
Fault Injection and Simulation for Fault Tolerant
Reconfigurable Duplex System

Pavel Kubalík, Jiří Kvasnička, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University in Prague
Karlovo nam. 13, 121 35 Prague 2

e-mail: (xkubalik, kvasnj1, kubatova)@fel.cvut.cz

Abstract – The implementation and the fault simulation
technique for the highly reliable digital design using two FPGAs
under a processor control is presented. Two FPGAs are used for
duplex system design, each including the combination of totally
self-checking blocks based on parity predictors to obtain better
dependability parameters. Combinatorial circuit benchmarks
have been considered in all our experiments and computations. A
Totally Self-Checking analysis of duplex system is supported by
experimental results from our proposed FPGA fault simulator,
where SEU-fault resistance is observed. Our proposed hardware
fault simulator is compared also with the software simulation. An
area overhead of individual parts implemented in each FPGA is
also discussed.

I. INTRODUCTION

FPGAs are based on SRAM memories sensitive to Single
Even Upsets [1, 2, 3] (SEUs), therefore simple usage of FPGA
circuits in mission critical applications without any method of
SEUs detection is practically impossible. SEUs can change the
content of the embedded memory or Look-up Tables (LUTs)
used in the design. These changes are not detectable by off-
line tests; therefore appropriate CED techniques have to be
used. The probability of a SEU occurrence in the random
access memory (RAM) is described in [4].

The term dependability is used to encapsulate the concepts
of reliability, availability, safety, maintainability,
performability, and testability [5]. Availability computation to
compare modified duplex system (MDS) with standard duplex
system is described in [6].

This paper comprises partial research results based on
software and hardware simulation experiments presented in
[8]. Some techniques of software simulation and hardware
emulation are described in [9].

The TMR structure is unsuitable when a high area overhead
is unacceptable. Some hybrid architecture must be used. TMR
architecture and a hybrid system, e.g., the modified duplex
system with a comparator and some CED technique are
compared in [10, 12]. A technique based on Duplication With
Comparison (DWC) and the Concurrent Error Detection
(CED) technique are described in [11, 13].

The structure of the paper is following: the basic
classification of faults is presented in Section 2. A brief
overview of our duplex system is shown in Section 3. Our
proposed hardware emulator structure is presented Section 4.

An implementation of this emulator is described in Section 5.
Section 6 summarizes results obtained by both hardware and
software fault simulations and Section 7 concludes the paper.

II. FAULTS CLASSIFICATION

There are three basic quantitative criteria in a CED field:
Fault Security (FS), Self Testing (ST) and Totally Self-
Checking (TSC) properties. To determine whether the circuit
satisfies the TSC property, faults have to be selected to one of
four classes A, B, C or D according [8]. Classification of each
fault into one of previous 4 classes can be used to decide,
whether or how much the circuit satisfies the FS, ST and TSC
properties.

III. MDS ARCHITECTURE

Our previous results [7] show, that satisfying fully TSC
property with low area overhead is difficult, so we proposed a
new structure based on two FPGAs, as shown on Fig. 1.

Primary
output 1

OK / FAIL

RECONFIG.
UNIT

FPGA 1

=TSC2

OK / FAIL

Primary
input

=

Primary
output 2FPGA 2

OK / FAIL

OK / FAIL

TSC1

 Fig. 1. MDS architecture

The probability of the information correctness depends on
the FS property. When the FS property is satisfied only to
75%, the correctness of the checking information is also 75%.
It means that the signal “OK” give a correct information for

75% of occurred errors (the same probabilities for both signals
“OK” and “FAIL”).

Two Comaparators have to be added to increase the
dependability parameters, one for each FPGA. The comparator
compares outputs of both FPGAs. The fail signal is generated
when the output values are different. This information is not
sufficient to determine, which TSC circuit is wrong.
Additional information to mark out the wrong circuit is
generated by the original TSC circuit. In a case when outputs
are different and one of the TSC circuits signalizes fail
function, the wrong FPGA is correctly recognized. The
reconfiguration process is initiated after a fault is detected.
MDS architecture is described in greater detail in [6].

IV. OUR HARDWARE EMULATOR

The hardware emulator was used to emulate SEU faults in
FPGAs. These faults are converted into bitstream faults in the
tested circuit. Moreover, the fault emulation in the FPGA
gives us possibility to test bridging faults and opens in the
interconnection network. More accurate TSC parameters can
be obtained from fault injection into implemented design.

The hardware emulator presents a collection of the software
tools and Atmel AT40K testing board. The software tools are
used to convert benchmarks from “.pla” format to “.vhdl”
format. These software tools also allow the self-checking
modification of the original circuit. The synthesis and the
mapping process are fulfilled manually by Atmel FPSLIC
design tool. The final bitstream is put into Atmel FPGA. In
our software tool the complete bitstream is analyzed and areas
concerning the fault injection selected. The selection has to be
done in software due to limited capacity of SRAM in AVR,
which can not hold the whole bitstream.

V. IMPLEMENTATION OF BENCHMARKS TESTING IN FPGA

Our hardware emulator (see Fig. 2) is structurally based on
the schematic diagram of the fault classification presented in
[8].

 The hardware part of emulator is based on Atmel FPSLIC
development board. It is divided into AVR part and FPGA
part, see Fig. 2. The AVR controls the test process and
reconfiguration. The partial bitstream concerning faulty areas
is loaded into the SRAM, which is shared between AVR and
FPGA. This bitstream is further analyzed with respect to the
real occupation of LUTs in AVR for its reconfiguration use in
FPGA. A correct bitmask for the test injection is obtained by
the analysis of bitstream/LUT use. This analysis is performed
in AVR, because it needs less computation power than the
transfer of analysis results (considering the time of testing).

The fault classification result can be obtained separately for
each fault or distribution of all faults into 4 categories (see
section 2) can be obtained as a result. The exhaustive test must
be processed for an on-line test. The testing vectors are
generated automatically and only a set of tested faults are
loaded.

Fig. 2. Basic hardware emulation diagram

The reconfiguration process is performed during the idle
phase of testing (when the previous exhaustive test is finished
and the new one hasn’t begin) to ensure no testing during the
reconfiguration process. The reconfiguration process begins
by putting the FPGA into the correct state (restoring the
bitstream from the previous fault) and than continues by
uploading a new fault into the bitstream.

The structure of our emulator in FPGA (see Fig. 3) needs
the additional registers to ensure a maximal clock frequency.

Only one-bit counters are necessary to decide the category
which the injected fault belongs into, therefore they occupy
only one logic cell in the FPGA structure.

clk

sreset

start

vectorSelect

userVector

finish

u

v

TestGenerator

sreset

start

clk

testVector
finish

0

1

DFF

clk

D Q

TestedCircuit1

testVector Result

TestedCircuit2

testVector Result

DFF

clk

D Q

DFF

clk

D Q

Checker

result codeword

Comparator

result1 equal
result2

V

U

Sum1bit

in Sum_U
start
sreset
clk

Sum1bit

in Sum_V
start
sreset
clk

Fig. 3. Structure of benchmark test

Parity checkers and comparators are used both in the
hardware emulator (non-TSC versions) and in a dependable
system based on MDS architecture. Therefore special attention
to them will be paid. The area occupied by n-long vector in
FPGA with p-input can be expressed by the formula:









−
−=

1
1

p
nM (1)

, where M is the number of LUTs used.
The solution presented above is fulfilled for even parity

checker realizing only “CheckOK” signal. The odd parity
checker must be used to generate “CheckFAIL” signal. These
signals together form the TSC version of a checker, under the
condition that they don’t share any logic between them. The
occupied area of the even and odd parity is equivalent. The
number of LUTs M used in AT40K for even parity checker is:





 −=

3
1nM (2)

, where M is the number of LUTs and n is the number of
inputs.

The comparator is used to analyze whether the primary
output is correct. In the final solution, the comparator is used
only for outputs leaving an FPGA. The comparator can be
divided into 2 phases: a) comparing pairs of input (producing
sub-equals iii srse ⊕=) and b) final collecting of sub-

equals (into equal ∏=
i

iseeq).

The calculation of the area occupied by a comparator must
consider the architecture of a logic cell, especially the number
of inputs to LUT. It is hard to map sub-equals to a LUT with
the odd number of inputs. Only even-input LUTs are
optimally used for sub-equal functions. The area occupied by
the checker and the comparator in our hardware emulator is
only half-size, because non-TSC versions are present. The
problem of AND-tree of sub-equal size enumerating is similar
to a parity tree, therefore calculation will be omitted.

The number of LUTs M used for the comparator in worse
case is:

(3)

, where M is the number of 4-input LUTs and n is the

number of inputs. The size of checker and comparator is not
dramatically high.

The test is divided into two parts. These parts are composed
from a safe test set and a risk test set. Our hardware simulator
can test only a part of the safe test set composed mainly from
look-up-table tests. This test set covers only 11 percents of the
AT40K bitstream size. The risk test set is composed of
interconnection tests and can cause shorts. To the risk test set
consist of the interconnection between cells (23 percents), the
interconnection inside cells (36 percents) and 30 percent
belong to others configuration bits (for example clock
distribution, input/output cell and RAMs).

VI. SIMULATION RESULTS

The simulation design methodology was used to generate
bitstream for many MCNC benchmarks. The benchmark’s
bitstream was loaded into Atmel FPGA. The faults were
injected only into used parts of LUTs. The fault injection into
unused logic would increase only number of undetected faults.
The unused logic is generated in a case when less than 4-
inputs LUTs are used. The hidden faults can obviously occur
in the unused logic, therefore it is not possible to detect them
by any way. Results of hardware fault emulation are shown in
Table I. Here “Circuit” is benchmark name, “Inputs” and
“Outputs” are numbers of primary inputs and primary outputs,
“Original circuit” means a number of used LUTs for original
circuit, “Parity generator” means a number of used LUTs for
the parity generator, “Number of all faults” are all tested faults
and “A, B, C, D” are classes derived by our fault
classification.

TABLE I
RESULT OF FAULT SIMULATION - CLASSES

C
ir

cu
it

In
pu

ts

O
ut

pu
ts

O
ri

gi
na

l c
ir

cu
it

[L
U

T
s]

Pa
ri

ty
 g

en
er

at
or

 [L
U

T
s]

N
um

be
r

of
 a

ll
fa

ul
ts

A
 (h

id
de

n
fa

ul
ts

)

B
 (d

et
ec

te
d

fa
ul

ts
)

C
 (u

nd
et

ec
te

d
fa

ul
ts

)

D
 (t

em
po

ra
ry

 d
et

ec
te

d)

alu1 12 8 8 47 656 0 656 0 0
alu2 10 8 44 47 1072 109 935 0 28
Apla 10 12 48 25 900 141 625 5 129
br1 12 8 50 15 810 141 456 69 144
s1488 14 25 310 50 4286 638 3060 85 503
s1494 14 25 276 53 3938 645 2785 67 441
s2081 18 9 22 25 536 22 494 0 20
s386 13 13 57 18 976 170 646 25 135

Results of ST, FS properties and area occupation are shown

in Table II., Here “Circuit” is benchmark name, “Original
circuit” is number of used LUTs for original circuit, “Parity
generator” is number of used LUTs for parity generator, “Area
overhead” is area needed for parity generator in percentage,
“TSC checker” and “TSC comparator” are numbers of used
LUTs for TSC checker and output TSC comparator, “ST
coverage, FS coverage” are self-testing and fault secure
properties in hardware emulation, “FS coverage in SW” is
fault secure property in software simulation and “Test time” is
time needed for full test execution in hardware emulation.

The resulting FS property of tested circuit is higher than
70% for all benchmarks, even better on average. The area
overhead depends on tested benchmarks. For 50% of
benchmarks the area overhead is less than 50%. The
benchmarks “alu” are typical problem for single parity
generator.


















−





+



=

3

1
2

2

n
n

M

TABLE II
ST AND FS PROPERTIES RESULTS

C
ir

cu
it

O
ri

gi
na

l c
ir

cu
it

[L
U

T
s]

Pa
ri

ty
 g

en
er

at
or

 [L
U

T
s]

A
re

a
ov

er
he

ad
 [%

]

T
SC

 c
he

ck
er

[L
U

T
]

T
SC

 c
om

pa
ra

to
r[

L
U

T
s]

ST
 c

ov
er

ag
e[

%
]

FS
 c

ov
er

ag
e

[%
]

FS
 c

ov
er

ag
e

in
 S

W
 [%

]

alu1 8 47 588 6 14 100.0 100.0 100
alu2 44 47 107 6 14 89.83 97.4 92
apla 48 25 52.1 8 16 83.78 85.1 83
br1 50 15 30.0 6 10 74.07 73.7 63
s1488 310 50 16.1 16 34 83.13 86.3 86
s1494 276 53 19.2 16 34 81.92 87.1 86
s2081 22 25 114 6 16 95.90 96.3 96
s386 57 18 31.6 8 18 80.02 83.6 71

The software simulator is slower than the hardware

emulator. Results of consumed time are described in Table III.
Here “Circuit” is benchmark name, “Inputs” are numbers of
primary inputs and primary outputs, “Software simulation” is
time needed for full test execution in software simulation,
“Hardware emulation” is time needed for a full test execution
in the hardware emulation, “SW/HW time rate” is the speedup
factor between the hardware and software simulation time.

TABLE III
SOFTWARE/HARDWARE SIMULATION TIME

Circuit Inputs
SW

simulation
[s]

HW
emulation

[s]

SW/HW
time
rate

alu1 12 34.0 0.92 37.0
alu2 10 9.0 0.41 22.0
apla 10 6.0 0.34 17.6
br1 12 18.0 1.10 16.4

s1488 14 2406.3 23.82 101.0
s1494 14 2518.9 21.84 115.3
s2081 18 1217.9 49.30 24.7
S27 7 0.1 0.03 3.3
s386 13 677.7 2.49 272.2
The time for reconfiguration is negligible in comparison

with exhaustive test of circuit. All hardware simulation time
cover testing time, reconfiguration time, reconfiguration
preparation time and AVR overhead. The synthesis time is not
included in results.

VII. CONCLUSION

The hardware fault emulator for our MDS architecture
based on two FPGAs has been presented. In this emulator we
are able to calculate FS, ST and TSC parameters of tested
circuit physically mapped in the FPGA

Experimental results of several benchmarks show
consistency between the software fault simulation results and
hardware fault emulation results, see Table II.

Our future work will be dedicated to several practical case
studies (e.g., railway applications). We will focus on the fault
list creation, which would make shorts and opens testing
possible, either based on the fault injection into the
interconnection of the FPGA (the risk test set) or based on the
transformation of the risk test set into the safe LUT testing.

ACKNOWLEDGMENTS

This research has been supported in part by the
MSM6840770014 research program.

REFERENCES
[1] QuickLogic Corporation.: Single Event Upsets in FPGAs, 2003,

www.quicklogic.com
[2] Bellato, M., Bernardi, P., Bortalato, D., Candelaro, A., Ceschia, M.,

Paccagnella, A., Rebaudego, M., Sonza Reorda, M., Violante, M.,
Zambolin, P.: “Evaluating the effects of SEUs affecting the
configuration memory of an SRAM-based FPGA.” Design Automation
Event for Electronic System in Europe 2004, pp. 584-589.

[3] Sterpone, L., Violante, M.: “A design flow for protecting FPGA-based
systems against single event upsets “, DFT2005, 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 436–
444.

[4] Normand, E.: “Single Event Upset at Ground Level,” IEEE Transactions
on Nuclear Science, vol. 43, 1996, pp. 2742-2750.

[5] Pradhan, D. K., Fault-Tolerant Computer System Design, Prentice-Hall,
Inc., New Jersey, 1996.

[6] Kubalik, P., Dobias, R., Kubatova, H.: “Dependable Design for FPGA
based on Duplex System and Reconfiguration”, In Proceedings of 9th
Euromicro Conference on Digital System Design, Los Alamitos: IEEE
Computer Society, 2006, pp. 139-145.

[7] Kubalík, P., Fiser, P., Kubátová, H.: “Minimization of the Hamming
Code Generator in Self Checking Circuits”, Proceedings of the
International Workshop on Discrete-Event System Design - DESDes'04.
Zielona Gora: University of Zielona Gora, 2004, pp. 161-166.

[8] Kafka L., Kubalík P., Kubátová H., Novák O.: “Fault Classification for
Self-checking Circuits Implemented in FPGA”, Proceedings of IEEE
Design and Diagnostics of Electronic Circuits and Systems Workshop.
Sopron University of Western Hungary, 2005, pp. 228-231.

[9] Kafka, L., Novak, O.: “FPGA-based fault simulator”, In Proceedings of
the 2006 IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems DDECS2006, CTU Prague , vol. 1, pp. 274-278.

[10] Kastensmidt, de L., G., F., Neuberger, G., Hentschke, F., R., Carro, L.,
Reis, R.: "Designing Fault-Tolerant Techniques for SRAM-Based
FPGAs", IEEE Design and Test of Computers ,vol. 21, no. 6, pp. 552-
562, November/December, 2004.

[11] Lima, F., Carro, L., Reis, R.: “Designing Fault Tolerant Systems into
SRAM-based FPGAs” In Proceedings of the 40th Design Automation
Conference, DAC'03, pp. 650, June 2003.

[12] Yu, S.-Y., McCluskey, E., J.: "Permanent Fault Repair for FPGAs with
Limited Redundant Area", In Proceedings of the IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, DFT01,
pp. 125, 2001.

[13] Mitra, S., Huang, W.-J., Saxena, R., N., Yu, S.-Y., McCluskey, J., E.:
“Reconfigurable Architecture for Autonomous Self-Repair”, IEEE
Design and Test of Computers, pp. 228-240, May 2004.

