computing of availability parameters for the SEU fault 
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model. The results of MCNC [36] and ISCAS [30] benchmarks used in our modified 
duplex, reconfigurable and on-line testing design method were compared with the result 
for the standard duplex and TMR systems. It was found that for availability the FS 
property is more important than the area overhead. When the FS is not 100% achieved, 
the area overhead is strictly limited by the availability value of the standard duplex 
system. When this value is surpassed, the availability is inferior to the standard duplex 
system. 
 

Design methodology: A fault tolerant system design methodology is presented with the 
aim to obtain results from individual parts of this study. The design methodology 
enables to use the system in mission-critical applications, where the dependability 
parameter requirements are very high. 
 
 

The secondary results are: implementation, modification and other tools. 
 

SW simulator: Because a new fault classification is being presented here, a new fault 
simulator is needed. This SW simulator has been written in Java programming 
language. 
 

HW emulator: The new HW emulator was designed to evaluate faults more precisely. 
The HW emulator was programmed with respect to the Atmel FPSLIC FPGA design 
process.  
 

Tools that add single parity nets: Some special tools for modifying benchmark 
circuits had to be used in this work.  Utilities allowing circuit modification were 
programmed. The circuit was described by two-level networks and also by multilevel 
networks. Utilities enabling us to simulate and calculate fault coverage were 
implemented. 
 
Tools that add multiple parity nets: A tool enabling modifications of the 
combinational circuit and selection of the appropriate ED code was programmed. This 
tool can generate a single event parity predictor, a multiple parity predictor and a 
Hamming-like code predictor. The BOOM [35] and Espresso [34] minimization tools 
were used to evaluate the area overhead and thus to select the appropriate ED code. 
 

8.2. Future work 

Our future work will deal with several practical case studies (e.g., railway applications). 
The dependability parameters will be calculated more precisely using assumptions 
about routing resources impacted by SEUs. We will use a hardware fault emulator 
based on the ATMEL FPSLIC circuit. 
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