Spectral bounds for 1D discrete Schrödinger and Dirac operators with complex potentials

Frantisek Štampach
Joint with: B. Cassano, O. O. Ibrogimov, and D. Krejčiřík

The 6th Najman Conference on Spectral Theory and Differential Equations
Sveti Martin na Muri, Croatia

September 11, 2019

Acknowledgement: Supported by Europ. Reg. Development Fund-Project “Center for Advanced Applied Science” No. CZ.02.1.01/0.0/0.0/16_019/0000778.
Contents

1 The discrete Schrödinger operator

2 The discrete Dirac operator
Let \(\{e_n\}_{n \in \mathbb{Z}} \) stands for the standard basis of \(l^2(\mathbb{Z}) \).
Definitions

- Let \(\{e_n\}_{n \in \mathbb{Z}} \) stands for the standard basis of \(\ell^2(\mathbb{Z}) \).
- The discrete Laplacian:

\[
H_0 e_n = e_{n-1} + e_{n+1}, \quad \forall n \in \mathbb{Z}.
\]
Definitions

- Let \(\{ e_n \}_{n \in \mathbb{Z}} \) stands for the standard basis of \(\ell^2(\mathbb{Z}) \).
- The discrete Laplacian:
 \[
 H_0 e_n = e_{n-1} + e_{n+1}, \quad \forall n \in \mathbb{Z}.
 \]
- To a given complex sequence \(\nu \in \ell^p(\mathbb{Z}), 1 \leq p \leq \infty \), we define the potential:
 \[
 V e_n := \nu_n e_n, \quad \forall n \in \mathbb{Z}.
 \]
Definitions

- Let \(\{e_n\}_{n \in \mathbb{Z}} \) stands for the standard basis of \(\ell^2(\mathbb{Z}) \).
- The discrete Laplacian:
 \[
 H_0 e_n = e_{n-1} + e_{n+1}, \quad \forall n \in \mathbb{Z}.
 \]
- To a given complex sequence \(\nu \in \ell^p(\mathbb{Z}), \ 1 \leq p \leq \infty \), we define the potential:
 \[
 V e_n := \nu_n e_n, \quad \forall n \in \mathbb{Z}.
 \]
- The discrete Schrödinger operator: \(H_V = H_0 + V \),
 \[
 H_V = \begin{pmatrix}
 \ddots & \ddots & \ddots & & \\
 & 1 & \nu_{-1} & 1 & \\
 & 1 & \nu_0 & 1 & \\
 & 1 & \nu_1 & 1 & \\
 & & & & \ddots & \ddots & \ddots
 \end{pmatrix}.
 \]
Basic facts

- One has

\[\sigma(H_0) = \sigma_{\text{ess}}(H_0) = [-2, 2]. \]
Basic facts

- One has
 \[\sigma(H_0) = \sigma_{\text{ess}}(H_0) = [-2, 2]. \]

- If \(\nu_n \to 0, \) as \(n \to \pm\infty, \) then \(V \) is compact and
 \[\sigma_{\text{ess}}(H_V) = [-2, 2]. \]
Basic facts

- One has
 \[\sigma(H_0) = \sigma_{ess}(H_0) = [-2, 2]. \]
- If \(v_n \to 0 \), as \(n \to \pm\infty \), then \(V \) is compact and \(\sigma_{ess}(H_V) = [-2, 2] \).
- The resolvent of \(H_0 \):
 \[(H_0 - \lambda)^{-1}_{m,n} = \frac{k^{m-n}}{k - k^{-1}}, \quad \forall m, n \in \mathbb{Z}, \]
 where \(\lambda = k^{-1} + k \).
Basic facts

- One has
 \[\sigma(H_0) = \sigma_{ess}(H_0) = [-2, 2]. \]

- If \(\nu_n \to 0 \), as \(n \to \pm\infty \), then \(V \) is compact and
 \[\sigma_{ess}(H_V) = [-2, 2]. \]

- The resolvent of \(H_0 \):
 \[(H_0 - \lambda)_{m,n}^{-1} = \frac{k^{|m-n|}}{k - k^{-1}}, \quad \forall m, n \in \mathbb{Z}, \]
 where \(\lambda = k^{-1} + k \).

- The Joukowski map:
 \[\lambda(k) = k^{-1} + k \]
 is 1–1 mapping of the punctured unit disk \(0 < |k| < 1 \) onto \(\mathbb{C} \setminus [-2, 2] \).
\(\ell^1\)-potentials

Theorem (\(\ell^1\)-potential)

Let \(\nu \in \ell^1(\mathbb{Z})\). Then

\[
\sigma_p(H_\nu) \subset \left\{ \lambda \in \mathbb{C} \setminus (-2, 2) \mid |\lambda^2 - 4| \leq \|\nu\|_{\ell^1(\mathbb{Z})}^2 \right\}.
\]
\(\ell^1 \)-potentials

Theorem (\(\ell^1 \)-potential)

Let \(\nu \in \ell^1(\mathbb{Z}) \). Then

\[
\sigma_p(H_{\nu}) \subset \left\{ \lambda \in \mathbb{C} \setminus (-2,2) \mid |\lambda^2 - 4| \leq \|\nu\|_{\ell^1(\mathbb{Z})}^2 \right\}.
\]

In addition, the estimate is **optimal** in the following sense:
The discrete Schrödinger operator

\(\ell^1 \)-potentials

Theorem (\(\ell^1 \)-potential)

Let \(\nu \in \ell^1(\mathbb{Z}) \). Then

\[
\sigma_p(H_V) \subset \left\{ \lambda \in \mathbb{C} \setminus (-2, 2) \mid |\lambda^2 - 4| \leq \| \nu \|_{\ell^1(\mathbb{Z})}^2 \right\}.
\]

In addition, the estimate is optimal in the following sense:

To any boundary point of the spectral enclosure which does not belong to \((-2, 2)\), there exists an \(\ell^1 \)-potential \(V \) so that this boundary point is an eigenvalue of the corresponding discrete Schrödinger operator \(H_V \).
The discrete Schrödinger operator

Geometry of the boundary curve

The boundary curve for $Q := \|u\|_{\ell^1(Z)}$:

$$|\lambda^2 - 4| = Q^2.$$
Proof

The goal is to prove:

\[\sigma_p(H_V) \subset \left\{ \lambda \in \mathbb{C} \setminus (-2, 2) \mid |\lambda^2 - 4| \leq \|v\|_{\ell^1(\mathbb{Z})}^2 \right\}. \]
The discrete Schrödinger operator

Proof

The goal is to prove:

$$\sigma_p(H_V) \subset \left\{ \lambda \in \mathbb{C} \setminus (-2, 2) \mid |\lambda^2 - 4| \leq \|v\|_{\ell^1(\mathbb{Z})}^2 \right\}.$$

One has $v \in \ell^1(\mathbb{Z}) \implies (-2, 2) \cap \sigma_p(H_V) = \emptyset$ (Jost solution).
The goal is to prove:

\[\sigma_p(H_V) \subset \left\{ \lambda \in \mathbb{C} \setminus (-2, 2) \mid |\lambda^2 - 4| \leq \|v\|_{\ell^1(\mathbb{Z})}^2 \right\}. \]

One has \(v \in \ell^1(\mathbb{Z}) \implies (-2, 2) \cap \sigma_p(H_V) = \emptyset \) (Jost solution).

The points \(\pm 2 \) are always included in the spectral enclosure.
The discrete Schrödinger operator

Proof

- The goal is to prove:
 \[\sigma_p(H_V) \subset \{ \lambda \in \mathbb{C} \setminus (-2, 2) \mid |\lambda^2 - 4| \leq \|u\|_{\ell^1(\mathbb{Z})}^2 \}. \]

- One has \(u \in \ell^1(\mathbb{Z}) \implies (-2, 2) \cap \sigma_p(H_V) = \emptyset \) (Jost solution).
- The points \(\pm 2 \) are always included in the spectral enclosure.
- For \(\lambda \notin [-2, 2] \equiv \sigma(H_0) \), the proof relies on the Birman–Schwinger principle (one implication):
 \[\lambda \in \sigma_p(H_V) \implies -1 \in \sigma_p(K(\lambda)), \]
 for
 \[K(\lambda) := |V|^{1/2} (H_0 - \lambda)^{-1} V_{1/2}, \]
 and
 \[|V|^{1/2} e_n = \sqrt{|v_n|} e_n \quad \text{and} \quad V_{1/2} e_n = \text{sgn}(v_n) \sqrt{|v_n|} e_n \]
 with the complex signum function \(\text{sgn} z = z/|z| \), if \(z \neq 0 \), and \(\text{sgn} 0 = 0 \).
Proof

- The goal is to prove:

$$\sigma_p(H_V) \subset \left\{ \lambda \in \mathbb{C} \setminus (-2, 2) \mid |\lambda^2 - 4| \leq \|\nu\|_{\ell^1(\mathbb{Z})}^2 \right\}.$$

- One has $\nu \in \ell^1(\mathbb{Z}) \implies (-2, 2) \cap \sigma_p(H_V) = \emptyset$ (Jost solution).
- The points ± 2 are always included in the spectral enclosure.
- For $\lambda \notin [-2, 2] \equiv \sigma(H_0)$, the proof relies on the Birman–Schwinger principle (one implication):

$$\lambda \in \sigma_p(H_V) \implies -1 \in \sigma_p(K(\lambda)),$$

for

$$K(\lambda) := |V|^{1/2} (H_0 - \lambda)^{-1} V_{1/2},$$

and

$$|V|^{1/2} e_n = \sqrt{|\nu_n|} e_n \quad \text{and} \quad V_{1/2} e_n = \text{sgn}(\nu_n) \sqrt{|\nu_n|} e_n$$

with the complex signum function $\text{sgn} \, z = z/|z|$, if $z \neq 0$, and $\text{sgn} \, 0 = 0$.
- In particular,

$$\lambda \in \sigma_p(H_V) \implies \|K(\lambda)\| \geq 1.$$
Proof - the part based on the Birman–Schwinger principle

Let $\lambda \notin [-2, 2] \equiv \sigma(H_0)$.
Proof - the part based on the Birman–Schwinger principle

- Let \(\lambda \notin [-2, 2] \equiv \sigma(H_0) \).
- Then \(\lambda = k^{-1} + k \) with \(|k| < 1 \) and one has
 \[
 \left| (H_0 - \lambda)^{-1} \right|_{m,n} = \frac{|k|^{m-n}}{|k - k^{-1}|} \leq \frac{1}{|k - k^{-1}|} = \frac{1}{\sqrt{|\lambda^2 - 4|}}, \quad \forall m, n \in \mathbb{Z}.
 \]
Proof - the part based on the Birman–Schwinger principle

- Let $\lambda \not\in [-2,2] \equiv \sigma(H_0)$.
- Then $\lambda = k^{-1} + k$ with $|k| < 1$ and one has

 $$\left|(H_0 - \lambda)_{m,n}^{-1}\right| = \frac{|k|^{m-n}|}{|k - k^{-1}|} \leq \frac{1}{|k - k^{-1}|} = \frac{1}{\sqrt{|\lambda^2 - 4|}}, \quad \forall m, n \in \mathbb{Z}.$$

- For any $\psi \in \ell^2(\mathbb{Z})$, we estimate

 $$\|K(\lambda)\psi\|_{\ell^2(\mathbb{Z})}^2 \leq \sum_{m \in \mathbb{Z}} \left(\sum_{n \in \mathbb{Z}} \sqrt{|u_m|} \left|(H_0 - \lambda)_{m,n}^{-1}\right| \sqrt{|v_n|} |\psi_n| \right)^2$$

 $$\leq \frac{\|v\|_{\ell^1(\mathbb{Z})}^2}{|\lambda^2 - 4|} \left(\sum_{m \in \mathbb{Z}} \sqrt{|u_m|} |\psi_n| \right)^2 \leq \frac{\|v\|_{\ell^1(\mathbb{Z})}^2}{|\lambda^2 - 4|} \|\psi\|_{\ell^2(\mathbb{Z})}^2.$$
Proof - the part based on the Birman–Schwinger principle

Let \(\lambda \notin [-2, 2] \equiv \sigma(H_0) \).

Then \(\lambda = k^{-1} + k \) with \(|k| < 1\) and one has

\[
\left| (H_0 - \lambda)^{-1}_{m,n} \right| = \frac{|k|^{m-n}}{|k - k^{-1}|} \leq \frac{1}{|k - k^{-1}|} = \frac{1}{\sqrt{|\lambda^2 - 4|}}, \quad \forall m, n \in \mathbb{Z}.
\]

For any \(\psi \in \ell^2(\mathbb{Z}) \), we estimate

\[
\| K(\lambda) \psi \|_{\ell^2(\mathbb{Z})}^2 \leq \sum_{m \in \mathbb{Z}} \left(\sum_{n \in \mathbb{Z}} \sqrt{|v_m|} \left| (H_0 - \lambda)^{-1}_{m,n} \right| \sqrt{|v_n|} |\psi_n| \right)^2 \leq \frac{\| v \|_{\ell^1(\mathbb{Z})}^2}{|\lambda^2 - 4|} \| \psi \|_{\ell^2(\mathbb{Z})}^2.
\]

In other words,

\[
\| K(\lambda) \|^2 \leq \frac{\| v \|_{\ell^1(\mathbb{Z})}^2}{|\lambda^2 - 4|}
\]
Let \(\lambda \notin [-2, 2] \equiv \sigma(H_0) \).

Then \(\lambda = k^{-1} + k \) with \(|k| < 1 \) and one has

\[
\left| (H_0 - \lambda)^{-1} \right| = \frac{|k|^{m-n}}{|k - k^{-1}|} \leq \frac{1}{|k - k^{-1}|} = \frac{1}{\sqrt{|\lambda^2 - 4|}}, \quad \forall m, n \in \mathbb{Z}.
\]

For any \(\psi \in \ell^2(\mathbb{Z}) \), we estimate

\[
\|K(\lambda)\psi\|_{\ell^2(\mathbb{Z})}^2 \leq \sum_{m \in \mathbb{Z}} \left(\sum_{n \in \mathbb{Z}} \sqrt{|v_m|} \left| (H_0 - \lambda)^{-1} \right| \sqrt{|v_n|} |\psi_n| \right)^2
\leq \frac{\|v\|_{\ell^1(\mathbb{Z})}}{|\lambda^2 - 4|} \left(\sum_{m \in \mathbb{Z}} \sqrt{|v_n|} |\psi_n| \right)^2 \leq \frac{\|v\|_{\ell^1(\mathbb{Z})}^2}{|\lambda^2 - 4|} \|\psi\|_{\ell^2(\mathbb{Z})}^2.
\]

In other words,

\[
\|K(\lambda)\|^2 \leq \frac{\|v\|_{\ell^1(\mathbb{Z})}^2}{|\lambda^2 - 4|}
\]

Thus, if \(\lambda \in \sigma_p(H_\nu) \), then

\[
|\lambda^2 - 4| \leq \|v\|_{\ell^1(\mathbb{Z})}^2.
\]
Many works make use of the Birman–Swinger principle...

Many various spectral bounds (mainly) for differential operators such as Schrödinger and Dirac operators were obtained by applying the Birman–Schwinger principle.
Many works make use of the Birman–Swinger principle...

Many various spectral bounds (mainly) for differential operators such as Schrödinger and Dirac operators were obtained by applying the Birman–Schwinger principle.

An incomplete list of authors:

Abramov, Aslanyan, Behrndt, Cuenin, Davies, Enblom, Frank, Fanelli, Ibrogimov, Krejčířík, Langer, Laptev, Lee, Lieb, Lotoreichik, Rohleder, Safronov, Seiringer, Seo, Tretter, Vega,...
The optimality

- Delta potential:

\[v_n := \omega \delta_{n,0}, \quad \forall n \in \mathbb{Z}, \]

where \(\omega \in \mathbb{C} \) is a coupling constant.
The optimality

- Delta potential:
 \[\nu_n := \omega \delta_{n,0}, \quad \forall n \in \mathbb{Z}, \]

 where \(\omega \in \mathbb{C} \) is a coupling constant.

- The operator \(H_\nu \) demonstrates the optimality!
The optimality

- Delta potential:
 \[v_n := \omega \delta_{n,0}, \quad \forall n \in \mathbb{Z}, \]
 where \(\omega \in \mathbb{C} \) is a coupling constant.

- The operator \(H_V \) demonstrates the optimality!

- For \(\omega \in \mathbb{C} \setminus [-2i, 2i] \),
 \[\lambda_\omega := \sqrt{\omega^2 + 4} \in \sigma_p(H_V). \]
The optimality

- Delta potential:
 \[v_n := \omega \delta_{n,0}, \quad \forall n \in \mathbb{Z}, \]

 where \(\omega \in \mathbb{C} \) is a coupling constant.

- The operator \(H_V \) demonstrates the optimality!

- For \(\omega \in \mathbb{C} \setminus [-2i, 2i] \),
 \[\lambda_\omega := \sqrt{\omega^2 + 4} \in \sigma_p(H_V). \]

- The eigenvalue \(\lambda_\omega \) lies on the boundary curve of the spectral enclosure because
 \[|\lambda_\omega^2 - 4| = |\omega|^2 \equiv \|v\|^2_{l^1(\mathbb{Z})}. \]
The discrete Schrödinger operator

The optimality

- Delta potential:
 \[v_n := \omega \delta_{n,0}, \quad \forall n \in \mathbb{Z}, \]
 where \(\omega \in \mathbb{C} \) is a coupling constant.

- The operator \(H_V \) demonstrates the optimality!

- For \(\omega \in \mathbb{C} \setminus [-2i, 2i] \),
 \[\lambda_\omega := \sqrt{\omega^2 + 4} \in \sigma_p(H_V). \]

- The eigenvalue \(\lambda_\omega \) lies on the boundary curve of the spectral enclosure because
 \[|\lambda_\omega^2 - 4| = |\omega|^2 \equiv \|v\|_{\ell^1(\mathbb{Z})}^2. \]

- Moreover, for any \(Q > 0 \), one has
 \[\{ \lambda_\omega \mid \omega = Q e^{i\theta}, -\pi < \theta \leq \pi \} = \{ \lambda \in \mathbb{C} \mid |\lambda^2 - 4| = Q^2 \}. \]
Numerical illustration: the delta potential demonstrates optimality
The discrete Schrödinger operator

ℓ^p-potentials, $p > 1$

Theorem (ℓ^p-potential)

Let $1 < p \leq \infty$ and $v \in \ell^p(\mathbb{Z})$. Denote by $q \in [1, \infty)$ the corresponding Hölder exponent, i.e.,

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Then

$$\sigma(H_v) \subset \left\{ k + \frac{1}{k} \mid k \in \mathbb{C} \setminus \{0\}, \ |k| \leq 1 \text{ and } \left| k - \frac{1}{k} \right| \left(\frac{1 - |k|^q}{1 + |k|^q} \right)^{1/q} \leq \|v\|_{\ell^p(\mathbb{Z})} \right\}.$$

Remarks:

The proof is based again on Birman–Schwinger principle and uses either the Schur test or discrete Young’s inequality. No optimality result. The interval $[-2, 2]$ always involved in the spectral enclosure \Rightarrow no consequences for embedded eigenvalues.
The discrete Schrödinger operator

\(\ell^p \)-potentials, \(p > 1 \)

Theorem (\(\ell^p \)-potential)

Let \(1 < p \leq \infty \) and \(\nu \in \ell^p(\mathbb{Z}) \). Denote by \(q \in [1, \infty) \) the corresponding Hölder exponent, i.e.,

\[
\frac{1}{p} + \frac{1}{q} = 1.
\]

Then

\[
\sigma(H_\nu) \subset \left\{ k + \frac{1}{k} \mid k \in \mathbb{C} \setminus \{0\}, |k| \leq 1 \text{ and } \left| k - \frac{1}{k} \right| \left(\frac{1 - |k|^q}{1 + |k|^q} \right)^{1/q} \leq \|\nu\|_{\ell^p(\mathbb{Z})} \right\}.
\]

Remarks:

- The proof is based again on Birman–Schwinger principle and uses either the Schur test or discrete Young’s inequality.
The discrete Schrödinger operator

ℓ^p-potentials, $p > 1$

Theorem (ℓ^p-potential)

Let $1 < p \leq \infty$ and $\nu \in \ell^p(\mathbb{Z})$. Denote by $q \in [1, \infty)$ the corresponding Hölder exponent, i.e.,

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Then

$$\sigma(H_{\nu}) \subset \left\{ k + \frac{1}{k} \mid k \in \mathbb{C} \setminus \{0\}, \ |k| \leq 1 \text{ and } \left| k - \frac{1}{k} \right| \left(\frac{1 - |k|^q}{1 + |k|^q} \right)^{1/q} \leq \|\nu\|_{\ell^p(\mathbb{Z})} \right\}.$$

Remarks:

- The proof is based again on Birman–Schwinger principle and uses either the Schur test or discrete Young’s inequality.
- No optimality result.
\textbf{\(\ell^p\)-potentials, \(p > 1\)}

\section*{Theorem (\(\ell^p\)-potential)}

Let \(1 < p \leq \infty\) and \(\nu \in \ell^p(\mathbb{Z})\). Denote by \(q \in [1, \infty)\) the corresponding Hölder exponent, i.e.,

\[
\frac{1}{p} + \frac{1}{q} = 1.
\]

Then

\[
\sigma(H\nu) \subset \left\{ k + \frac{1}{k} \mid k \in \mathbb{C} \setminus \{0\}, \ |k| \leq 1 \ \text{and} \ \left| k - \frac{1}{k} \right| \left(\frac{1 - |k|^q}{1 + |k|^q} \right)^{1/q} \leq \|\nu\|_{\ell^p(\mathbb{Z})} \right\}.
\]

\section*{Remarks:}

- The proof is based again on Birman–Schwinger principle and uses either the Schur test or discrete Young’s inequality.
- No optimality result.
- The interval \([-2, 2]\) always involved in the spectral enclosure \(\Rightarrow\) no consequences for embedded eigenvalues.
ℓ^p-potentials: plots of the spectral enclosure for $p = 2$.
Contents

1 The discrete Schrödinger operator

2 The discrete Dirac operator
Definitions

Let \(\{ e_n \}_{n \in \mathbb{Z}} \) stands for the standard basis of \(\ell^2(\mathbb{Z}) \).
Definitions

- Let \(\{ e_n \}_{n \in \mathbb{Z}} \) stands for the standard basis of \(\ell^2(\mathbb{Z}) \).
- The operator \(d : \ell^2(\mathbb{Z}) \rightarrow \ell^2(\mathbb{Z}) : \)
 \[
 de_n := e_n - e_{n+1}, \quad \forall n \in \mathbb{Z}.
 \]
The discrete Dirac operator

Definitions

- Let \(\{e_n\}_{n \in \mathbb{Z}} \) stands for the standard basis of \(\ell^2(\mathbb{Z}) \).
- The operator \(d : \ell^2(\mathbb{Z}) \rightarrow \ell^2(\mathbb{Z}) \):
 \[
d e_n := e_n - e_{n+1}, \quad \forall n \in \mathbb{Z}.
 \]
- Free discrete Dirac operator \(D_0 \):
 \[
 D_0 := \begin{pmatrix} m & d \\ d^* & -m \end{pmatrix}
 \]
 acting on \(\ell^2(\mathbb{Z}) \oplus \ell^2(\mathbb{Z}) \), where \(m \geq 0 \) and \(d^* \) is the adjoint operator to \(d \).
Definitions

- Let \(\{e_n\}_{n \in \mathbb{Z}} \) stands for the standard basis of \(\ell^2(\mathbb{Z}) \).
- The operator \(d : \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z}) \):
 \[
 de_n := e_n - e_{n+1}, \quad \forall n \in \mathbb{Z}.
 \]
- Free discrete Dirac operator \(D_0 \):
 \[
 D_0 := \begin{pmatrix} m & d \\ d^* & -m \end{pmatrix}
 \]
 acting on \(\ell^2(\mathbb{Z}) \oplus \ell^2(\mathbb{Z}) \), where \(m \geq 0 \) and \(d^* \) is the adjoint operator to \(d \).
- Considered potentials:
 \[
 V = \begin{pmatrix} V^{1,1} & V^{1,2} \\ V^{2,1} & V^{2,2} \end{pmatrix},
 \]
 where \(V^{i,j} \) act on \(\ell^2(\mathbb{Z}) \) as diagonal operators determined by doubly infinite complex sequences.
By using a suitable orthonormal basis of $\ell^2(\mathbb{Z}) \oplus \ell^2(\mathbb{Z})$, D_0 can be represented by the 2×2-block tridiagonal Laurent matrix:

$$D_0 = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots \\ \vdots & a^T & b & a \\ a^T & b & a \\ \vdots & a^T & b & a \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix},$$

where

$$b := \begin{pmatrix} -m & 1 \\ 1 & m \end{pmatrix} \quad \text{and} \quad a := \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}.$$
By using a suitable orthonormal basis of $\ell^2(\mathbb{Z}) \oplus \ell^2(\mathbb{Z})$, D_0 can be represented by the 2×2-block tridiagonal Laurent matrix:

$$D_0 = \begin{pmatrix} \cdots & b & a & \cdots \\ a^T & b & a & a^T \\ \cdots & b & a & \cdots \\ a^T & b & a & \cdots \end{pmatrix},$$

where

$$b := \begin{pmatrix} -m & 1 \\ 1 & m \end{pmatrix} \quad \text{and} \quad a := \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}.$$

The considered perturbation of D_0:

$$V = \bigoplus_{n \in \mathbb{Z}} \nu_n, \quad \text{where} \quad \nu_n := \begin{pmatrix} \nu_{11} & \nu_{12} \\ \nu_{21} & \nu_{22} \end{pmatrix}.$$
Facts about D_0

- The spectrum:

$$\sigma(D_0) = \sigma_{\text{ess}}(D_0) = \left[-\sqrt{m^2 + 4}, -m \right] \cup \left[m, \sqrt{m^2 + 4} \right].$$
Facts about D_0

- The spectrum:
 \[\sigma(D_0) = \sigma_{\text{ess}}(D_0) = [-\sqrt{m^2 + 4}, -m] \cup [m, \sqrt{m^2 + 4}] . \]

- An important correspondence: The equation
 \[\lambda^2 = m^2 + 2 - k - k^{-1} \]
 determines a one-to-two mapping $\lambda = \lambda(k)$ from $0 < |k| < 1$ onto $\rho(D_0)$.

František Štampach (FIT CTU in Prague)
Facts about D_0

- The spectrum:
 \[\sigma(D_0) = \sigma_{\text{ess}}(D_0) = [\sqrt{m^2 + 4} - m, m] \cup [m, \sqrt{m^2 + 4}] . \]

- An important correspondence: The equation
 \[\lambda^2 = m^2 + 2 - k - k^{-1} \]
determines a one-to-two mapping $\lambda = \lambda(k)$ from $0 < |k| < 1$ onto $\rho(D_0)$.

- The 2×2-block Laurent matrix representation of the resolvent:
 \[(D_0 - \lambda)^{-1}_{m,n} = T_{n-m}(k), \]
 where
 \[T_0(k) = \frac{1}{k^{-1} - k} \begin{pmatrix} \lambda - m & 1 - k \\ 1 - k & \lambda + m \end{pmatrix}, \]
 \[T_j(k) = T_{-j}^T(k) = \frac{k^j}{k^{-1} - k} \begin{pmatrix} \lambda - m & 1 - k \\ 1 - k^{-1} & \lambda + m \end{pmatrix}, \quad j \geq 1. \]
\(\ell^1 \)-potentials

Theorem (\(\ell^1 \)-potential)

Let \(V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2 \times 2}) \). Then

\[
\sigma_p(D_V) \subset \left\{ \lambda \in \mathbb{C} \mid |\lambda^2 - m^2||\lambda^2 - m^2 - 4| \leq (|\lambda + m| + |\lambda - m|)^2 \| V \|_1^2 \right\}.
\]

Remark: The Banach space \(\ell^p(\mathbb{Z}, \mathbb{C}^{2 \times 2}) \) is equipped with the norm \(\| V \|_p = \left(\sum_{n \in \mathbb{Z}} |\nu_n|^p \right)^{1/p} \), if \(1 \leq p < \infty \), \(\| V \|_\infty = \sup_{n \in \mathbb{Z}} |\nu_n| \), where \(|\nu_n| \) denotes the operator norm of the matrix \(\nu_n \in \mathbb{C}^{2 \times 2} \).
\(\ell^1 \)-potentials

Theorem (\(\ell^1 \)-potential)

Let \(V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2\times 2}) \). Then

\[
\sigma_p(D_V) \subset \left\{ \lambda \in \mathbb{C} \mid |\lambda^2 - m^2||\lambda^2 - m^2 - 4| \leq (|\lambda + m| + |\lambda - m|)^2 \|V\|_1^2 \right\}.
\]

Remark: The Banach space \(\ell^p(\mathbb{Z}, \mathbb{C}^{2\times 2}) \) is equipped with the norm

\[
\|V\|_p = \left(\sum_{n \in \mathbb{Z}} |v_n|^p \right)^{1/p}, \quad \text{if } 1 \leq p < \infty, \quad \|V\|_\infty = \sup_{n \in \mathbb{Z}} |v_n|,
\]

where \(|v_n| \) denotes the operator norm of the matrix \(v_n \in \mathbb{C}^{2\times 2} \).
Geometry of the boundary curve for $m = 1$
Embedded eigenvalues

Corollary:

Let $V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2 \times 2})$. If $2 \| V \|_1^2 < (m^2 + 2 - m\sqrt{m^2 + 4})$ then the union of two intervals

$$(-\tau_+, -\tau_-) \cup (\tau_-, \tau_+),$$

where

$$\tau_{\pm} = \sqrt{2 + m^2 - 2 \| V \|_1^2 \pm 2 \sqrt{1 - (m^2 + 2) \| V \|_1^2 + \| V \|_4^4}},$$

is free of embedded eigenvalues of H_V.
Optimality

- The presented bound for ℓ^1-potentials is not optimal.
Optimality

- The presented bound for ℓ^1–potentials is not optimal.
- A tighter bound exists:

$$\sigma_p(D_V) \setminus \sigma(D_0) \subset \{ \lambda \in \mathbb{C} \setminus \sigma(D_0) \mid \max \{ |T_0(k)|, |T_1(k)| \|V\|_1 \geq 1 \},$$

where k is the unique point in $\{ k \in \mathbb{C} | 0 < |k| < 1 \}$ such that $\lambda^2 = m^2 + 2 - k - k^{-1}$. The 2×2 complex matrices $T_0(k)$ and $T_1(k)$ appear in the formula for the resolvent $(D_0 - \lambda)^{-1}$. Their spectral norms can be expressed explicitly but lead to complicated expressions:

$$|T_1(k)|^2 = |k|^2 |\lambda + m|^2 + |\lambda - m|^2 + (|k| + |k|^{-1}) |\lambda^2 - m^2| \|\lambda^2 - m^2\|.$$
Optimality

- The presented bound for ℓ^1–potentials is not optimal.
- A tighter bound exists:

Theorem (improved spectral enclosure for ℓ^1-potential)

Let $V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2 \times 2})$. Then

$$\sigma_p(D_V) \setminus \sigma(D_0) \subset \{ \lambda \in \mathbb{C} \setminus \sigma(D_0) \mid \max \{ |T_0(k)|, |T_1(k)| \} \| V \|_1 \geq 1 \},$$

where k is the unique point in $\{ k \in \mathbb{C} \mid 0 < |k| < 1 \}$ such that $\lambda^2 = m^2 + 2 - k - k^{-1}$.

The 2×2 complex matrices $T_0(k)$ and $T_1(k)$ appear in the formula for the resolvent $(D_0 - \lambda)^{-1}$. Their spectral norms can be expressed explicitly but lead to complicated expressions:

$$|T_1(k)|^2 = |k|^2 |\lambda + m|^2 + |\lambda - m|^2 + (|k| + |k| - 1) |\lambda^2 - m^2|.$$
The presented bound for ℓ^1–potentials is not optimal.

A tighter bound exists:

Theorem (improved spectral enclosure for ℓ^1-potential)

Let $V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2 \times 2})$. Then

$$\sigma_p(D_V) \setminus \sigma(D_0) \subset \{ \lambda \in \mathbb{C} \setminus \sigma(D_0) \mid \max \{ \| T_0(k) \|, \| T_1(k) \| \} \| V \|_1 \geq 1 \},$$

where k is the unique point in $\{ k \in \mathbb{C} \mid 0 < |k| < 1 \}$ such that $\lambda^2 = m^2 + 2 - k - k^{-1}$.

- The 2×2 complex matrices $T_0(k)$ and $T_1(k)$ appear in the formula for the resolvent $(D_0 - \lambda)^{-1}$.
Optimality

- The presented bound for ℓ^1–potentials is **not optimal**.
- A tighter bound exists:

Theorem (improved spectral enclosure for ℓ^1-potential)

Let $V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2\times 2})$. Then

$$\sigma_p(D_V) \setminus \sigma(D_0) \subset \{ \lambda \in \mathbb{C} \setminus \sigma(D_0) \mid \max \{|T_0(k)|, |T_1(k)|\} \|V\|_1 \geq 1 \},$$

where k is the unique point in $\{k \in \mathbb{C} \mid 0 < |k| < 1\}$ such that $\lambda^2 = m^2 + 2 - k - k^{-1}$.

- The 2×2 complex matrices $T_0(k)$ and $T_1(k)$ appear in the formula for the resolvent $(D_0 - \lambda)^{-1}$.
- Their spectral norms can be expressed explicitly but lead to complicated expressions:

$$|T_1(k)|^2 = |k|^2 \frac{\lambda + m^2 + |\lambda - m^2| + (|k| + |k|^{-1})|\lambda^2 - m^2|}{|\lambda^2 - m^2| |\lambda^2 - m^2 - 4|},$$

$$|T_0(k)|^2 = \ldots \text{even more complicated :(.}$$
Optimality of the improved spectral enclosure for ℓ^1-potential

We were able to prove only a “partial” optimality, i.e., only a part of the boundary of the spectral enclosure can be approached by an eigenvalue of D_V for some $V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2 \times 2})$.
We were able to prove only a "partial" optimality, i.e., only a part of the boundary of the spectral enclosure can be approached by an eigenvalue of D_V for some $V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2\times2})$.
We were able to prove only a “partial” optimality, i.e., only a part of the boundary of the spectral enclosure can be approached by an eigenvalue of D_V for some $V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2\times2})$.
We were able to prove only a “partial” optimality, i.e., only a part of the boundary of the spectral enclosure can be approached by an eigenvalue of D_V for some $V \in \ell^1(\mathbb{Z}, \mathbb{C}^{2\times 2})$.
Spectral enclosures for ℓ^p–potentials, $p > 1$

Theorem (spectral enclosures for ℓ^p–potentials)

Let $1 < p \leq \infty$, q the Hölder dual index to p, and assume $V \in \ell^p(\mathbb{Z}, \mathbb{C}^{2\times2})$. Then $\sigma(D_V) \setminus \sigma(D_0)$ is a subset of:

1. A simpler bound:

 $$\{ \lambda \in \mathbb{C} \setminus \sigma(D_0) \mid \left| \lambda - m \right| + \left| \lambda + m \right| \leq \left(\frac{1}{k^1} + 2^{1/2} \left| k \right|^{1/q} + 2^{1/2} \left| k \right|^{1/q} \right)^{1/q} \left\| V \right\|_p \geq 1 \}.$$

2. A tighter bound:

 $$\{ \lambda \in \mathbb{C} \setminus \sigma(D_0) \mid \left(\left| T_0(k) \right|^{q} + 2 \right)^{1/q} \left(\left| T_1(k) \right|^{q} + 2 \right)^{1/q} \left\| V \right\|_p \geq 1 \}.$$
The discrete Dirac operator

Spectral enclosures for ℓ^p–potentials, $p > 1$

Theorem (spectral enclosures for ℓ^p–potentials)

Let $1 < p \leq \infty$, q the Hölder dual index to p, and assume $V \in \ell^p(\mathbb{Z}, \mathbb{C}^{2x2})$. Then $\sigma(D_V) \setminus \sigma(D_0)$ is a subset of:

- A simpler bound:

$$\left\{ \lambda \in \mathbb{C} \setminus \sigma(D_0) \left| \frac{|\lambda - m| + |\lambda + m|}{|k^{-1} - k|} \left(1 + \frac{2\sqrt{|k|^q}}{1 - |k|^q}\right)^{1/q} \|V\|_p \geq 1 \right. \right\}.$$
Spectral enclosures for ℓ^p–potentials, $p > 1$

Theorem (spectral enclosures for ℓ^p–potentials)

Let $1 < p \leq \infty$, q the Hölder dual index to p, and assume $V \in \ell^p(\mathbb{Z}, \mathbb{C}^{2 \times 2})$. Then $\sigma(D_V) \setminus \sigma(D_0)$ is a subset of:

1. A simpler bound:

 \[
 \left\{ \lambda \in \mathbb{C} \setminus \sigma(D_0) \mid \frac{|\lambda - m| + |\lambda + m|}{|k^{-1} - k|} \left(1 + \frac{2\sqrt{|k|^q}}{1 - |k|^q}\right)^{1/q} \|V\|_p \geq 1 \right\}.
 \]

2. A tighter bound:

 \[
 \left\{ \lambda \in \mathbb{C} \setminus \sigma(D_0) \mid \left(|T_0(k)|^q + \frac{2}{1 - |k|^q}|T_1(k)|^q\right)^{1/q} \|V\|_p \geq 1 \right\}.
 \]
Thank you!