User Tools

Site Tools


project:proj_list

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
project:proj_list [2014/03/06 14:13]
xkubalik [Available works]
project:proj_list [2024/01/18 10:14]
xkubalik [Current projects]
Line 1: Line 1:
 ====== All projects ====== ====== All projects ======
-===== Actual works =====+===== Current projects ​=====
  
-  * **Malé procesory AVR pro FPGA obvody ​(Small soft processors AVR for FPGA circuits)** (BP Haken Lukáš) - Prostudujte ​existující řešení ​procesorů popsaných v jazyce VHDLZaměřte se hlavně na procesory AVR firmy Atmel. Srovnejte jejich parametry. Na základě srovnání implementujte jeden typ procesoru do FPGA obvodu. Proveďte tyto úkoly: +  * **Dálkově ovládaný analogový zesilovač zvuku ovládaný s pomocí IR ovladače ​(Remote controlled analog sound amplifier using an IR controller)** (BP - Vacek Kryštof) 
-    * Vyberte vhodný procesor ​ohledem na minimální spotřebu zdrojů FPGA a možnost využití stávajících nástrojů firmy Atmel umožňující programování v jazyce C+    * Prozkoumejte ​existující řešení. 
-    * K procesoru vytvořte několik rozhraní umožňujících komunikaci s periferiemi desky XILINX Spartan 3E+    * Analyzujte technologii dálkového ovládání ​pomocí IR ovladače
-    * Vytvořte knihovnu v jazyce C pro ovládání ​základních periferií+    * Navrhněte vlastní zařízení založené na platformě ATmega
-    * Analyzujte možnosti rozšíření paměti tohoto procesoru+    * Zařízení bude splňovat tyto požadavky:​ 
-    * Pro přípravek firmy XILINX Spartan 3E vytvořte vzorovou aplikaci využívající všechny funkce vytvořené knihovny.+      - Ovládání bude prováděno,​ jak pomocí IR dálkového ​ovládání, tak na samotném zařízení s pomocí tlačítek
 +      - Zařízení bude zobrazovat aktuální stav a nastavení zesilovače
 +      - Zařízení bude umožňovat výběr mezi různými vstupy. 
 +      - Navržené řešení zrealizujte a řádně otestujte.
  
 +  * **Kamerové zařízení pro monitorování vzdáleného prostoru pomocí ESP32-CAM a SIM800L modulů (Camera device for remote space monitoring using ESP32-CAM and SIM800L modules)** (BP - Staes Adam)
 +    * Prozkoumejte existující řešení.
 +    * Navrhněte vlastní zařízení založené na platformě esp32-cam.
 +    * Zařízení bude splňovat tyto požadavky:
 +      - pořízení snímku při detekci pohybu na SD kartu,
 +      - se zařízením bude možné komunikovat přes SMS příkazy a síť WIFI,
 +      - zařízení umožní odeslání pořízené fotografie na email přes GPRS GSM sítě,
 +      - k určení času pořízení snímku bude řešení obsahovat RTC obvod.
 +    * Navržené řešení zrealizujte.
 +    * Součástí realizace bude vytvoření plošného spoje a vhodného pouzdra.
 +    * Výsledné řešení řádně otestujte.
  
-  * **Procesory pro FPGA obvod (Soft processors for FPGA circuits)** - (BP Filip Matouš) - Prostudujte existující řešení procesorů popsaných v jazyce VHDL. Srovnejte jejich parametry. Na základě srovnání implementujte jeden typ procesoru do FPGA obvodu. Proveďte tyto úkoly: 
-    * Vyberte vhodný procesor s ohledem na minimální spotřebu zdrojů FPGA a možnost programování v jazyce C. 
-    * Vytvořte knihovnu pro ovládání základních periferií. 
-    * Rozšiřte základní paměť zvoleného procesoru. 
-    * Pro přípravek firmy XILINX Spartan 3E vytvořte vzorovou aplikaci využívající všechny funkce vytvořené knihovny. 
  
 +  * **Nástroje pro podpora výuky bezpečnostních kódů v prostředí Wolfram Mathematica (Tools to support the teaching of security codes in the Wolfram Mathematica environment)** (BP - Linhartová Helena)
 +    * Prozkoumejte existující řešení nástrojů vhodných k výuce bezpečnostních kódů.
 +    * Analyzujte problémy studentů při výuce bezpečnostních kódů.
 +    * Zaměřte se zejména na tyto kódy: sudá parita, křížová parita, Hammingův kód, rozšířený i zkrácený Hammingův kód, cyklický kód, součinový kód a RM kód.
 +    * Navrhněte vlastní nástroje vhodné k výuce těchto kódů.
 +    * Zaměřte se zejména na oblast generování,​ dekódování a opravy těchto kódů.
 +    * Nástroje budou umožňovat generovat nejen výukové notebooky pro program Wolfram Mathematica,​ ale i VHDL kódy a testbenche pro lepší představu jejich implementace v hardware.
 +    * Nástroj bude podporovat i vložení chyby a jeji opravu.
 +    * Navržené řešení realizujte a řádně otestujte.
  
-  * **Konstrukce vícerotorového dronu pro průzkum terénu (Quadrocopter for terrain survey)** - (DP Halák Jakub) - Prozkoumejte existující řešení. Navrhněte a zrealizujte vlastní létající zařízení. Zařízení by mělo být schopno komunikovat s Raspberry PI.  Zařízení bude využívat 4 motory, gyroskop, akcelerometr,​ GPS, magnetometr,​ barometr a sonar. Postup prací: ​ 
-    * Navrhněte a sestavte mechanickou konstrukci. 
-    * Navrhněte a zrealizujte základní řídicí desku s mikrořadičem pro ovládání všech dostupných periferií. 
-    * Vytvořte knihovnu pro mikrořadič umožňující komunikaci s periferiemi. Napište základní program pro létání. 
-    * Vytvořte demo aplikaci k ověření funkčnosti celého zařízení a jeho periferií. 
  
-  * **Mobilní robot schopný pohybu ve venkovním prostředí ​(Mobile outdoor robot)** (DP Horák Radim) - Navrhněte zrealizujte konstrukci mobilního robota, který bude bezdrátově ovládán s pomocí RC vysílačkyRobot bude obsahovat měřič vzdálenosti,​ gyroskop, akcelerometrmagnetometrGPS, čidlo teploty ​vlhkostiNižší vrstva ​řízení robota bude realizována mikrořadičem. ​ Zařízení ​bude podporovat ​ipojení procesoru RaspberryPI ​pro realizaci složitějších příkazůPostup prací: +  * **Programovatelná elektronická zátěž ​(Programmable electronic load)** (BP - Pánek Miloš) 
-    ​* Navrhněte a zrealizujte konstrukci šestikolového robota+    ​Prozkoumejte existující řešení programovatelné elektronické zátěže. 
-    ​* Navrhněte zrealizujte ​řídicí desku pro ovládání ​všech periferií+    - Analyzujte problémy současných řešení ​navrhněte vlastní řešení. 
-    ​* Pro použitý mikrořadič vytvořte knihovny pro ovládání periferií+    - Navržené ​řešení bude podporovat tyto režimy: stálý proudstálý odporstálý výkon ​stálé napětí. 
-    ​* Pro robota napište testovací demo aplikaci využívající všechna periférie. +    - Programovatelná zátěž bude splňovat tyto požadavky:​ 
-    * Proveďte testy k otestování správné funkce robota pro různá prostředí.+      - nastavení všech parametru zátěže přes rozhraní na samotném zařízení
 +      - komunikace s PC aplikací ​es bluetooth, USB a wifi, 
 +      - záznam naměřených dat lokálně na SD kartu, 
 +      - jednoduchý protokol ​pro komunikaci s PC s možným rozšířením pro další funkcionalitu
 +    ​- Pro PC navrhněte a naprogramujte aplikaci v jazyce C# s grafickým rozhraním
 +    ​- Aplikace v PC bude umožňovat nastavit všechny parametry zátěže, včetně průběžného sledování naměřených hodnot ​jejich zobrazení přímo aplikaci.  
 +    ​- Parametry zátěže bude možné v průběhu měření měnit podle předem nastavených hodnot
 +    ​- Navržené řešení zrealizujte a řádně otestujte.
  
-  * **Aplikace pro zkoušení slovní zásoby na platformě Android (Vocabulary testing application for OS Android)** (BP - Mayerová Eva) - Proveďte rešerší existujících aplikací. Zaměřte se hlavně na anglické jazykové slovníky. Navrhněte aplikací pro zkoušení anglické slovní zásoby, a to tak, aby splňovala základní požadavky kladené na tento typ slovníku. Aplikace bude umožňovat přidávání slovíček a jejich zkoušení. Výsledek zkoušení bude zaznamenán a graficky zpracován. Do slovníku bude možné přidávat slovíčka a fráze. Aplikace bude umožňovat import textového popisu slovíček ze souboru. Aplikace bude umožňovat rozpracovat několik skupin slovní zásoby. Každá skupina bude reprezentována vlastním souborem obsahujícím aktuální stav rozpracovanosti zkoušení/​učení. Postup prací: 
-    * Proveďte rešerši existujících řešení, popište výhody a nevýhody. 
-    * Navrhněte grafickou stránku aplikace. 
-    * Vytvořte samotnou aplikaci tak, aby umožňovala učení a zkoušení slovní zásoby aspoň třemi způsoby. 
-    * Navrženou aplikaci otestuje a vytvořte několik vzorových souborů s anglickými slovíčky. ​ 
  
-  * **Softwarové ​řešení ​pro quadrokoptéru s řídicí jednotkou Raspberry Pi (Software library ​for quadcopter based on Raspberry Pi)** (BP - Kukačka Jiří) - Prostudujte ​existující řešení. ​Vyberte vhodný realtimový operační systém pro ovládání quadrokoptéry na platformě Raspberry Pi. Vytvořte knihovnu funkcí v programovacím jazyce C pro ovládání jednotlivých periferií potřebných pro chod quadrokoptéry. Postup prací: +  * **Zařízení ​pro ovládání základních periferií připojených k FPGA obvodu ​(Device ​for controlling basic peripherals connected to the FPGA circuit)** (BP - Šebek Michal) 
-    * Vyberte vhodný operační systémporovnejte RTOS vs GPOS+    ​Prozkoumejte ​existující řešení ​ovládání periferií z FPGA obvodu firmy XILINX. 
-    ​Navrhněte ​schéma propojení periferií k řídící jednotce, schéma komunikace s periferií ​a struktury ​řídicího programu+    - Zaměřte ​se zejména na tyto periférieOLED displej, alfanumerický displej, tlačítkapřepínače,​ led diody
-    ​* Vytvořte jádro řídicího programu+    ​Navrhněte ​vlastní knihovnu zaměřenou na ovládání ​periferií ​zejména přes sběrnici I2C
-    ​* Vytvořte knihovnu ​pro ovládání specifických periferií potřebných pro správné fungování quadrokoptéry+    ​- Navrženou knihovnu zrealizujte a řádně otestujte
-    ​* Analyzujte možnosti využití algoritmů ​pro řízení ​navigaci v prostoru+    ​- Pro demonstraci správné funkce periférií napište obslužnou aplikaci ​pro FPGA Artix-7
-    ​* Vytvořte praktickou ukázku běhu programu využívající všechny dostupné periférie potřebné pro řízení quadrokoptéry.+    ​- Aplikace bude obsahovat menu pro volbu testování periférií ​nastavení obsahu registrů
 +    ​- Výsledné ​řešení řádně otestujte
  
-  * **Rozšíření síťového simulátoru o připojení do reálné sítě (Network simulation module used to connect to real network)** (BP - Mach Václav) - Prostudujte existující simulátor počítačové sítě [1, 2]. Pro tento simulátor napište modul v jazyce Java, který bude umožňovat propojení simulátoru s reálnou sítí za použití existujícího ethernetového rozhraní. Postup prací: 
-    * Prostudujte existující řešení [1, 2]. 
-    * Prozkoumejte možnosti řešení pro OS Linux a OS Microsoft Windows. 
-    * Navrhněte a napište modul pro připojení simulátoru do reálné sítě a to tak, že modul bude komunikovat na linkové úrovni. 
-    * Vytvořené řešení začleňte do již existujícího simulátoru [1, 2]. 
-    * Napište návod pro použití simulátoru a to včetně vytvořeného modulu. 
-    * Vytvořte příklad použití vytvořeného modulu. 
-    * Výsledné řešení včetně návodu otestujte. 
-    * [1] Pitřinec, T.,.: „Síťový simulátor pro výukové účely na bázi prvků OS Linux“, DP – 2012, ČVUT FIT. 
-    * [2] Švihlík, M.,:​“Vizualizace virtuální počítačové sítě“, DP-2012, ČVUT FIT. 
  
-  * **Rozšíření síťového simulátoru o možnost použití konfiguračních souborů pro konfiguraci síťových prvků ​(Network simulation module used to extend simulator property with configuration file)** (BP Michal Horáček) - Prostudujte existující simulátor počítačové sítě [1, 2, 3]. Pro tento simulátor napište modul v jazyce Java, který bude umožňovat použití konfiguračního souboru ​pro konfigurací vlastností síťového prvku. Postup prací: +  * **Multiplatformní nástroj pro odposlech dat z rádiového přenosu pomocí SDR (A multi-platform wireless data sniffing tool using SDR)** (DP Šimůnek Martin) 
-    * Prostudujte existující ​řešení [1, 2, 3]+    ​Analyzujte technologii SDR(softwarově definovaného rádia) a jeho možnosti pro odchytávání bezdrátových zařízení
-    ​* Prozkoumejte možnosti konfigurace sítě na systémech Debian/​Ubuntu. +    ​- Zaměřte se zejména ​na zařízení pracující v pásmu 433MHz ​868MHz
-    * Navrhněte a vytvořte modul pro možnost konfigurace síťového rozhraní, DHCP serveru ​DNS serveru s pomocí konfiguračních souborů+    ​- Prozkoumejte existující ​řešení ​pro odchytávání a analýzu těchto ​zařízení
-    ​* Vytvořené ​řešení začleňte do již existujícího simulátoru [1, 2, 3]+    ​- Využijte SDR navrhněte nástroj pro odposlech dat přenášených rádiovým signálem v pásmu 433MHz a 868 MHz
-    ​* Napište návod pro použití simulátoru ​to včetně vytvořeného modulu+    ​- Nástroj by měl být tvořen knihovnou a grafickým rozhraním pro odposlech a zpracování naměřených dat
-    ​* Vytvořte příklad použití vytvořeného modulu+    ​- Podporována budou zejména zařízení typu: bezdrátový teplotní senzor, bezdrátové senzory v automobilu a bezdrátové měřičtepla domácnostech.  
-    ​* Výsledné ​řešení ​včetně návodu otestujte+    ​- Nastroj bude umožňovat analyzovat přenosa to jak nešifrovanýtak i šifrovaný
-    ​* [1] PitřinecT.,.: „Síťový simulátor pro výukové účely na bázi prvků OS Linux“, DP – 2012, ČVUT FIT+    ​- Pokud bude k dispozici klíč pro dešifrováníbude nástroj umožňovat i dešifrovánía to zejména pro bezdrátové měřiče tepla v domácnostech
-    ​* [2] ŠvihlíkM.,:​“Vizualizace virtuální počítačové sítě“, DP-2012, ČVUT FIT+    ​- Navržené řešení zrealizujte a řádně otestujte.
-    ​* [3] Lukáš, M.,:“ Podpůrné komponenty simulátoru počítačové sítě“, DP-2012, ČVUT FIT.+
  
 +  * **Zařízení pro ovládání aplikace Adobe Lightroom s pomocí hardwarového ovladače (A device to control Adobe Lightroom using a hardware driver)** (BP - Macháček Vitězslav)
 +    - Prozkoumejte existující řešení umožňující ovládání aplikace Adobe Lightroom s hardwarového ovladače.
 +    - Pomocí metod softwarového inženýrství navrhněte vlastní řešení vyhovující níže uvedeným požadavkům.
 +    - Navrhněte vlastní zařízení fungující jako samostatný ovladač splňující tyto požadavky:
 +      - komunikace s aplikací bude realizována přes USB a Bluetooth,
 +      - ovladač bude umožňovat čtení vstupů z encodérů, tlačítek a Hallových senzorů,
 +      - ovladač bude napájen z baterie.
 +    - Navržený ovladač zrealizujte a naprogramujte.
 +    - Pro PC vytvořte vlastní aplikaci umožňující zpracování dat z ovladače a jejich přenos do aplikace Adobe Lightroom Classic.
 +    - Aplikace bude mít uživatelské rozhraní, které bude umožňovat její nastavení a toto nastavení bude ukládat do lokální databáze.
 +    - Výsledné řešení řádně otestujte.
  
-===== Available works =====+  * **Přenosné zařízení pro odposlech NFC komunikace pomocí SDR založené na platformě Raspberry Pi (Portable device for sniffing NFC communication using SDR based on the Raspberry Pi platform)** (DP - Balko Martin) 
 +    - Prozkoumejte existující nástroje určené k analýze NFC komunikace. 
 +    - Analyzujte technologií SDR (softwarově definovaného rádia). 
 +    - Analyzujte technologii NFC, zejména princip komunikace mezi NFC čtečkou a NFC kartou (MIFARE Classic, MIFARE DESFire, MIFARE Plus). 
 +    - Analyzujte a navrhněte způsob pro odposlech NFC komunikace pomoci SDR. 
 +    - Navrhněte přenosné zařízení,​ které bude umožňovat odposlech, záznam a prvotní analýzu NFC komunikace. 
 +    - Zařízení bude schopné odchytit UID karty a komunikaci směrem od čtečky. Pokud bude signál dostatečně silný, zaznamená i komunikaci směrem od karty. 
 +    - Navržené řešení zrealizujte na platformě Raspberry Pi. 
 +    - Pro výsledné zařízení napište v jazyce Python obslužnou aplikaci. 
 +    - Výsledné zařízení řádně otestujte.
  
-  * **Generátor referencí na základě dat uložených ve formátu XML** - Proveďte rešerší existujících ​řešení. ​Navrhněte a zrealizujte aplikaci pro generování seznamu referencí na základě dat uložených v XML souboru a šablony pro generování referencíReference bude možné vytvářet i hierarchickyVýstupní formát bude možné konfigurovat s pomocí ​konfiguračního souboru. Aplikace ​bude umožňovat ​editovat jednotlivé záznamy uložené v souboru XML a vytvářet vazby mezi referencemijako je například tento článek byl citovat v těchto publikacích. BP doba práce 2 semestry (volné) (100% SW)+  * **Aplikace pro chytrou domácnost využívající rádiové spojení jednotek s Raspberry Pi (Smart home application using radio connection of units with Raspberry Pi)** (BP Zoreník Pavel) 
 +    - Prozkoumejte existující ​řešení. 
 +    - Pomocí metod softwarového inženýrství navrhněte vlastní řešení vyhovující níže uvedeným požadavkům. 
 +    - Navržené řešení naprogramujete,​ zdokumentujte a řádně otestujte. 
 +    - Požadavky: 
 +      - webová aplikace na platformě Raspberry Pi (konfigurace zařízení),​ 
 +      - připojení bude provedeno ​pomocí ​uživatelského jména a hesla, 
 +      - aplikace ​bude umožňovat ​více uživatelů s různým typem oprávnění,​ 
 +      - jednotlivá zařízení STM32prostředí Arduino, 
 +      ​komunikace zařízení přes rádiový modul RFM69, 
 +      - provoz zařízení na baterii, 
 +      - sledování teploty, ovládání zásuvek.
  
-  * **Linuxové jádro pro vestavěný procesor** - Proveďte rešerši existujících linuxových jader pro vestavěné procesory a najděte vhodné řešení pro procesor ARM osazený na desce beagleboard. Pro tuto desku s pomocí linuxového jádra rozchoďte všechny periférie a napište demo aplikaci. BP, DP - doba práce 2-4 semestry (volné) (100% SW) 
  
-  ​* **Programovatelný softwarový generátor všech typů paketů** BP doba práce 2 semestry (volné) (100% SW)+  ​ 
 +===== Available projects ​FIT =====
  
-  * **Programovatelný hardwarový generátor všech typů paketů** BP, DP - doba práce 2-4 semestry ​(volné) (80% SW20% HW)+  ​1. Arduino HW/SW 
 +    ​GPS přijímač a jeho aplikace 
 +    ​Meteo stanice 
 +    ​GSM modém a jeho aplikace 
 +    * NFC a bezkontaktní karty 
 +    * univerzální desky s různými periferiemi 
 +    ​řízení modelu auta 
 +    ​generator analogových průběhů 
 +    * přípravky pro desku digilent CMOD A7/S7 (displejtlačítka, switche, atd.) 
 +    * návrh hardware pro desku digilent CMOD A7/S7 
 +    * vlastní zadání 
 +    * Wifi a ESP32/​ESP2866 
 +    * zařízení pro ochranu baterie před vybitím
  
-  * **Jednoduchý překladač z jazyka c do mikroprogramu - Simple translator from C to microcode description** - Navrhněte a zrealizujte překladač z programu popsaného podmnožinou příkazů jazyka c do mikroprogramu popsaného v jazyce VHDL. Prozkoumejte existující řešení. Jazyk c bude podporovat vybrané celočíselné a binární typy proměnných. Překladač bude schopen ​eložit následující prvky jazyka C: aritmetické a logické operace, podmíněný výraz if (else if, else), cyklus while, cyklus for a příkaz goto. Implementace bude s ohledem na multiplatformnost provedena v jazyce Java. (BP, DP) doba práce 2-4 semestry (volné) (90% SW, 10% HW)+  ​2. Wolfram Mathematica 
 +    ​bezpečnostní kódy 
 +    ​kódy pro kryptografií 
 +    ​matematické funkce realizované v HW 
 +    ​aritmetický procesor v GF(2^2^n) 
 +    ​efiktivita protokolů pro edmět BI-PSI 
 +    * vlastní zadání
  
-  * **Jednoduchý ​překladač ​z jazyka c do automatového popisu ​ - Simple translator from C to automata description** - Navrhněte a zrealizujte překladač z programu popsaného podmnožinou příkazů jazyka c do mikroprogramu popsaného v jazyce VHDL. Prozkoumejte existující řešení. Jazyk c bude podporovat vybrané celočíselné a binární typy proměnných. Překladač bude schopen přeložit následující prvky jazyka C: aritmetické a logické operace, podmíněný výraz if (else if, else), cyklus while, cyklus for a příkaz goto. Implementace bude s ohledem na multiplatformnost provedena v jazyce Java. (BP, DP) - doba práce 2-4 semestry (volné) (90% SW, 10% HW)+  ​3. Visual C++/C# 
 +    ​aplikace pro komunikaci s periferiemi v PC 
 +    ​aplikace pro komunikaci s procesorem Zynq 
 +    * aplikace pro správu projektu ve VHDL 
 +    ​* překladač
 +    ​grafické aplikace pro výuku 
 +    ​vlastní zadání
  
-    ​* **Šifrování dat na pevném SATA disku připojeném přes ethernetové rozhraní** - Prostudujte existující hardwarová řešení šifrování dat na pevném diskuNavrhněte a zrealizujte vlastní řešení napsané v jazyce VHDLPro návrh použijte existující ethernetové jádro napsané v jazyce VHDL(DP- doba práce 2-4 semestry ​(volné) (50% SW, 50% HW)+  4. Jazyk VHDL / desky FPGA 
 +    ​návrh hardware pro bezpečnostní kódy 
 +    ​generátor průběhů (sinusovka, obdelník, trojuhelník) 
 +    ​osciloskop 
 +    ​návrh hardware pro realizaci matematických funkcí 
 +    ​implementace procesoru/​periferié procesoru (ARM, Z80, AVR, ...) 
 +    * HW podpora SoC (Zynq) 
 +    * aritmetický procesor v GF(2^2^n) 
 +    * Hry pro FPGA 
 +    * vlastní zadání
  
-  * **Sada nástrojů pro On-Line diagnostiku** (Set of tools for On-Line test) - Naprogramujte sadu nástrojů pro On-Line diagnostiku. Nástroje budou založeny na již existujícím nástroji pro práci ​obvody. Tento nástroj zmodifikujte tak, aby umožňoval použít libovolnou techniku pro On-Line testování založenou na bezpečnostních kódech (sudá parita, zdvojení, Berger kód, Hamming kód, atp.). Výsledné ​řešení bude umožňovat načtení vstupního obvodu, jeho modifikaci na samočinně zabezpečený obvod a jeho konverzi do příslušných VHDL kódů. Aplikace bude podporovat i rozsáhlejší návrh složený z více částí. BP, DP - doba práce 2-4 semestry (volné) (100% SW)+  ​5. Plošné spoje 
 +    ​návrh zařízení s porcesorem atmel + drobné periferié 
 +    ​zařízení ​nízkou spotřebou 
 +    * vlastní zadání
  
-  * **Rychlý osciloskop postavený s pomocí FPGA** (High speed scope based on FPGA) - Navrhněte ​zrealizujte levný 1 kanálový 50 Mhz osciloskop postavený s pomocí desky Starter board s obvodem Spartan3e. Jako základ použijte modul tvořený analogovým vstupem s A/D převodníkem. Tento modul upravte tak, aby splňoval požadavky kladené na vstupní části osciloskopu takovýchto parametrů. Pro desku Spartan 3E napište aplikaci pro zpracování dat získaných s A/D převodníku. Získaná data zobrazte. ​ BP, DP - doba práce 2-4 semestry (volné) (50% SW, 50% HW)+  ​6. Raspberry PI / Raspberry PI Pico 
 +    ​ovládání jednoduchých periferií 
 +    ​chytré síť, ovládání periferií přes ethernet 
 +    ​vzdálená správa sítí 
 +    ​SDR(Software Defined Radioaplikace ​sledování ​analýza provozu 
 +    * vlastní zadání
  
-  * **JTAG SPI USB programátor ​pro ATMEL** - Navrhněte programátor včetně programovatelné redukce pro programování mikrořadičů Atmel. BP, DP - doba práce 2-4 semestry (volné) ​(50% SW50% HW)+  ​7. Android 
 +    ​aplikace ​pro práci s hardware ​(raspberry PIArduino a jiné)
  
-  * **Vysoce spolehlivý systém železničního zabezpečovacího zařízení založeného na dvou FPGA obvodech** - Prostudujte stávající zrealizované HW zařízení. Prostudujte knihovnu prvků realizujících jednotlivé částí zabezpečovacího systému železnice. Pro toto zařízení napište firmware ​pro mikrořadič ​spolehlivý řídicí systém popsaný v jazyce VHDL a to tak, aby docházelo k vzájemné kontrole obou FPGA obvodů. Řídicí systém musí využívat samočinně testované obvody pro zajištění detekce poruch. Celý systém musí umožňovat vložení poruchy. Návrh ověřte na příkladu zabezpečení železniční stanice. Systém v případě detekce poruchy provede rekonfiguraci špatného FPGA obvodu. BP, DP - doba práce 2-4 semestry (volné) (50% SW, 50% HW)+  ​8. Python 
 +    ​aplikace ​pro zpracování ​generování dat podle šablon
  
-  * **Programovatelný stmívač světel pro domácí zvířata** - Navrhněte zařízení pro stmívání světel řízené mikrořadičem. Zařízení bude umožňovat stmívat 2 žárovky. Pro zadání průběhu stmívání napište aplikaci. Zařízení bude možné připojit k PC s pomocí USB rozhraní. Upřesňující pokyny zadavatele (kanárek domácí: pí píp - pí - píp pí pí píp) BP - doba práce 2 semestry (volné) (50% SW, 50% HW)+  ​9. Neuronové sítě 
 +    ​Model neuronové sítě ve Wolfram Mathematice 
 +    ​Model neuronové sítě v jazyce c++ 
 +    ​Implementace neuronu a neuronové sítě v hardware 
 +    ​Implementace neuronové sítě v SoC
  
-  * **Univerzální řadič displejů** ​Prozkoumejte existující řešení. Navrhněte a zrealizujte řadič displeje umožňující jednoduchou komunikaci se znakovým displejem. Komunikace bude probíhat po sériové lince. BP, - doba práce 2 semestry (volné) (60% HW, 40% SW )+===== Available projects HW external =====
  
-  ​* **Zařízení pro enos lokálních informací do internetu s pomocí existujících wifi routeru** - Prostudujte existující řešení úpravy wifi routerů za účelem modifikace ​vylepšení jejich funkcíUpravte linuxové jádro wifi routeru tak, aby bylo možné nahrávat a ukládat vlastní ​eložený kód. K wifi routeru připojte jednoduché zařízení ​(RFID čtečkateploměr, apod). BPDP - doba práce 2-4 semestry (volné) (90% SW, 10% HW)+  ​1. Malý grafický displej do výšky 1U s rotačním enkodérem ovládaný ​es SPI 
 +    ​Navrhněte ​zrealizujte grafický TFT displej ovládaný pomocí sběrnice SPI. 
 +    * Displej by měl obsahovat ​možnost zadávání ​íkazů ​(tlačítka, rotační encoder,).  
 +    * Výška displeje musí splňovat normu 1U.  
 +    * Pro vytvořený displej naprogramujte frameworkkterý usnadní práci s displejem.
  
-  ​* **Implementace USB rozhraní ​FPGA obvodem** - Seznamte se s problematikou USB rozhraní realizovaného FPGA obvody. Prostudujte stávající způsoby realizace tohoto USB rozhraní. ​Navrhněte a realizujte funkční zařízení,​ které bude umožňovat přenos dat pomocí USB rozhraní realizované ​FPGA obvodemProstudujte existující řešení USB ovladačůNa základě získaných informací vytvořte vlastní USB ovladač podporující navržené řešeníNa jednoduché aplikaci demonstrujte funkci vytvořeného řešení. Při návrhu ​se zaměřte na co možná nejjednodušší řešení, které bude umožňovat přenášet jen jednoduché informaceBP, DP - doba práce 2-4 semestry (volné) (50% HW, 50% SW )+  ​2. OSD displej v FPGA 
 +    ​* Navrhněte a zrealizujte On-Screen displej v obvodu ​FPGA pro video stream 
 +    * OSD displej by měl fungovat na formátech od 720p do 4K, jak progressive,​ tak interlaced 
 +    * Požadavkem je minimální využití zdrojů v FPGA 
 +    * OSD se bude ovládat pomocí sběrnice AXI4-Lite.
  
-  * **Síťový simulátor pro výukové účely na bázi prvků OS Linux CISCO směrovačů (Network simulator based on Linux OS component and CISCO routers)** - Prostudujte existující řešení. Doplňte některé další síťové prvky do již existujícího simulátoruBP, DP - doba práce 2 semestry (volné) (100% SW)+  ​3. Konfigurovatelný filtr ethernetoveho rámce v FPGA 
 +    ​Navrhněte ​zrealizujte konfigurovatelný filtr ethernetového rámce umožňující filtrovat pakety podle zadaných parametrů (MAC, IP…do více streamů, nebo jednoho streamu označeného identifikátorem.  
 +    ​Pro vstupní a výstupní interface bude použit AXI4 Stream pro zajištění kompatibility.
  
-  ​* **Zařízení pro sledování objektu ​nízkou spotřebou** - Prostudujte existující řešení. ​Navrhněte ​vlastní zařízení umožňující pořízení ​odeslání fotografie přes internet z okolí sledovaného objektu, který není připojen trvale k internetu ani k elektrické sítíDůraz bude kladen na velmi nízkou spotřebu a co nejmenší pořizovací cenu. Sledovací zařízení bude umožňovat získání fotografie okolí s různou kvalitouBP, DP - doba práce 2 semestry (volné) (10% HW, 90% SW)+  ​4. Zpracování I2S signálu ​integraci do AXI Stream 
 +    ​* Navrhněte a zrealizujte konverzní modul v FPGA ze standartního interface I2S na interface AXI4 Stream a opačně 
 +    * Modul by měl zvládat konverzi různé datové ​šířky audio samplu a multiplexování více audio streamu do jednoho I2S interfacu.
  
-  * **Generátor samoopravných kódů: Hamming, RS, BCH, LDPC** - Prostudujte existující řešení. ​Navrhněte ​vlastní generátor samoopravných kódů. Zadávat bude možné libovolný generující polynompopřípadě bude možné specifikovat vlastnosti kóduZvolte vhodný výstupní formát. BP, DP - doba práce 2-4 semestry (volné) (100% SW)+  ​5. Efektivní (de)interlacing 12G SDI videa 
 +    ​* Navrhněte ​a zrealizujte (de)interlacer 6G a 12G SDI videa do progressive formátu.  
 +    * Modul může pracovat jak nad SDI formátemtak na Native video formátem.
  
-  * **Simulátor procesoru DOP** - Prostudujte existující ​řešeníV programovacím jazyku ​Java implementujte simulátor výukového procesoru DOP-v3Simulátor musí obsahovat editor ​a překladač zdrojových mikroprogramů (mikroassembler). Syntaxe zdrojového mikroprogramu musí být stejná jako u stávajícího simulátoru používaného pro výuku ​(SimDOP). Simulátor musí umožňovat krokování mikroprogramu po jednotlivých mikroinstrukcích i spouštění ​úseku k zadanému bodu zastaveníBP, DP doba práce 2-4 semestry ​(volné) (100% SW)+  ​6. Embedded audio konvertor na AXi4 Stream a zpět 
 +    ​Navrhněte a zrealizujte konverzní modul v FPGA z SDI Embedded audia na interface AXI4 Stream a opačně.  
 +    ​Modul by měl zvládat konverzi různé datové šířky audio samplu. 
 + 
 +  7. Nízkolatenční komprese v FPGA s využitím vlnové transformace 
 +    ​Navrhněte a zrealizujte nízkolatenční video kodek v FPGA založený na vlnkové transformaci.  
 +    ​Latence kodeku by se měla pohybovat v jednotkách ​řádků videa. 
 + 
 +===== Available projects SW - external ===== 
 + 
 +  1Optimalizace ​Java aplikací pro horizontální škálování v moderní mikroservisní architektuře ​spolupráce s průmyslem 
 +    * využití AoT kompilace a minimalizace start-up času 
 +    * výběr vhodného JVM a analýza jeho výhod pro minimální náročnost na prostředky (napřGraalVM) 
 +    * využití vhodného frameworku ​analýza jeho výhod (např. Quarkus) 
 +    * analýza možností využití pro serverless architekturu (např. Knative) 
 +    * využití komunikace ​es gRPC 
 +    * podpora feature flagů pro release management 
 +    * vlastní zadání 
 + 
 +  2. Virtualizace a izolace aplikačních prostředí - spolupráce s průmyslem 
 +    * využití OCI kontejnerů jako způsob doručování aplikací 
 +    * analýza bezpečnostních chyb využívané technologie docker a možnosti jejich eliminace 
 +    * porovnání s jinými přístupy ​(např. podman, buildah apod.) 
 +    * lokální orchestrace kontejnerů (docker-compose vs podman-compose) 
 +    * vnořování kontejnerů (napřdocker(-compose)-in-docker/​podman) 
 +    * vlastnosti container file systemů (napřOverlayFS) 
 +    * bezpečné (rootless) spuštění ​více kontejnerů uvnitř kontejneru 
 + 
 +  3Orchestrace kontejnerů v distribuovaném on-premise prostředí ​spolupráce s průmyslem 
 +    * porovnání vlastností využívaných pro jako container runtime (containerd vs docker vs CRI-O) 
 +    * kubernetes vs jeho komerční distribuce (openshift, tanzu) 
 +    * helm vs yaml manifesty (+ možnosti jejich úprav, např. kustomize) 
 +    * realizace ingress load balancerů v lokálním on-premise prosředí 
 +    * vytvoření persistence v distribuovaném prostředí (např. Ceph, Rook, GlusterFS apod.) 
 +    * správa citlivých údajů (šifrování kubernetes secrets, PAM nástroje) 
 +    * vytvoření vlastního kubernetes operátora (vlastní zadání) 
 + 
 +  ​4. Podpora vývoje a administrace prostředí prostřednictvím automatizace - spolupráce s průmyslem 
 +    * analýza praktik DevOps přístupu, GitOps, SecOps, ChatOps, AIOps 
 +    * analýza a představení SRE (Site reliability engineeringpraktik 
 +    * vytvoření a nasazení prostředí pro kompletní podporu životního cyklu aplikace naplňující znaky GitOps a IaaC (infrastructure as a code) 
 +    * zabezpečení SVC repozitářů přes GPG klíče 
 +    * podpora IaaC nástrojů (ansible, chef+puppet,​ cloud vendor proprietární nástroje, terraform) 
 +    * využití CI nástroje s dynamickým vytěžováním zdrojů dle aktuální zátěže (návrh tzv. CI farmy) 
 +    * podpora deklarativního popisu činností (pipelines) 
 +    * porovnání známých CI nástrojů (jenkins, jenkins-x, gitlab, tekton, github actions) 
 +    * návrh procesů pro validaci aplikací před jejich nasazením prostřednictvím testů 
 + 
 +  5. Projekty zadané externím zadavatelem 
 +    * seznam zadavatelů níže 
 + 
 +**Pokud máte o téma zájem, napište mi email. Rezervace v systému bpm nemá žádnou váhu. Pokud se Vám nelíbí žádné z nabízených témat, koukněte do archívu dostupných zadání.** 
 + 
 + 
 +  *[[project:​2018:​proj_archiv|Návrhy zadání dostupných projektů]] 
 + 
 + 
 +===== Projekty zadané externím zadavatelem ===== 
 + 
 +  * [[project:​eaton:​proj_eaton|EATON HW/SW]]
  
-  * **Generátor obvodů pro předmět ČAO** - Prozkoumejte existující řešení pro kreslení elektrických obvodů. Vytvořte aplikaci, která bude umožňovat na základě zadaných parametrů vytvářet obvody. BP, DP - doba práce 2-4 semestry (volné) (100% SW) 
  
-  * **Procesory pro FPGA obvody (Soft processors for FPGA circuits)** - Prostudujte existující řešení procesorů popsaných v jazyce VHDL. Srovnejte jejich parametry. Na základě srovnání implementujte jeden typ procesoru do FPGA obvodu. Vyberte vhodný procesor s ohledem na dostupnost překladačů jazyka C do ASM.  Zaměřte se zejména na hotové implementace procesoru AVR. Vytvořte knihovnu pro ovládání základních periferií. Pro přípravek firmy XILINX Spartan 3E vytvořte vzorovou aplikaci využívající všechny funkce vytvořené knihovny. BP, DP - doba práce 2-4 semestry (volné) (80% SW, 20% HW) 
  
-  * **Rychlé ethernetové jádro (High speed ethernet core)** - Prostudujte stávající řešení ethernetového jádra pracujícího na rychlostech 1G, 100M napsané v jazyce Verilog dostupné na stránce www.opencores.org a VHDL dostupné jako diplomová práce. Navrhněte a zrealizujte vlastní řešení 1G, 100M ethernetového jádra napsaného v jazyce VHDL a to tak, aby bylo možné využít pouze jednu hodinovou doménu. Pro jednotlivé částí i pro celé jádro proveďte verifikaci. Pro výsledné jádro napište testovací aplikaci demonstrující funkci jádra na všech realizovaných rychlostech. Pro realizaci použijte vývojovou desku Xilinx. (BP, DP 2-4 semestry) 
  
-  * **Modul pro správu projektů s VHDL soubory** - Prostudujte stávající řešení vývojového nástroje pro správu VHDL projektů. Do již existujícího řešení implementujte modul, který bude umožňovat přidat do souboru libovolný signál a přenést ho do vyšších úrovní zdrojových VHDL kódů. Vylepšete stávající řešení pro kontrolu konzistence VHDL souborů. V případě potřeby navrhněte nové vývojové prostředí. Otestujte generátor VHDL kódu na základě zadaných parametrů uživatele. Jako programovací jazyk zvolte Javu (BP, DP 2-4 semestry, možnost práce více studentů najednou jako tým) 
  
-  * **Portace operačního systému android na vývojovou desku s procesorem ARM** - Prostudujte existující řešení. Analyzujte možnosti portace operačního systému pro vývojovou desku Raspberry pi a BeagleBone Black. Na jednu z těchto desek proveďte portaci a vytvořte knihovny pro obsluhu periferií. Pro vytvořenou knihovnu vytvořte demo aplikaci. (BP, DP 2-4 semestry) 
 ===== All defended works ===== ===== All defended works =====
  
-**BP a DP defended works on CTU in Prague FEL/FIT:** [[http://dip.felk.cvut.cz|BP a DP]]+**BP a DP defended works on CTU in Prague FEL/FIT:** [[https://dspace.cvut.cz|BP a DP]]
  
-===== All projects archives 2004 - 2013 =====+===== All projects archives 2004 - 2019 =====
  
 +  *[[project:​2022:​proj_2022|Realized projects 2022]]
 +  *[[project:​2021:​proj_2021|Realized projects 2021]]
 +  *[[project:​2020:​proj_2020|Realized projects 2020]]
 +  *[[project:​2019:​proj_2019|Realized projects 2019]]
 +  *[[project:​2018:​proj_2018|Realized projects 2018]]
 +  *[[project:​2017:​proj_2017|Realized projects 2017]]
 +  *[[project:​2016:​proj_2016|Realized projects 2016]]
 +  *[[project:​2015:​proj_2015|Realized projects 2015]]
 +  *[[project:​2014:​proj_2014|Realized projects 2014]]
   *[[project:​2013:​proj_2013|Realized projects 2013]]   *[[project:​2013:​proj_2013|Realized projects 2013]]
   *[[project:​2012:​proj_2012|Realized projects 2012]]   *[[project:​2012:​proj_2012|Realized projects 2012]]
Line 139: Line 299:
  
   * [[:​start|Pavel Kubalík'​s Home Page]]   * [[:​start|Pavel Kubalík'​s Home Page]]
- 
  
  
project/proj_list.txt · Last modified: 2024/02/15 10:30 by xkubalik