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Abstract – The implementation and the fault simulation 
technique for the highly reliable digital design using two FPGAs 
under a processor control is presented. Two FPGAs are used for 
duplex system design, each including the combination of totally 
self-checking blocks based on parity predictors to obtain better 
dependability parameters. Combinatorial circuit benchmarks 
have been considered in all our experiments and computations. A 
Totally Self-Checking analysis of duplex system is supported by 
experimental results from our proposed FPGA fault simulator, 
where SEU-fault resistance is observed. Our proposed hardware 
fault simulator is compared also with the software simulation. An 
area overhead of individual parts implemented in each FPGA is 
also discussed. 

I. INTRODUCTION 

FPGAs are based on SRAM memories sensitive to Single 
Even Upsets [1, 2, 3] (SEUs), therefore simple usage of FPGA 
circuits in mission critical applications without any method of 
SEUs detection is practically impossible. SEUs can change the 
content of the embedded memory or Look-up Tables (LUTs) 
used in the design. These changes are not detectable by off-
line tests; therefore appropriate CED techniques have to be 
used. The probability of a SEU occurrence in the random 
access memory (RAM) is described in [4]. 

The term dependability is used to encapsulate the concepts 
of reliability, availability, safety, maintainability, 
performability, and testability [5]. Availability computation to 
compare modified duplex system (MDS) with standard duplex 
system is described in [6]. 

This paper comprises partial research results based on 
software and hardware simulation experiments presented in 
[8]. Some techniques of software simulation and hardware 
emulation are described in [9]. 

The TMR structure is unsuitable when a high area overhead 
is unacceptable. Some hybrid architecture must be used. TMR 
architecture and a hybrid system, e.g., the modified duplex 
system with a comparator and some CED technique are 
compared in [10, 12]. A technique based on Duplication With 
Comparison (DWC) and the Concurrent Error Detection 
(CED) technique are described in [11, 13]. 

The structure of the paper is following: the basic 
classification of faults is presented in Section 2. A brief 
overview of our duplex system is shown in Section 3. Our 
proposed hardware emulator structure is presented Section 4. 

An implementation of this emulator is described in Section 5. 
Section 6 summarizes results obtained by both hardware and 
software fault simulations and Section 7 concludes the paper. 

II. FAULTS CLASSIFICATION  

There are three basic quantitative criteria in a CED field: 
Fault Security (FS), Self Testing (ST) and Totally Self-
Checking (TSC) properties. To determine whether the circuit 
satisfies the TSC property, faults have to be selected to one of 
four classes A, B, C or D according [8]. Classification of each 
fault into one of previous 4 classes can be used to decide, 
whether or how much the circuit satisfies the FS, ST and TSC 
properties. 

III. MDS ARCHITECTURE 

Our previous results [7] show, that satisfying fully TSC 
property with low area overhead is difficult, so we proposed a 
new structure based on two FPGAs, as shown on Fig. 1. 
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 Fig. 1. MDS architecture 

The probability of the information correctness depends on 
the FS property. When the FS property is satisfied only to 
75%, the correctness of the checking information is also 75%. 
It means that the signal “OK” give a correct information for 



75% of occurred errors (the same probabilities for both signals 
“OK” and “FAIL”). 

Two Comaparators have to be added to increase the 
dependability parameters, one for each FPGA. The comparator 
compares outputs of both FPGAs. The fail signal is generated 
when the output values are different. This information is not 
sufficient to determine, which TSC circuit is wrong. 
Additional information to mark out the wrong circuit is 
generated by the original TSC circuit. In a case when outputs 
are different and one of the TSC circuits signalizes fail 
function, the wrong FPGA is correctly recognized. The 
reconfiguration process is initiated after a fault is detected. 
MDS architecture is described in greater detail in [6]. 

IV. OUR HARDWARE EMULATOR 

The hardware emulator was used to emulate SEU faults in 
FPGAs. These faults are converted into bitstream faults in the 
tested circuit. Moreover, the fault emulation in the FPGA 
gives us possibility to test bridging faults and opens in the 
interconnection network. More accurate TSC parameters can 
be obtained from fault injection into implemented design. 

The hardware emulator presents a collection of the software 
tools and Atmel AT40K testing board. The software tools are 
used to convert benchmarks from “.pla” format to “.vhdl” 
format. These software tools also allow the self-checking 
modification of the original circuit. The synthesis and the 
mapping process are fulfilled manually by Atmel FPSLIC 
design tool. The final bitstream is put into Atmel FPGA. In 
our software tool the complete bitstream is analyzed and areas 
concerning the fault injection selected. The selection has to be 
done in software due to limited capacity of SRAM in AVR, 
which can not hold the whole bitstream. 

V. IMPLEMENTATION OF BENCHMARKS TESTING IN FPGA 

Our hardware emulator (see Fig. 2) is structurally based on 
the schematic diagram of the fault classification presented in 
[8]. 

 The hardware part of emulator is based on Atmel FPSLIC 
development board. It is divided into AVR part and FPGA 
part, see Fig. 2. The AVR controls the test process and 
reconfiguration. The partial bitstream concerning faulty areas 
is loaded into the SRAM, which is shared between AVR and 
FPGA. This bitstream is further analyzed with respect to the 
real occupation of LUTs in AVR for its reconfiguration use in 
FPGA. A correct bitmask for the test injection is obtained by 
the analysis of bitstream/LUT use. This analysis is performed 
in AVR, because it needs less computation power than the 
transfer of analysis results (considering the time of testing). 

The fault classification result can be obtained separately for 
each fault or distribution of all faults into 4 categories (see 
section 2) can be obtained as a result. The exhaustive test must 
be processed for an on-line test. The testing vectors are 
generated automatically and only a set of tested faults are 
loaded. 

 
Fig. 2. Basic hardware emulation diagram 

The reconfiguration process is performed during the idle 
phase of testing (when the previous exhaustive test is finished 
and the new one hasn’t begin) to ensure no testing during the 
reconfiguration process. The reconfiguration process begins 
by putting the FPGA into the correct state (restoring the 
bitstream from the previous fault) and than continues by 
uploading a new fault into the bitstream. 

The structure of our emulator in FPGA (see Fig. 3) needs 
the additional registers to ensure a maximal clock frequency.  

Only one-bit counters are necessary to decide the category 
which the injected fault belongs into, therefore they occupy 
only one logic cell in the FPGA structure. 
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Fig. 3. Structure of benchmark test 

Parity checkers and comparators are used both in the 
hardware emulator (non-TSC versions) and in a dependable 
system based on MDS architecture. Therefore special attention 
to them will be paid. The area occupied by n-long vector in 
FPGA with p-input can be expressed by the formula: 
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, where M is the number of LUTs used. 
The solution presented above is fulfilled for even parity 

checker realizing only “CheckOK” signal. The odd parity 
checker must be used to generate “CheckFAIL” signal. These 
signals together form the TSC version of a checker, under the 
condition that they don’t share any logic between them. The 
occupied area of the even and odd parity is equivalent. The 
number of LUTs M used in AT40K for even parity checker is: 
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, where M is the number of LUTs and n is the number of 
inputs. 

The comparator is used to analyze whether the primary 
output is correct. In the final solution, the comparator is used 
only for outputs leaving an FPGA. The comparator can be 
divided into 2 phases: a) comparing pairs of input (producing 
sub-equals iii srse ⊕= )  and b) final collecting of  sub-

equals (into equal ∏=
i

iseeq ). 

The calculation of the area occupied by a comparator must 
consider the architecture of a logic cell, especially the number 
of inputs to LUT. It is hard to map sub-equals to a LUT with 
the odd number of inputs. Only even-input LUTs are 
optimally used for sub-equal functions. The area occupied by 
the checker and the comparator in our hardware emulator is 
only half-size, because non-TSC versions are present. The 
problem of AND-tree of sub-equal size enumerating is similar 
to a parity tree, therefore calculation will be omitted.  

The number of LUTs M used for the comparator in worse 
case is: 
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, where M is the number of 4-input LUTs and n is the 

number of inputs. The size of checker and comparator is not 
dramatically high.  

The test is divided into two parts. These parts are composed 
from a safe test set and a risk test set. Our hardware simulator 
can test only a part of the safe test set composed mainly from 
look-up-table tests. This test set covers only 11 percents of the 
AT40K bitstream size. The risk test set is composed of 
interconnection tests and can cause shorts. To the risk test set 
consist of the interconnection between cells (23 percents), the 
interconnection inside cells (36 percents) and 30 percent 
belong to others configuration bits (for example clock 
distribution, input/output cell and RAMs).  

VI. SIMULATION RESULTS 

The simulation design methodology was used to generate 
bitstream for many MCNC benchmarks. The benchmark’s 
bitstream was loaded into Atmel FPGA. The faults were 
injected only into used parts of LUTs. The fault injection into 
unused logic would increase only number of undetected faults. 
The unused logic is generated in a case when less than 4-
inputs LUTs are used. The hidden faults can obviously occur 
in the unused logic, therefore it is not possible to detect them 
by any way.  Results of hardware fault emulation are shown in 
Table I. Here “Circuit” is benchmark name, “Inputs” and 
“Outputs” are numbers of primary inputs and primary outputs, 
“Original circuit” means a number of used LUTs for original 
circuit, “Parity generator” means a number of used LUTs for 
the parity generator, “Number of all faults” are all tested faults 
and “A, B, C, D” are classes derived by our fault 
classification. 

TABLE I  
RESULT OF FAULT SIMULATION - CLASSES 
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alu1 12 8 8 47 656 0 656 0 0 
alu2 10 8 44 47 1072 109 935 0 28 
Apla 10 12 48 25 900 141 625 5 129 
br1 12 8 50 15 810 141 456 69 144 
s1488 14 25 310 50 4286 638 3060 85 503 
s1494 14 25 276 53 3938 645 2785 67 441 
s2081 18 9 22 25 536 22 494 0 20 
s386 13 13 57 18 976 170 646 25 135 

 
Results of ST, FS properties and area occupation are shown 

in Table II., Here “Circuit” is benchmark name, “Original 
circuit” is number of used LUTs for original circuit, “Parity 
generator” is number of used LUTs for parity generator, “Area 
overhead” is area needed for parity generator in percentage, 
“TSC checker” and “TSC comparator” are numbers of used 
LUTs for TSC checker and output TSC comparator,  “ST 
coverage, FS coverage” are self-testing and fault secure 
properties in hardware emulation, “FS coverage in SW” is 
fault secure property in software simulation and “Test time” is 
time needed for full test execution in hardware emulation. 

The resulting FS property of tested circuit is higher than 
70% for all benchmarks, even better on average. The area 
overhead depends on tested benchmarks. For 50% of 
benchmarks the area overhead is less than 50%. The 
benchmarks “alu” are typical problem for single parity 
generator.  
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TABLE II  
ST AND FS PROPERTIES RESULTS 
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alu1 8 47 588 6 14 100.0 100.0 100
alu2 44 47 107 6 14 89.83 97.4 92 
apla 48 25 52.1 8 16 83.78 85.1 83 
br1 50 15 30.0 6 10 74.07 73.7 63 
s1488 310 50 16.1 16 34 83.13 86.3 86 
s1494 276 53 19.2 16 34 81.92 87.1 86 
s2081 22 25 114 6 16 95.90 96.3 96 
s386 57 18 31.6 8 18 80.02 83.6 71 

 
The software simulator is slower than the hardware 

emulator. Results of consumed time are described in Table III. 
Here “Circuit” is benchmark name, “Inputs” are numbers of 
primary inputs and primary outputs, “Software simulation” is 
time needed for full test execution in software simulation, 
“Hardware emulation” is time needed for a full test execution 
in the hardware emulation, “SW/HW time rate” is the speedup 
factor between the hardware and software simulation time. 

TABLE III  
SOFTWARE/HARDWARE SIMULATION TIME 

Circuit Inputs 
SW 

simulation 
[s] 

HW 
emulation 

[s] 

SW/HW 
time 
rate 

alu1 12 34.0 0.92 37.0 
alu2 10 9.0 0.41 22.0 
apla 10 6.0 0.34 17.6 
br1 12 18.0 1.10 16.4 

s1488 14 2406.3 23.82 101.0 
s1494 14 2518.9 21.84 115.3 
s2081 18 1217.9 49.30 24.7 
S27 7 0.1 0.03 3.3 
s386 13 677.7 2.49 272.2 
The time for reconfiguration is negligible in comparison 

with exhaustive test of circuit. All hardware simulation time 
cover testing time, reconfiguration time, reconfiguration 
preparation time and AVR overhead. The synthesis time is not 
included in results. 

VII. CONCLUSION 

The hardware fault emulator for our MDS architecture 
based on two FPGAs has been presented. In this emulator we 
are able to calculate FS, ST and TSC parameters of tested 
circuit physically mapped in the FPGA 

Experimental results of several benchmarks show 
consistency between the software fault simulation results and 
hardware fault emulation results, see Table II. 

Our future work will be dedicated to several practical case 
studies (e.g., railway applications). We will focus on the fault 
list creation, which would make shorts and opens testing 
possible, either based on the fault injection into the 
interconnection of the FPGA (the risk test set) or based on the 
transformation of the risk test set into the safe LUT testing. 
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