

Parity Codes Used for On-line Testing in FPGA
Pavel Kubalík, Hana Kubátová

This paper deals with on-line error detection in digital circuits implemented in FPGAs. Error
detection codes have been used to ensure the self-checking property. The adopted fault model is
discussed. A fault in a given combinational circuit must be detected and signalized at the time of
its appearance and before further distribution of errors. Hence safe operation of the designed
system is guaranteed. The check bits generator and the checker were added to the original
combinational circuit to detect an error during normal circuit operation. This concurrent error
detection ensures the Totally Self-Checking property. Combinational circuit benchmarks have
been used in this work in order to compute the quality of the proposed codes. The description of te
benchmarks is based on equations and tables. All of our experimental results are obtained by
XILINX FPGA implementation EDA tools. A possible TSC structure consisting of several TSC
blocks is presented.
Keywords : On-line testing, self-checking, error detection code, fault, error, FPGA

1. Introduction

The design process for FPGAs differs
mainly in the “design time”, i.e., in the time
needed from the idea to its realization, in
comparison with the design process for
ASICs. Moreover, FPGAs enable different
design properties, e.g., in-system
reconfiguration to correct functional bugs or
update the firmware to implement new
standards. Due to this fact and due to the
growing complexity of FPGAs, these circuits
can also be used in mission-critical
applications such as aviation, medicine or
space missions.

There have been many papers [1, 2]
on concurrent error detection (CED)
techniques. CED techniques can be divided
into three basic groups according to the type
of redundancy. The first group focuses on
area redundancy, the second group on time
redundancy and the third one on information
redundancy. When we speak about area
redundancy, we assume duplication or
triplication of the original circuit. Time
redundancy is based on repetition of some
computation. Information redundancy is
based on error detecting (ED) codes, and
leads either to area redundancy or time
redundancy. Next, we will assume the
utilization of information redundancy (area
redundancy) caused by using ED codes.

The process when high-energy
particles impact sensitive parts is described
as a Single Event Upset (SEUs) [3]. SEUs
can lead to bit-flips in SRAM. The FGPA
configuration is stored in SRAM, and any
changes of this memory may lead to a
malfunction of the implemented circuit.
Some results of SEU effects on FPGA
configuration memory are described in [4].
CED techniques can allow faster detection of
a soft error (an error which can be corrected
by a reconfiguration process) caused by an
SEU. SEUs can also change values in the
embedded memory used in the design, and
can cause data corruption. These changes are
not detectable by off-line tests, only by some
CED techniques. The FPGA fabrication
process allows the use of sub-micron
technology with smaller and smaller
transistor size. Due to this fact the changes in
FPGA memory contents, affected by SEUs,
can be observable even at sea level. This is
another reason why CED techniques are
important.

There are three basic terms in the field of
CED:

• The Fault Security (FS) property
means that for each modeled fault,
the produced erroneous output
vector does not belong to the
proper output code word.

• The Self-Testing property (ST)
means that, for each modeled fault,
there is an input vector occurring

during normal operation that
produces an output vector which
does not belong to the proper
output code word.

• The Totally Self-Checking (TSC)
property means that the circuit
must satisfy FS and ST properties.

The basic method for the proper choice of

a CED model is described in [5]. Techniques
using ED codes have also been studied by
other research groups [6, 7]. One method is
based on a parity bits predictor and a
checker, see Figure 1.

Combinational
circuit

Inputs

}
Parity

predictor

Checker

M

circuit

Output

code
word

K

Check
bits

Fig. 1: Structure of a TSC circuit

2. The fault model

All of our experiments are based on
FPGA circuits. The circuit implemented in an
FPGA consists of individual memory
elements (LUTs - look up tables). We can see
3 gates mapped into an LUT in Figure 2.

Gates mapped into LUT
0
1
•
•

15

fault
I0..3

O

LUT

0
1
•
•

15

fault
I0..3

O
0
1
•
•

15

fault
I0..3

O

LUT

Redundant fault

Figure 2. Fault model

The original circuit has two inner

nets. The original set of the test vectors
covers all faults in these inner nets. These
test vectors are redundant for an LUT. For
circuits realized by LUTs a change (a defect)
in the memory leads to a single event upset
(SEU) at the primary output of the LUT.
Therefore we can use the stuck-at fault model
in our experiments to detect SEU – only
some of the detected faults will be redundant.

Our fault model is described by a
simple example in Figure 3. Only one LUT is

used for simplicity. This LUT implements a
circuit containing 3 gates. The primary inputs
from I0 to I1 are the same as the address
inputs for the LUT. When this address is
selected its content is propagated to the
output.

We assume the following situation:
first the content of this LUT can be changed,
e.g., electromagnetic interference, cross-talk
or alpha particles. The appropriate memory
cell is set to one and the wrong value is
propagated to the output. This means that the
realized function is changed and the output
behaves as a single event upset. We can say
that a change of any LUT cell leads to a
stuck-at fault on the output according to this
example. This fault is observed only if the
bad cell is selected. This is the same situation
as for circuits implemented by gates. Some
faults can be masked and do not necessarily
lead to an erroneous output.

Due to masking of some faults, the
possibility of their appearance can occur at
the time when previously unused logic is
being used. E.g., if one bit of an LUT is
changed, the erroneous output will appear,
while the appropriate bit in an LUT is
selected by the address decoder.

0
1
1
0
•
•
1

LUT
inputs

0
1
1
0
•
•
1

LUT
inputs

Single event upset

0
0

0

0
0

0 1

1 1

faultfault

Figure 3. Fault Model – Example

In our design methodology we

evaluate FS and ST properties. For ST
properties a hidden fault is not assumed.

The evaluation of the FS property is
independent of the set of allowed input
words. If a fault does not manifest itself as an
incorrect codeword for all possible input
words, it cannot cause an undetectable error
for any subset of input words. So we can use
the exhaustive test set for combinational
circuits.

The exhaustive test set is generated to
evaluate the ST property for combinational
circuits, where the set of input words is not
defined. But in a real situation, some input

words may not occur. This means that some
faults can be undetectable. This can decrease
the final fault coverage. Therefore, the
number of faults that can be undetectable is
higher.

The fault simulation process is
performed for circuits described by netlist
(for example .edif).

3. Parity bits predictor

There are many ways to generate
checking bits. A single even parity code is
the simplest code that may be used to get a
code word at the output of the combinational
circuit. This parity generator performs XOR
over all primary outputs. However, the single
even parity code is mostly not appropriate to
ensure the TSC goal.

Another error code is a Hamming-like
code, which is in essence based on the single
parity code (multi parity code). The
Hamming code is defined by its generating
matrix. We used a matrix containing the
unity sub-matrix on the left side for
simplicity. The generating matrix of the
Hamming code (15, 11) is shown in Fig. 4.
The values aij have to be defined.

When a more complex Hamming
code is used, more values have to be defined.
The number of outputs oi used for the
checking bits determines the appropriate
code. E.g., the circuit alu1 [10] having 8
outputs requires at least the Hamming code
(15, 11). Therefore 8 data bits and 4 checking
bits are used. The definition of the values aik
is also important.

Now we present a method for
generating values aik. Let us mention the
Hamming code (15, 11) having 4 checking
bits. In our case (alu1) we have only 8 bits.
Therefore the reduced Hamming matrix must
be used.

=

4,113,112,111,11

4,23,22,21,2

4,13,12,11,1

100

010

001

aaaa

aaaa

aaaa

G

L

MOMMMOMM

L

L

Fig. 4. Generating matrix for Hamming code (15,
11)

The sub-matrix has only 8 rows and 4

columns after the reduction. We can define
eight 4-bit vectors or four 8 bit vectors. The
second case will be used here. The search for

erroneous output is a similar method to a
binary search. The first vector is composed
of log. 1s only. The last vector is composed
of log. 1s in the odd places and log. 0s in the
even places. Every vector except the first
contains the same number of 1s and the same
number of 0s. An example of the possible
content of the right part sub-matrix is shown
in Fig. 5.

1000

1010

1011

1100

1101

1110

1111

MMMM

Fig. 5. Right part of generating matrix

The number of vectors in the set is the

same as the number of rows in the
appropriate Hamming matrix. The way to
generate parity output for checking bit xk is
described by equation 1:

xk= a1ko1⊕ a2k o2⊕ ... ⊕ amkom, (1)

where o1...om are the primary outputs of the
original circuit.

4. Area overhead minimization

The benchmarks used in this paper
are described by a two-level network. The
final area overhead depends on the
minimization process. We used two different
methods in our approach. Both these methods
are based on a simple duplication of the
original circuit.

Our first method is based on a
modification of the circuit described by a
two-level network. The area of the check bits
generator contributes significantly to the total
area of the TSC circuit. As an example we
consider a circuit with 3 inputs (c, b and a)
and 2 outputs (f and e). The check bits
generator uses the odd parity code to
generate the check bits. In our example we
have only one check bit x.

Our example is shown in Table 1.
Output x was calculated from outputs e and f.
We have to generate the minimal form of the
equation at this time. We can achieve the
minimal form using methods like the

Karnaugh map or Quine-McCluskey. After
minimization we obtain three equations, one
per output (f, e and x), where x means an odd
parity of the outputs f and e. If we want to
know whether the odd parity covers all faults
in our simple combinational circuit example,
we have to generate the minimal test set and
simulate all faults in each net in this circuit.

Table. 1. Example of parity generator

c b a f e x
0 0 0 0 1 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 0 1 0
1 1 0 1 1 1
1 1 1 0 0 1

The final equations are:

e = bc + a(b + c) (2)
f = ab + c(a + b) (3)
x = bc (4)

Our second method is based on a

modification of the multi-level network. The
parity bits are incorporated into the tested
circuit as a tree composed of XOR gates. The
maximal area of the parity generator can be
calculated as the sum of the original circuit
and the size of the XOR tree.

5. Experimental Evaluation Software

Fig. 6. describes how the test is

performed for each detecting code. The
MCNC benchmarks [11] were used in our
experiments. These benchmarks are
described by a truth table. To generate the
output parity bits, all the output values have
to be defined for each particular input vector.
Only several output values are specified for
each multi-dimensional input vector, and the
rest are assigned as don’t cares; they are left
to be specified by another term. Thus, in
order to be able to compute the parity bits,
we have to split the intersecting terms, so that
all the terms in the truth table are disjoint.

In the next step, the original primary
outputs are replaced by parity bits. Two
different error codes were used to calculate
the output parity bits (single even parity code
and Hamming code). Another tool was used

in the case where the original circuit was
modified in multilevel logic. This tool is
described in [8]. Two circuits generated in
the first step (the original circuit and the
parity circuit) are processed separately to
avoid sharing any part of the circuit. Each
part is minimized by the Espresso tool [9].
The final area overhead depends on the
software that was used in this step. Many
tools were used to achieve a small area of the
parity bits generator. Only Espresso was used
to minimize the final area of the circuit
described by the two level network. In this
step the area overhead is known for
implementation to ASIC. For FPGAs the area
overhead is known after the synthesize
process has been performed.

The “pla” format is converted into the
“bench” format in the next step. The “bench”
format was used because, the tool which
generates the exhaustive test set uses this
format. An exhaustive test set has 2n patterns,
and we used it to evaluate the TSC goals.

Generate PLA

with
parity bits

PLA to BENCH
convert

Fault injection
 & Simulation

MCNC
benchmark

Fault
coverage

Test
set

original parity

original + parity

BENCH to VHDL
convert

original parity

Generate
exhaustive

test set

Synthesize VHDL
Synplify

original parity

original parity

Synthesize VHDL
Leonardo Spectrum

original
+

parity

Minimization
Espresso

original parity

Split
intersection

terms

Fig. 6. Design scheduling of self-checking

circuit

Another conversion tool is used to

generate two VHDL codes and the top level.
The top level is used for incorporating
original and parity circuit generator. In the
next step, the synthesis process is performed
by Synplify [12]. The constraints properties
set during the synthesis process express the
area overhead and the fault coverage. If the
maximum frequency is set too high, the
synthesize process causes hidden faults to
occur during the fault simulation. The hidden

faults are caused by circuit duplication or by
the constant distribution. The size of the area
overhead is obtained from the synthesis
process. The final netlist is generated by the
Leonardo Spectrum [13] software. The fault
coverage was obtained by simulation using
our software.

6. Software solution description

Special tools had to be developed to

evaluate the area overhead and fault
coverage. In addition to some commercial
tools such as Leonardo Spectrum [13] and
Synplify [12] we used format converting
tools, parity circuit generator tools and
simulation tools.

At first, area minimization and term
splitting is performed for the original circuit
by BOOM [10]. The Hamming code
generator (or single parity generator) is
generated by the second software. These two
circuits are minimized again with Espresso.
The next two tools convert the two-level
format into a multi level format. The first
converts a “pla” file to “bench”, and the
second converts “bench” to VHDL. The
second software is used for generating the
final circuit in the “bench” format for further
usage in the exhaustive test set generator.
The format converting software and parity
generator software were written in Microsoft
Visual C++. The netlist fault simulator was
written in Java. The parser source code was
used for parsing the netlist that is generated
by the two commercial tools described
above.

7. Experiments

The combinational MCNC

benchmarks [11] were used for all the
experiments. These benchmarks are based on
real circuits used in large designs.

Since the whole circuit will be used
for reconfiguration in FPGA, only small
circuits were used. Real designs having a
large structure must by partitioned into
several smaller parts. For large circuits, the
process of area minimization and fault
simulation takes a long time. This
disadvantage prevents us examining more
methods of designing the check bits
generator.

The evaluated area, FS and ST
properties depend on circuit properties such
as the number of inputs and outputs, and the
circuit complexity. The experimental results
show that a more important property is the
structure of the circuit. Two basic properties
are described in Table 2.

Table 2 Description of tested benchmarks

Circuit Inputs Outputs
alu1 12 8
apla 10 12
b11 8 31
br1 12 8
al2 16 47

alu2 10 8
alu3 10 8
c17 5 2

In the first set of experiments our goal

was to obtain one hundred percent of the FS
and ST property, while we measured the area
overhead. In this case, the maximum of the
parity bits was used.

Generate BENCH
with

parity bits
PLA to BENCH

convert

MCNC
benchmark

Split
intersection

terms

Split
intersection

terms

originaloriginal parityparity

Generate PLA
with

parity bits

Generate PLA
with

parity bits

originaloriginal

originaloriginal parityparity

PLA to BENCH
convert

originaloriginal parityparity

a) b)

Minimization
Espre sos

originaloriginal parityparity

Minimization
Esspreso

originaloriginal

Fig. 7. Two different flows for creating a parity
generator

This task was divided into two
experiments (Fig. 7). In the first experiment
the two-level network was being modified
(Fig. 7a). The results are shown in Table 3.

Table 3 Hamming code – PLA

Circuit
Parity
nets

Original
[LUT]

Parity
[LUT]

Overhead
[%]

ST FS

alu1 4 8 84 1050 100 100
apla 5 45 105 233 100 98,3
b11 6 38 38 100 100 99,7
br1 4 50 59 118 100 95,9
al2 7 51 54 106 100 98,8

alu2 4 30 127 423 100 100

alu3 4 28 94 336 100 100
c17 2 2 3 150 100 100

The ST property was fulfilled in 7

cases and the FS property was fulfilled in 4
cases. The area overhead in many cases
exceeds 100%. This means that the cost of
one hundred percent fault coverage is too
high. In these cases the TSC goal is satisfied
for most tested benchmarks.

We then used an old method, where
the original circuit described by a multi-level
network is modified by additional XOR logic
(Fig. 7b) [8].

Table 4 Hamming code – XOR

Circuit
Parity
nets

Original
[LUT]

Parity
[LUT]

Overhead
[%]

ST FS

alu1 4 8 13 163 100 100
apla 5 45 114 253 100 97,2
b11 6 38 73 192 100 99
br1 4 50 85 170 100 96,5
al2 7 52 109 210 100 99,1

alu2 4 30 52 173 100 100
alu3 4 28 44 157 100 100
c17 2 2 3 150 100 100

The results obtained from this

experiment are shown in Table 4. The FS and
the ST properties were fulfilled in the same
cases as in the first experiment, but the
overhead is in some cases smaller.

In the second set of experiments we
tried to obtain a small area overhead, and the
fault coverage was measured. In this case the
minimum of parity bits is used (single even
parity).The experiments are divided into two
groups, a) and b), Fig. 7. The procedure is the
same as described above.

In the first experiment the two-level
network of the original circuit was modified
(Fig. 7a). The results are shown in Table 5.

Table 5. Single even parity – PLA

Circuit Parity
nets

Original
[LUT]

Parity
[LUT]

Overhead
[%]

ST FS

alu1 1 8 271 3388 100 98,9
apla 1 46 23 50 99,5 82,6
b11 1 37 3 8 89,9 77,3
br1 1 54 10 19 86,9 62,1
al2 1 52 4 8 97,3 91,7

alu2 1 29 47 162 100 91,2
alu3 1 26 32 123 100 92
c17 1 2 2 100 100 100

The ST property is achieved in four
cases, but the area overhead is smaller in five
cases. The FS property is satisfied in one
case.

In the last experiment, we have
modified the circuit described by a multilevel
network (Fig. 7b). The ST property was
satisfied in four cases and the FS property in
two cases. The area overhead is higher than
100% for most benchmarks, but the fault
coverage did not increase, Table 6.

Table 6. Single even parity – XOR

Circuit Parity
nets

Original
[LUT]

Parity
[LUT]

Overhead
[%]

ST FS

alu1 1 8 10 125 100 100
apla 1 46 56 122 99,7 87,2
b11 1 37 36 97 93,9 81,4
br1 1 54 61 113 92,7 69
al2 1 52 23 44 97,9 93,2

alu2 1 29 44 152 100 91,1
alu3 1 26 39 150 100 91,6
c17 1 2 2 100 100 100

8. Huge design

Our previous results show that it is in
many cases too difficult to achieve TSC
goals with minimal area overhead [8]. A way
to detect and localize the fault part of the
circuit has to be proposed. Assuming that the
TSC goals cannot be higher than 90%, the
area overhead can be rapidly decreased, and
other methods to cover and localize the fault
can be used. On-line testing methods can
only detect faults. The localization process
must exploit some other methods for off-line
testing. However, neither on-line nor off-line
tests increase the reliability parameters. The
reliability mostly decreases due to the larger
area occupied by the TSC circuit than by the
original circuit.

Therefore we propose a
reconfigurable system to increase these
parameters. Each block in our design is
designed as a TSC, and we have been
working on a methodology to satisfy TSC
goals for the whole design and to design
highly reliable systems. The way to connect
all TSC blocks is shown in Figure 8. The
main idea is based on detection of the error
code word generated in any block. The
detecting process is moved from the primary
outputs to the primary inputs of the following
circuit. The interconnections of all individual

blocks play an important role with respect to
the TSC property of the whole circuit. A bad
order of the connections between the inner
blocks leads to lower fault coverage.
Additional logic has to be included into the
control arrangement of the implemented
blocks with respect to the way the automatic
tools handle the interconnection.

In our structure we can assume six
places where an error can be observable. We
assume, for simplicity that an error that
occurred in the check bit generator will be
observable at the parity nets (number 1) and
error occurred in the original circuit will be
observable at the primary outputs (number
5).

The checker in block N will detect the
error if it occurs in net number 1, 2, 4 or 5. If
the error occurs in the net number 3 or 6, the
error will be detected in the next checker
(N+1).

All our experiments were applied to
combinational circuits only. The same
techniques can be used for a sequential
circuit, because these circuits can be divided
into simple combinational parts separated by
flip-flops. The finite state machine can be
divided into two parts: the first part covers
the combinational logic from inputs to flip-
flops (with feedback), while the second part
covers the combinational logic from flip-
flops to outputs (and the parts connected
directly from the input to the output).

Checker

Primary
output

Primary
input

Totally Self-Checking circuit N-1

Output
Check bits
(circuit N-1)

OK
(circuit N-2)

FAIL
(circuit N-2)

Input
Check bits
(circuit N-2) Checker

Primary
output

Primary
input

Totally Self-Checking circuit N

Output
Check bits
(circuit N)

OK
(circuit N-1)

FAIL
(circuit N-1)

Input
Check bits
(circuit N-1)

Original
combinational

circuit

Original
combinational

circuit

Check bits
generator

Check bits
generator

1

4

2

5

6

3

Fig. 8 Proposed structure of TSC circuits implemented in FPGA

9. Conclusion

The paper describes one part of the

automatic design process methodology for a
dynamic reconfiguration system. We
designed concurrent error detection (CED)
circuits based on FPGAs with a possible
dynamic reconfiguration of the faulty part.
The reliability characteristics can be
increased by reconfiguration after the error
detection. The most important criterion is the
speed of the fault detection and the safety of
the whole circuit with respect to the
surrounding environment.

In summary, FS and ST properties
can be satisfied for the whole design,
including the checking parts. This is achieved

by using more redundancy outputs generated
by the special codes.

A Hamming-like code can be used as
a suitable code to generate check bits. The
type depends on the number of outputs and
on the complexity of the original circuit [9].

More complex circuits need more
check bits. We would like to reduce the
duplicated circuit and compute the fault
coverage again. We have proposed a new
solution of the check bits generator design
method. Because we want to increase the
reliability characteristics of the circuit
implemented in FPGAs, we have to modify
the circuits at the netlist level.

All of our experiments apply
combinational circuits only. Sequential
circuits can be disjoint to the simple

combinational parts separated by flip-flops.
Therefore this restriction only to
combinational circuits does not reduce the
quality of our methods and experimental
results.

Our future improvements will involve
d discovering closer relations between real
FPGA defects and our fault models.
Minimization of the whole TSC design to
obtain the lowest area overhead has been
under intensive experimentation. We are also
working intensively on the appropriate
decomposition of the designed circuit.

References

[1] Mohanram, K., Sogomonyan, E. S.,

Gössel, M., Touba, N. A.: Synthesis of
Low-Cost Parity-Based Partially Self-
Checking Circuits, Proceedings of the
9th IEEE International On-Line Testing
Symposium, 2003, pp. 35.

[2] Drineas, P., Makris, Y.: Concurrent
Fault Detection in Random
Combinational Logic, In: Proceedings of
the IEEE International Symposium on
Quality Electronic Design (ISQED),
2003, pp. 425-430.

[3] QuickLogic Corporation.: Single Event
Upsets in FPGAs, 2003,
www.quicklogic.com

[4] Bellato, M., Bernardi, P., Bortalato, D.,
Candelaro, A., Ceschia, M., Paccagnella,
A., Rebaudego, M., Sonza Reorda, M.,
Violante, M., Zambolin, P.: Evaluating
the effects of SEUs affecting the
configuration memory of an SRAM-
based FPGA Design Automation Event
for Electronic System in Europe 2004,
pp. 584-589.

[5] Mitra, S., McCluskey, E. J.: Which
Concurrent Error Detection Scheme To
Choose? Proc. International Test Conf.,
2000, pp. 985-994.

[6] Bolchini, C., Salice, F., Sciuto, D.:
Design Self-Checking FPGAs through
Error Detection Codes, 17th IEEE
International Symposium on Defect and
Fault Tolerance in VLSI Systems
(DFT'02), 2002, pp. 60.

[7] Bolchini, C., Salice, F., Sciuto,
D.,Zavaglia R.: An Integrated Design
Approach for Self-Checking FPGAs,
18th IEEE International Symposium on

Defect and Fault Tolerance in VLSI
Systems (DFT'03), 2003, pp. 443.

[8] Kubalík, P. and H. Kubátová (2003).
Design of Self Checking Circuits Based
on FPGA. In: Proc. of 15th International
Conf. on Microelectronics, pp. 378-381.
Cairo, Cairo University.

[9] Brayton, R. K. et al. (1984). Logic
minimization algorithms for VLSI
synthesis, Boston, MA, Kluwer
Academic Publishers, 192 pp.

[10] Hlavička, J. and P. Fišer (2001): BOOM
- a Heuristic Boolean Minimizer. Proc.
International Conference on Computer-
Aided Design ICCAD 2001, San Jose,
California (USA), pp. 439-442.

[11] S. Yang.: Logic synthesis and
optimization benchmarks user guide.
Technical Report 3, Microelectronics
Center of North Carolina, 1991

[12] http://www.synplicity.com/
[13] http://www.mentor.com/

