main content


Email: stepan.starosta[ℑ]fit.cvut[•]cz

I am associate professor at the Department of Applied mathematics of the Faculty of Information Technology of the Czech Technical University in Prague. I am member of Theoretical Informatics GRoup at the Department of Mathematics of the Faculty of Nuclear Sciences and Physical Engineering and of the Research Center for Informatics.


Research interests


I am currently working with Štěpán Holub on a project formalizing Combinatorics on Words in Isabelle/HOL. The current published state of the formalization is available at

List of publications and preprints

  1. Ľ. Balková, E. Pelantová and Š. Starosta, Palindromes in infinite ternary words, RAIRO - Theoret. Inf. Appl. 43 (2009) 687-702, DOI: 10.1051/ita/2009016
  2. Ľ. Balková, E. Pelantová and Š. Starosta, Sturmian Jungle (or Garden?) on Multiliteral Alphabets, RAIRO - Theoret. Inf. Appl. 44 (2010) 443-470, DOI: 10.1051/ita/2011002
  3. Š. Starosta, On Theta-palindromic Richness, Theoret. Comp. Sci. 412 (2011) 1111-1121, DOI: 10.1016/j.tcs.2010.12.011
  4. Ľ. Balková, E. Pelantová and Š. Starosta, Infinite Words with Finite Defect, Adv. in Appl. Math. (2011), DOI: 10.1016/j.aam.2010.11.006
  5. Ľ. Balková, E. Pelantová and Š. Starosta, On Brlek-Reutenauer conjecture, Theoret. Comp. Sci. 412 (2011), 5649-5655 , DOI: 10.1016/j.tcs.2011.06.031
    Corrigendum: "On Brlek-Reutenauer conjecture", Theoret. Comput. Sci. 465 (2012), pp 73–74
  6. E. Pelantová and Š. Starosta, Infinite words rich and almost rich in generalized palindromes, in: G. Mauri, A. Leporati (Eds.), Developments in Language Theory, volume 6795 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 406-416. CORE rank B
  7. E. Pelantová and Š. Starosta, Almost rich words as morphic images of rich words, International Journal of Foundations of Computer Science Vol. 23, No. 5 (2012) 1067–1083, World Scientific Publishing Company, DOI: 10.1142/S012905411240045X
  8. E. Pelantová and Š. Starosta, Languages invariant under more symmetries: overlapping factors versus palindromic richness, Discrete Math. 313 (2013), 2432-2445, DOI: 10.1016/j.disc.2013.07.002
  9. Š. Starosta, Generalized Thue-Morse words and palindromic richness, Kybernetika 48 (2012), n. 3, pp. 361–370
  10. E. Pelantová and Š. Starosta, Palindromic richness for languages invariant under more symmetries, Theoret. Comput. Sci. 518 (2014), 42–63, DOI: 10.1016/j.tcs.2013.07.021
  11. P. Arnoux and Š. Starosta, The Rauzy gasket, in: J. Barral and S. Seuret (Eds.), Further Developments in Fractals and Related Fields, Trends in Mathematics 2013, pp. 1 - 23, Springer Science+Business Media New York 2013, DOI: 10.1007/978-0-8176-8400-6_1
  12. Ľ. Balková, E. Pelantová and Š. Starosta, Proof of Brlek-Reutenauer conjecture , Theoret. Comput. Sci. 475 (2013), 120–125, DOI: 10.1016/j.tcs.2012.12.024
  13. T. Jajcayová, E. Pelantová, Š. Starosta, Palindromic closures using multiple antimorphisms, Theoret. Comput. Sci. 533 (2014), 37–45, DOI: 10.1016/j.tcs.2014.03.020
  14. M. Kupsa, Š. Starosta, On the partitions with Sturmian-like refinements and an application to factor mappings from Sturmian subshifts, Discrete and Continuous Dynamical Systems - Series A, Volume 35, Issue 8, August 2015, 3483-3501. DOI: 10.3934/dcds.2015.35.3483
  15. K. Klouda, Š. Starosta, An Algorithm Enumerating All Infinite Repetitions in a D0L-System, Journal of Discrete Algorithms 33 (2015), 130–138. DOI: 10.1016/j.jda.2015.03.006
  16. Z. Masáková, E. Pelantová and Š. Starosta, Interval Exchange Words and the Question of Hof, Knill, and Simon, in: I. Potapov (Ed.), Developments in Language Theory, volume 9168 of Lecture Notes in Computer Science, Springer, 2015, pp. 377-388. DOI: 10.1007/978-3-319-21500-6_30, CORE rank B
  17. K. Klouda, Š. Starosta, Characterization of circular D0L-systems, Theoretical Computer Science 790, 131-137, 2019. DOI:10.1016/j.tcs.2019.04.021
  18. E. Pelantová and Š. Starosta, Constructions of Words Rich in Palindromes and Pseudopalindromes, Discrete Mathematics &Theoretical Computer Science, November 22, 2016, Vol. 18, no 3, link
  19. Š. Starosta, Morphic images of episturmian words having finite palindromic defect, Eur. J. Combin. 51 (2016), 359–371, DOI: 10.1016/j.ejc.2015.07.001
  20. Z. Masáková, E. Pelantová and Š. Starosta, Itineraries induced by exchange of three intervals, Acta Polytechnica, Vol. 56, No. 6 (2016) link
  21. E. Pelantová, Š. Starosta, M. Znojil, Markov constant and quantum instabilities, J. Phys. A: Math. Theor. 49 155201, DOI: 10.1088/1751-8113/49/15/155201
  22. S. Labbé, E. Pelantová and Š. Starosta, On the Zero Defect Conjecture, Eur. J. Combin. 62 (2017), 132-146, DOI: 10.1016/j.ejc.2016.12.006
  23. Z. Masáková, E. Pelantová and Š. Starosta, Exchange of three intervals: substitutions and palindromicity, Eur. J. Combin. 62 (2017), 217-231, DOI: 10.1016/j.ejc.2017.01.003
  24. Š. Starosta, V. Veselý, Binary projections of Arnoux-Rauzy words, presented at Words 2015, preprint
  25. K. Klouda, Š. Starosta, Repetitiveness of CD0L-systems, preprint
  26. Pelantová E., Starosta Š. On Words with the Zero Palindromic Defect. In: Brlek S., Dolce F., Reutenauer C., Vandomme É. (eds) Combinatorics on Words. WORDS 2017. Lecture Notes in Computer Science, vol 10432. Springer, Cham, 2017 DOI: 10.1007/978-3-319-66396-8_7
  27. Karel Klouda, Kateřina Medková, Edita Pelantová, Štěpán Starosta. Fixed points of Sturmian morphisms and their derivated words. Theoretical Computer Science 743, 23-37, 2018. ISSN 0304-3975. DOI: 10.1016/j.tcs.2018.06.037
  28. Hanka Řada, Štěpán Starosta. Bounds on the period of the continued fraction after a Möbius transformation, Journal Of Number Theory 212, 122–172, 2020. DOI: 10.1016/j.jnt.2019.10.027
  29. Košík, V., Starosta, Š. On Substitutions Closed Under Derivation: Examples. In: Combinatorics on Words. WORDS 2019.. Springer, Cham, 2019. p. 226-237. Lecture Notes in Computer Science. vol. 11682. ISSN 0302-9743. ISBN 978-3-030-28795-5.
  30. Pelantová E., Starosta Š. On Sturmian substitutions closed under derivation. Theoretical Computer Science 867, 128-139, 2021. DOI: j.tcs.2021.03.033
  31. Barbieri S., Labbé S., Starosta Š.A characterization of Sturmian sequences by indistinguishable asymptotic pairs. European Journal of Combinatorics 95, 103318, 2021. DOI: j.ejc.2021.103318
  32. Holub Š., Starosta Š. Binary intersection formalized. Theoretical Computer Science 866, 14-24, 2021. DOI: j.tcs.2021.03.002

Preprints are (mostly) available on arXiv.


Low on motivation? See this illustrated guide.

Updated: May 2021