Relational Algebra

Module 3, Lecture 1

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
- Allows for much optimization.
- Query Languages \neq programming languages!
- QLs not expected to be "Turing complete".
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

- Relational Algebra: More operational, very useful for representing execution plans.
\square Relational Calculus: Lets users describe what they want, rather than how to compute it. (Nonoperational, declarative.)

> Understanding Algebra \& Calculus is key to understanding SQL, query processing!

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
- Schemas of input relations for a query are fixed (but query will run regardless of instance!)
- The schema for the result of a given query is also fixed! Determined by definition of query language constructs.
〕 Positional vs. named-field notation:
- Positional notation easier for formal definitions, named-field notation more readable.
- Both used in SQL

\section*{Example Instances	R1d	$\underline{\text { bid }}$	$\underline{\text { day }}$
58	101	$10 / 10 / 96$	
	103	$11 / 12 / 96$	}

- "Sailors" and
"Reserves" relations for S1 our examples.
- We'll use positional or named field notation, assume that names of fields in query results are 'inherited' from names of fields in query input relations.

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S2 | sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |

Relational Algebra

\square Basic operations:

- Selection (φ) Selects a subset of rows from relation.
- Projection ([]) Deletes unwanted columns from relation.
- Cross-product (\times) Allows us to combine two relations.
- Set-difference (-) Tuples in R1, but not in R2.
- Union (\cup) Tuples in R1 and in R2.
- Additional operations:
- Intersection, join, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the attributes in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)
- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

S2[sname,rating]

age
35.0
55.5

S2[age]

Selection

\square Selects rows that satisfy selection condition.

- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation! (Operator composition.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

S2(rating > 8)

sname	rating
yuppy	9
rusty	10

$(S 2($ rating $>8))$
[sname,rating]

Union, Intersection, Set-Difference

 - All of these operations take two input relations, which must be union-compatible:- Same number of attributes
- `Corresponding' attributes have the same type.
- What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0

$$
S 1-S 2
$$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$S 1 \cup S 2$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$S 1 \cap S 2$

Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
- Conflict: Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	$10 / 10 / 96$
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$
58	rusty	10	35.0	58	103	$11 / 12 / 96$

\square Renaming operator: $\rho(C(1 \rightarrow$ sid $1,5 \rightarrow \operatorname{sid} 2), S 1 x R 1)$

Joins

- Condition Join: $R[\varphi] S={ }_{\text {def }}(R \times S)(\varphi)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$

S1 [S1.sid<R1.sid] R1

- Result schema same as that of crossproduct.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a theta-join.

Joins

- Equi-Join: A special case of condition join where the condition φ contains only equalities.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	$10 / 10 / 96$
58	rusty	10	35.0	103	$11 / 12 / 96$
R[sid]S					

- Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- Natural Join: Equijoin on all common fields.

$$
\mathrm{R} * \mathrm{~S}
$$

Division

- Not supported as a primitive operator, but useful for expressing queries like:
Find sailors who have reserved all boats.
\square Let A have 2 fields, x and $y ; B$ have only field y :
$-A \div B=\mathrm{A}[\mathrm{x}]-((\mathrm{A}[\mathrm{x}] \times \mathrm{B})-\mathrm{A})[\mathrm{x}]$
- i.e., $\boldsymbol{A} \div B$ contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an $x y$ tuple in A.
- Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in $A \div B$.
- In general, x, y can be any lists of attributes; y from B, and $x \cup y$ from A.

Examples of Division $A \div B$

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4
A	

pno
p2
B1

pno
p2
p4
B2

pno
p1
p2
p4

sno
s1
s2
s3
s4

Sno
s1
s4

B3

sno
s1

$A \div B 1$
$A \div B 2$
$A \div B 3$

Expressing A $\div B$ Using Basic Operators

\square Division is not essential op; just a useful shorthand.

- (Also true of joins, but joins are so common that systems implement joins specially.)
\square Idea: For $A \div B$, compute all x values that are not ‘disqualified' by some y value in B.
- x value is disqualified if by attaching y value from B, we obtain an $x y$ tuple that is not in A.

Disqualified x values:
$((A[x] \times B)-A)[x]$
$A \div B$:
$A[x]$ - all disqualified tuples

Find names of sailors who've reserved boat \#103

- Solution 1: ((Reserves(bid=103) * Sailors) [sname]
- Solution 2: $\quad \rho($ Temp1, Reserves(bid=103))
$\rho($ Temp2, Temp1 * Sailors)
Temp2[sname]
- Solution 3:
(Reserves* Sailors)(bid=103) [sname]

Find names of sailors who've reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
(Boats(color='red')*Reserves* Sailors)[sname]
- A more efficient solution:
((Boats(color='red')[bid]*Reserves)[sid]* Sailors) [sname]
- A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

- Can identify all red or green boats, then find sailors who've reserved one of these boats:
ρ (Tempboats, Boats(color='red' OR color='green'))
(Tempboats * Reserves * Sailors)[sname]
- Can also define Tempboats using union! (How?)

What happens if \vee is replaced by \wedge in this query?

Find sailors who've reserved a red and a green boat

- Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors): ρ (Tempred, (Boats(color=‘red')*Reserves)[sid] ρ (Tempgreen, (Boats(color='green')*Reserves) [sid]
((Tempgreen \cap Tempred)*Sailors)[sname]

Find the names of sailors who've reserved all boats

- Uses division; schemas of the input relations to \div must be carefully chosen:
ρ (Tempsids, Reserves[sid, bid] \div Boats[bid])
(Tempsids * Sailors)[sname]
\square To find sailors who've reserved all
- 'Interlake' boats:
$\ldots \div$ Boats(bname='Interlake')[bid]

