Martin Kostelanský

kostema3@fit.cvut.cz presented:

Approximately counting paths and cycles in a graph

Masaki Yamamoto

http://bit.ly/2zDDSVV

Problems

#PATHS is problem of counting paths in graph. #CYCLES is problem of counting cycles in graph.

Definitions

- A counting problem $f: \Sigma^* \to \mathbb{N}$ is in $\#\mathbb{P}$ if there is a non-deterministic polynomial-time Turing machine N such that for any string $x \in \Sigma^*$, the number of accepting paths of N(x) is f(x).
- A counting problem is #P-HARD if every counting problem in #P is reduced to the problem by a polynomial-time Turing reduction.
- A counting problem is #P-COMPLETE if the problem is in #P and is #P-HARD.
- A randomized approximation scheme (RAS for short) for a counting problem is a randomized algorithm which, given a string $x \in \Sigma^*$ and a real number $\epsilon > 0$, outputs A(x) such that $Pr\{|A(x) OPT(x)| \le \epsilon \cdot OPT(x)\} \ge 3/4$.
- A fully polynomial-time scheme (FPRAS for short) for a counting problem is a RAS which runs in time polynomial in the size of x and ϵ^{-1} .
- Let $f, g: \Sigma^* \to \mathbb{N}$ be an arbitrary counting problems. An approximation-preserving reduction (AP reduction for short) from f to g is probabilistic oracle Turing machine M that takes as input a pair $(x, \epsilon) \in \Sigma \times (0, 1)$, and satisfies the following three conditions:
 - 1. Every oracle call made by M is of the form (ω, δ) , where $\omega \in \Sigma^*$ is no instance of g, and δ is an error bound satisfying $\delta^{-1} \leq poly(|x|, \epsilon^{-1})$.
 - 2. The Turing machine M meets the specification for beeing RAS for f whenever the oracle meets the specification for being RAS for g.
 - 3. The running time of M is polynomial in |x| and ϵ^{-1} .

If there is an approximation-preserving reduction from f to g, then we write $f \leq_{AP} g$. If $f \leq_{AP} g$ and $g \leq_{AP} f$, then we write $f \equiv_{AP} g$.

Facts and Corollaries

Fact 1. #HAMPATHS is #P-COMPLETE, moreover #STHAMPATHS is #P-COMPLETE. Fact 2. #HAMCYCLES is #P-COMPLETE. Corollary 1. #HAMPATHS \equiv_{AP} #SAT, moreover #STHAMPATHS \equiv_{AP} #SAT. Corollary 2. #HAMCYCLES \equiv_{AP} #SAT.

Theorems

Theorem 1. #PATHS is #P-HARD. **Theorem 2.** #CYCLES is #P-HARD. **Theorem 3.** #PATHS \equiv_{AP} #SAT. **Theorem 4.** #CYCLES \equiv_{AP} #SAT.