The Moment Problem

František Štampach

Seminar talk - analysis group

November 2, 2016
Outline

1. Motivation
2. What the moment problem is?
3. Existence and uniqueness of the solution - operator approach
4. Jacobi matrix and Orthogonal Polynomials
5. Sufficient conditions for determinacy
6. The set of solutions of indeterminate moment problem
Contents

1 Motivation

2 What the moment problem is?

3 Existence and uniqueness of the solution - operator approach

4 Jacobi matrix and Orthogonal Polynomials

5 Sufficient conditions for determinacy

6 The set of solutions of indeterminate moment problem
Motivation

Chebychev’s question (1874, most likely inspired by work of I. J. Bienaymé, 1853):
If for some positive function f,

$$\int_{\mathbb{R}} x^n f(x) \, dx = \int_{\mathbb{R}} x^n e^{-x^2} \, dx, \quad \forall n = 0, 1, \ldots$$

can we then conclude that $f(x) = e^{-x^2}$?

In today’s language:

Is the normal density uniquely determined by its moment sequence?

Answer: *yes* in the sense that $f(x) = e^{-x^2}$ a.e. w.r.t. Lebesgue measure on \mathbb{R}.

Relevant questions immediately appear:

What happens if one replaces the normal density by something else?

The general answer to Chebychev’s question is *no*. Suppose, e.g., $X \sim N(0, \sigma^2)$ and consider densities of $\exp(X)$ (lognormal distribution), then we lost the uniqueness.

And what if one replaces the RHS by a sequence of real numbers s_n? Does there even exist a distribution (measure) whose n-th moment is equal to s_n?

Answer: In general, *no*.

František Štampach (Stockholm University)

The Moment Problem

November 2, 2016
Chebychev’s question (1874, most likely inspired by work of I. J. Bienaymé, 1853): *If for some positive function* f,

$$
\int_{\mathbb{R}} x^n f(x) \, dx = \int_{\mathbb{R}} x^n e^{-x^2} \, dx, \quad \forall n = 0, 1, \ldots
$$

can we then conclude that $f(x) = e^{-x^2}$?

In today’s language: *Is the normal density uniquely determined by its moment sequence?*
Chebychev’s question (1874, most likely inspired by work of I. J. Bienaymé, 1853): *If for some positive function* f,

$$
\int_{\mathbb{R}} x^n f(x) \, dx = \int_{\mathbb{R}} x^n e^{-x^2} \, dx, \quad \forall n = 0, 1, \ldots
$$

can we then conclude that $f(x) = e^{-x^2}$?

In today’s language: *Is the normal density uniquely determined by its moment sequence?*

Answer: *yes* in the sense that $f(x) = e^{-x^2}$ a.e. w.r.t. Lebesque measure on \mathbb{R}.

Relevant questions immediately appear: *What happens if one replaces the normal density by something else?*

The general answer to Chebychev’s question is *no*. Suppose, e.g., $X \sim \mathcal{N}(0, \sigma^2)$ and consider densities of $\exp(X)$ (lognormal distribution), then we lost the uniqueness.

And what if one replaces the RHS by a sequence of real numbers s_n? Does there even exist a distribution (measure) whose n-th moment is equal to s_n?

Answer: *in general, no*.

František Štampach (Stockholm University)

The Moment Problem

November 2, 2016 4 / 30
Chebychev’s question (1874, most likely inspired by work of I. J. Bienaymé, 1853): *If for some positive function* \(f \),

\[
\int_{\mathbb{R}} x^n f(x) \, dx = \int_{\mathbb{R}} x^n e^{-x^2} \, dx, \quad \forall n = 0, 1, \ldots
\]

can we then conclude that \(f(x) = e^{-x^2} \)?

In today’s language: *Is the normal density uniquely determined by its moment sequence?*

Answer: *yes* in the sense that \(f(x) = e^{-x^2} \) a.e. w.r.t. Lebesque measure on \(\mathbb{R} \).

Relevant questions immediately appear:
- What happens if one replaces the normal density by something else?
Chebychev’s question (1874, most likely inspired by work of I. J. Bienaymé, 1853):

If for some positive function f,

$$
\int_{\mathbb{R}} x^n f(x) dx = \int_{\mathbb{R}} x^n e^{-x^2} dx, \quad \forall n = 0, 1, \ldots
$$

\begin{equation}
\text{can we then conclude that } f(x) = e^{-x^2} ?
\end{equation}

In today’s language: Is the normal density uniquely determined by its moment sequence?

Answer: yes in the sense that $f(x) = e^{-x^2}$ a.e. w.r.t. Lebesque measure on \mathbb{R}.

Relevant questions immediately appear:

- What happens if one replaces the normal density by something else?
- The general answer to Chebychev’s question is no. Suppose, e.g., $X \sim N(0, \sigma^2)$ and consider densities of $\exp(X)$ (lognormal distribution), then we lost the uniqueness.
Motivation

- Chebychev’s question (1874, most likely inspired by work of I. J. Bienaymé, 1853): If for some positive function f,

$$\int_{\mathbb{R}} x^n f(x) \, dx = \int_{\mathbb{R}} x^n e^{-x^2} \, dx, \quad \forall n = 0, 1, \ldots$$

can we then conclude that $f(x) = e^{-x^2}$?

- In today’s language: *Is the normal density uniquely determined by its moment sequence?*

- Answer: *yes* in the sense that $f(x) = e^{-x^2}$ a.e. w.r.t. Lebesgue measure on \mathbb{R}.

Relevant questions immediately appear:

- What happens if one replaces the normal density by something else?

- The general answer to Chebychev’s question is *no*. Suppose, e.g., $X \sim N(0, \sigma^2)$ and consider densities of $\exp(X)$ (lognormal distribution), then we lost the uniqueness.

- And what if one replaces the RHS by a sequence of real numbers s_n? Does there even exist a distribution (measure) whose n-th moment is equal to s_n?
Motivation

- Chebychev's question (1874, most likely inspired by work of I. J. Bienaymé, 1853):

 If for some positive function f,
 \[
 \int_{\mathbb{R}} x^n f(x) \, dx = \int_{\mathbb{R}} x^n e^{-x^2} \, dx, \quad \forall n = 0, 1, \ldots
 \]

 can we then conclude that $f(x) = e^{-x^2}$?

- In today's language: *Is the normal density uniquely determined by its moment sequence?*

- Answer: *yes* in the sense that $f(x) = e^{-x^2}$ a.e. w.r.t. Lebesque measure on \mathbb{R}.

Relevant questions immediately appear:

- What happens if one replaces the normal density by something else?

- The general answer to Chebychev's question is *no*. Suppose, e.g., $X \sim N(0, \sigma^2)$ and consider densities of $\exp(X)$ (lognormal distribution), then we lost the uniqueness.

- And what if one replaces the RHS by a sequence of real numbers s_n? Does there even exist a distribution (measure) whose n-th moment is equal to s_n?

- Answer: In general, *no*.
Contents

1. Motivation

2. What the moment problem is?

3. Existence and uniqueness of the solution - operator approach

4. Jacobi matrix and Orthogonal Polynomials

5. Sufficient conditions for determinacy

6. The set of solutions of indeterminate moment problem
What is the moment problem

Let $I \subset \mathbb{R}$ be a closed interval. For a positive measure μ on I the nth moment is defined as

$$\int_I x^n \, d\mu(x),$$

(provided the integral exists).

Suppose a real sequence $\{s_n\}_{n \geq 0}$ is given. The moment problem on I consists of solving the following three problems:

1. Does there exist a positive measure on I with moments $\{s_n\}_{n \geq 0}$?
2. If so, is this positive measure uniquely determined by moments $\{s_n\}_{n \geq 0}$? (determinate case)
3. If this is not the case, how one can describe all positive measures on I with moments $\{s_n\}_{n \geq 0}$? (indeterminate case)

One can restrict oneself to cases:

- $I = \mathbb{R} -$ Hamburger moment problem ($M_H = \text{set of solutions}$)
- $I = [0, +\infty)$ - Stieltjes moment problem ($M_S = \text{set of solutions}$)
- $I = [0, 1]$ - Hausdorff moment problem
What the moment problem is?

Let $I \subset \mathbb{R}$ be a closed interval. For a positive measure μ on I the nth moment is defined as

$$\int_I x^n \, d\mu(x),$$

(provided the integral exists).

Suppose a real sequence $\{s_n\}_{n \geq 0}$ is given. The moment problem on I consists of solving the following three problems:

1. Does there exist a positive measure on I with moments $\{s_n\}_{n \geq 0}$?

 If so,
What is the moment problem

Let \(I \subseteq \mathbb{R} \) be a closed interval. For a positive measure \(\mu \) on \(I \) the \(n \)th moment is defined as

\[
\int_I x^n \, d\mu(x),
\]
(provided the integral exists).

Suppose a real sequence \(\{s_n\}_{n \geq 0} \) is given. The moment problem on \(I \) consists of solving the following three problems:

1. Does there exist a positive measure on \(I \) with moments \(\{s_n\}_{n \geq 0} \)?
 If so,

2. is this positive measure uniquely determined by moments \(\{s_n\}_{n \geq 0} \)? (determinate case)
 If this is not the case,
What is the moment problem

Let $I \subset \mathbb{R}$ be a closed interval. For a positive measure μ on I the nth moment is defined as

$$\int_I x^n \, d\mu(x),$$

(provided the integral exists).

Suppose a real sequence $\{s_n\}_{n \geq 0}$ is given. The moment problem on I consists of solving the following three problems:

1. Does there exist a positive measure on I with moments $\{s_n\}_{n \geq 0}$?
 If so,
2. is this positive measure uniquely determined by moments $\{s_n\}_{n \geq 0}$? (determinate case)
 If this is not the case,
3. how one can describe all positive measures on I with moments $\{s_n\}_{n \geq 0}$? (indeterminate case)
What is the moment problem

Let $I \subset \mathbb{R}$ be a closed interval. For a positive measure μ on I the nth moment is defined as

$$\int_I x^n d\mu(x),$$

(provided the integral exists).

Suppose a real sequence $\{s_n\}_{n \geq 0}$ is given. The moment problem on I consists of solving the following three problems:

1. Does there exist a positive measure on I with moments $\{s_n\}_{n \geq 0}$? If so,
2. is this positive measure uniquely determined by moments $\{s_n\}_{n \geq 0}$? (determinate case) If this is not the case,
3. how one can describe all positive measures on I with moments $\{s_n\}_{n \geq 0}$? (indeterminate case)

- uniqueness \sim determinate case vs. non-uniqueness \sim indeterminate case
What is the moment problem

Let $I \subset \mathbb{R}$ be a closed interval. For a positive measure μ on I the nth moment is defined as

$$\int_I x^n d\mu(x),$$

(provided the integral exists).

Suppose a real sequence $\{s_n\}_{n \geq 0}$ is given. The moment problem on I consists of solving the following three problems:

1. Does there exist a positive measure on I with moments $\{s_n\}_{n \geq 0}$?
 If so,

2. is this positive measure uniquely determined by moments $\{s_n\}_{n \geq 0}$? (*determinate case*)
 If this is not the case,

3. how one can describe all positive measures on I with moments $\{s_n\}_{n \geq 0}$? (*indeterminate case*)

uniqueness \preceq *determinate case* vs. non-uniqueness \succeq *indeterminate case*.

One can restrict oneself to cases:

- $I = \mathbb{R}$ - *Hamburger* moment problem ($\mathcal{M}_H =$ set of solutions)
- $I = [0, +\infty)$ - *Stieltjes* moment problem ($\mathcal{M}_S =$ set of solutions)
- $I = [0, 1]$ - *Hausdorff* moment problem
Hausdorff moment problem

Theorem (Hausdorff, 1923)

The moment problem has a solution on $[0, 1]$ iff sequence $\{s_n\}_{n \geq 0}$ is completely monotonic, i.e.,

$$(-1)^k (\Delta^k s)_n \geq 0$$

for all $k, n \in \mathbb{Z}_+$, where $(\Delta s)_n = s_{n+1} - s_n$.

and moreover ...

The Hausdorff moment problem is always determinate. Further, we will discuss the Stieltjes and Hamburger moment problem only...
Hausdorff moment problem

Theorem (Hausdorff, 1923)

The moment problem has a solution on $[0, 1]$ iff sequence $\{s_n\}_{n \geq 0}$ is completely monotonic, i.e.,

$(-1)^k (\Delta^k s)_n \geq 0$

for all $k, n \in \mathbb{Z}_+$, where $(\Delta s)_n = s_{n+1} - s_n$.

and moreover ...
Hausdorff moment problem

Theorem (Hausdorff, 1923)

The moment problem has a solution on $[0, 1]$ iff sequence $\{s_n\}_{n \geq 0}$ is completely monotonic, i.e.,

$$(-1)^k (\Delta^k s)_n \geq 0$$

for all $k, n \in \mathbb{Z}_+$, where $(\Delta s)_n = s_{n+1} - s_n$.

and moreover ...

The Hausdorff moment problem is always determinate.
Theorem (Hausdorff, 1923)

The moment problem has a solution on $[0, 1]$ iff sequence $\{s_n\}_{n \geq 0}$ is completely monotonic, i.e.,

$$(-1)^k (\Delta^k s)_n \geq 0$$

for all $k, n \in \mathbb{Z}_+$, where $(\Delta s)_n = s_{n+1} - s_n$.

and moreover ...

The Hausdorff moment problem is always determinate.
What the moment problem is?

Hausdorff moment problem

Theorem (Hausdorff, 1923)
The moment problem has a solution on \([0, 1]\) iff sequence \(\{s_n\}_{n \geq 0}\) is completely monotonic, i.e.,

\[
(-1)^k (\Delta^k s)_n \geq 0
\]

for all \(k, n \in \mathbb{Z}_+\), where \((\Delta s)_n = s_{n+1} - s_n\).

and moreover ...

The Hausdorff moment problem is always determinate.

Further, we will discuss the Stieltjes and Hamburger moment problem only...
Contents

1 Motivation

2 What the moment problem is?

3 Existence and uniqueness of the solution - operator approach

4 Jacobi matrix and Orthogonal Polynomials

5 Sufficient conditions for determinacy

6 The set of solutions of indeterminate moment problem
For \(\{s_n\}_{n \geq 0} \), we denote \(H_N(s) \) the \(N \times N \) Hankel matrix with entries

\[
(H_N(s))_{ij} := s_{i+j}, \quad i, j \in \{0, 1, \ldots N - 1\}.
\]
Existence of the solution (necessary condition)

- For \(\{s_n\}_{n \geq 0} \), we denote \(H_N(s) \) the \(N \times N \) Hankel matrix with entries
 \[
 (H_N(s))_{ij} := s_{i+j} \quad i, j \in \{0, 1, \ldots N - 1\}.
 \]

- Define two sesquilinear forms \(H_N \) and \(S_N \) on \(\mathbb{C}^N \) by
 \[
 H_N(x, y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j} \quad \text{and} \quad S_N(x, y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j+1}.
 \]
Existence and uniqueness of the solution - operator approach

Existence of the solution (necessary condition)

For \(\{s_n\}_{n \geq 0} \), we denote \(H_N(s) \) the \(N \times N \) Hankel matrix with entries
\[
(H_N(s))_{ij} := s_{i+j} \quad i, j \in \{0, 1, \ldots N - 1\}.
\]

Define two sesquilinear forms \(H_N \) and \(S_N \) on \(\mathbb{C}^N \) by
\[
H_N(x, y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j} \quad \text{and} \quad S_N(x, y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j+1}.
\]

Hence \(H_N(x, y) = (x, H_N(s)y) \) and \(S_N(x, y) = (x, H_N(Ts)y) \) (\(. , . \) Euclidean inner product).
Existence of the solution (necessary condition)

- For \(\{s_n\}_{n \geq 0} \), we denote \(H_N(s) \) the \(N \times N \) Hankel matrix with entries
 \[
 (H_N(s))_{ij} := s_{i+j}, \quad i, j \in \{0, 1, \ldots N - 1\}.
 \]

- Define two sesquilinear forms \(H_N \) and \(S_N \) on \(\mathbb{C}^N \) by
 \[
 H_N(x, y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j} \quad \text{and} \quad S_N(x, y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j+1}.
 \]

- Hence \(H_N(x, y) = (x, H_N(s)y) \) and \(S_N(x, y) = (x, H_N(Ts)y) \) (\(.., .. \) Euclidean inner product).

- Let \(\mu \in \mathcal{M}_H \) or \(\mu \in \mathcal{M}_S \) with infinite support. By observing that
 \[
 H_N(y, y) = \int \left| \sum_{i=0}^{N-1} y_i x^i \right|^2 d\mu(x) \quad \text{and} \quad S_N(y, y) = \int x \left| \sum_{i=0}^{N-1} y_i x^i \right|^2 d\mu(x),
 \]
 one immediately gets the following.
Existence of the solution (necessary condition)

- For \(\{s_n\}_{n\geq 0} \), we denote \(H_N(s) \) the \(N \times N \) Hankel matrix with entries
 \[
 (H_N(s))_{ij} := s_{i+j} \quad i, j \in \{0, 1, \ldots N - 1\}.
 \]

- Define two sesquilinear forms \(H_N \) and \(S_N \) on \(\mathbb{C}^N \) by
 \[
 H_N(x, y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j} \quad \text{and} \quad S_N(x, y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j+1}.
 \]

- Hence \(H_N(x, y) = (x, H_N(s)y) \) and \(S_N(x, y) = (x, H_N(Ts)y) \) (\(., . \) Euclidean inner product).

- Let \(\mu \in \mathcal{M}_H \) or \(\mu \in \mathcal{M}_S \) with infinite support. By observing that
 \[
 H_N(y, y) = \int \left| \sum_{i=0}^{N-1} y_i x^i \right|^2 d\mu(x) \quad \text{and} \quad S_N(y, y) = \int x \left| \sum_{i=0}^{N-1} y_i x^i \right|^2 d\mu(x),
 \]
 one immediately gets the following.

Necessary condition for the existence:

A necessary condition for the Hamburger moment problem to have a solution (with infinite support) is the sesquilinear form \(H_N \) is PD for all \(N \in \mathbb{Z}_+ \). A necessary condition for the Stieltjes moment problem to have a solution (with infinite support) is both sesquilinear forms \(H_N \) and \(S_N \) are PD for all \(N \in \mathbb{Z}_+ \).
Existence and uniqueness of the solution - operator approach

Existence of the solution (sufficient condition)

Let \(\{s_n\}_{n \geq 0} \) is given such that \(H_N(s) \) are PD for all \(N \in \mathbb{N} \).
Existence of the solution (sufficient condition)

- Let $\{s_n\}_{n \geq 0}$ is given such that $H_N(s)$ are PD for all $N \in \mathbb{N}$.
- Let $\mathbb{C}[x]$ be the ring of complex polynomials.
Existence of the solution (sufficient condition)

- Let \(\{s_n\}_{n \geq 0} \) be given such that \(H_N(s) \) are PD for all \(N \in \mathbb{N} \).
- Let \(\mathbb{C}[x] \) be the ring of complex polynomials.
- For \(P, Q \in \mathbb{C}[x] \),

\[
P(x) = \sum_{k=0}^{N-1} a_k x^k, \quad \text{and} \quad Q(x) = \sum_{k=0}^{N-1} b_k x^k,
\]

define positive definite inner product

\[
\langle P, Q \rangle := H_N(a, b).
\]
Existence and uniqueness of the solution - operator approach

Existence of the solution (sufficient condition)

- Let \(\{s_n\}_{n \geq 0} \) is given such that \(H_N(s) \) are PD for all \(N \in \mathbb{N} \).
- Let \(\mathbb{C}[x] \) be the ring of complex polynomials.
- For \(P, Q \in \mathbb{C}[x] \),
 \[
 P(x) = \sum_{k=0}^{N-1} a_k x^k, \quad \text{and} \quad Q(x) = \sum_{k=0}^{N-1} b_k x^k,
 \]
 define positive definite inner product
 \[
 \langle P, Q \rangle := H_N(a, b).
 \]
- By using standard procedure, we can complete \(\mathbb{C}[x] \) to a Hilbert space \(\mathcal{H}^{(s)} \).
Existence of the solution (sufficient condition)

- Let \(\{s_n\}_{n \geq 0} \) is given such that \(H_N(s) \) are PD for all \(N \in \mathbb{N} \).
- Let \(\mathbb{C}[x] \) be the ring of complex polynomials.
- For \(P, Q \in \mathbb{C}[x] \),
 \[
P(x) = \sum_{k=0}^{N-1} a_k x^k, \quad \text{and} \quad Q(x) = \sum_{k=0}^{N-1} b_k x^k,
\]
 define positive definite inner product
 \[
 \langle P, Q \rangle := H_N(a, b).
 \]
- By using standard procedure, we can complete \(\mathbb{C}[x] \) to a Hilbert space \(\mathcal{H}^{(s)} \).
- Define densely defined operator \(A \) on \(\mathcal{H}^{(s)} \) with \(\text{Dom}(A) = \mathbb{C}[x] \) by
 \[
 A[P(x)] = xP(x).
 \]
Existence of the solution (sufficient condition)

- Let \(\{s_n\}_{n \geq 0} \) is give such that \(H_N(s) \) are PD for all \(N \in \mathbb{N} \).
- Let \(\mathbb{C}[x] \) be the ring of complex polynomials.
- For \(P, Q \in \mathbb{C}[x] \),
 \[
 P(x) = \sum_{k=0}^{N-1} a_k x^k, \quad \text{and} \quad Q(x) = \sum_{k=0}^{N-1} b_k x^k,
 \]
 define positive definite inner product
 \[
 \langle P, Q \rangle := H_N(a, b).
 \]
- By using standard procedure, we can complete \(\mathbb{C}[x] \) to a Hilbert space \(\mathcal{H}^{(s)} \).

- Define densely defined operator \(A \) on \(\mathcal{H}^{(s)} \) with \(\text{Dom}(A) = \mathbb{C}[x] \) by
 \[
 A[P(x)] = xP(x).
 \]
- Since
 \[
 \langle P, A[Q] \rangle = S_N(a, b) = \langle A[P], Q \rangle,
 \]
 \(A \) is a symmetric operator.
Existence and uniqueness of the solution - operator approach

Existence of the solution (sufficient condition)

- Let \(\{s_n\}_{n \geq 0} \) is given such that \(H_N(s) \) are PD for all \(N \in \mathbb{N} \).
- Let \(\mathbb{C}[x] \) be the ring of complex polynomials.
- For \(P, Q \in \mathbb{C}[x] \),

\[
P(x) = \sum_{k=0}^{N-1} a_k x^k, \quad \text{and} \quad Q(x) = \sum_{k=0}^{N-1} b_k x^k,
\]

define positive definite inner product

\[
\langle P, Q \rangle := H_N(a, b).
\]

- By using standard procedure, we can complete \(\mathbb{C}[x] \) to a Hilbert space \(\mathcal{H}^{(s)} \).

Define densely defined operator \(A \) on \(\mathcal{H}^{(s)} \) with \(\text{Dom}(A) = \mathbb{C}[x] \) by

\[
A[P(x)] = xP(x).
\]

- Since

\[
\langle P, A[Q] \rangle = S_N(a, b) = \langle A[P], Q \rangle,
\]

\(A \) is a symmetric operator.

- In particular,

\[
\langle 1, A^n 1 \rangle = \langle 1, x^n \rangle = s_n, \quad n \in \mathbb{N}_0.
\]
Existence of the solution (sufficient condition)

- A has a self-adjoint extension since it commutes with a complex conjugation operator C on $\mathbb{C}[x]$ (von Neumann).
Existence of the solution (sufficient condition)

- A has a self-adjoint extension since it commutes with a complex conjugation operator C on $\mathbb{C}[x]$ (von Neumann).
- If each S_N is PD, then

$$\langle P, A[P] \rangle = S_N(a, a) \geq 0, \quad \forall P \in \mathbb{C}[x],$$

and it follows A has a non-negative self-adjoint extension A_F, the Friedrichs extension.
Existence of the solution (sufficient condition)

- A has a self-adjoint extension since it commutes with a complex conjugation operator C on $\mathbb{C}[x]$ (von Neumann).

- If each S_N is PD, then

$$\langle P, A[P] \rangle = S_N(a, a) \geq 0, \quad \forall P \in \mathbb{C}[x],$$

and it follows A has a non-negative self-adjoint extension A_F, the Friedrichs extension.

- Let A' be a self-adjoint extension of A. By the spectral theorem there is a projection valued spectral measure $E_{A'}$ and positive measure

$$\mu(\cdot) = \langle 1, E_{A'}(\cdot)1 \rangle.$$
Existence and uniqueness of the solution - operator approach

Existence of the solution (sufficient condition)

- A has a self-adjoint extension since it commutes with a complex conjugation operator C on $\mathbb{C}[x]$ (von Neumann).
- If each S_N is PD, then

$$\langle P, A[P] \rangle = S_N(a, a) \geq 0, \quad \forall P \in \mathbb{C}[x],$$

and it follows A has a non-negative self-adjoint extension A_F, the Friedrichs extension.

- Let A' be a self-adjoint extension of A. By the spectral theorem there is a projection valued spectral measure $E_{A'}$ and positive measure

$$\mu(\cdot) = \langle 1, E_{A'}(\cdot)1 \rangle.$$

- Hence, for a suitable function f, it holds

$$\langle 1, f(A')1 \rangle = \int_{\mathbb{R}} f(x) d\mu(x).$$
Existence of the solution (sufficient condition)

- \(A \) has a self-adjoint extension since it commutes with a complex conjugation operator \(C \) on \(\mathbb{C}[x] \) (von Neumann).

- If each \(S_N \) is PD, then

\[
\langle P, A[P] \rangle = S_N (a, a) \geq 0, \quad \forall P \in \mathbb{C}[x],
\]

and it follows \(A \) has a non-negative self-adjoint extension \(A_F \), the Friedrichs extension.

- Let \(A' \) be a self-adjoint extension of \(A \). By the spectral theorem there is a projection valued spectral measure \(E_{A'} \) and positive measure

\[
\mu(\cdot) = \langle 1, E_{A'}(\cdot) 1 \rangle.
\]

- Hence, for a suitable function \(f \), it holds

\[
\langle 1, f(A') 1 \rangle = \int_{\mathbb{R}} f(x) d\mu(x).
\]

- Especially, for \(f(x) = x^n \), one finds

\[
s_n = \langle 1, A^n 1 \rangle = \langle 1, (A')^n 1 \rangle = \int_{\mathbb{R}} x^n d\mu(x).
\]
Existence of the solution

- We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.
Existence of the solution

- We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.
- If, additionally, each S_N is PD, A_F is a non-negative self-adjoint extension of A and for the corresponding measure one has $\text{supp}(\mu) \subset [0, \infty)$. So there is a solution of the Stieltjes moment problem.
Existence of the solution

- We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.
- If, additionally, each S_N is PD, A_F is a non-negative self-adjoint extension of A and for the corresponding measure one has $\text{supp}(\mu) \subset [0, \infty)$. So there is a solution of the Stieltjes moment problem.
- Hence we arrive at the theorem on the existence of the solution.
Existence of the solution

- We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.
- If, additionally, each S_N is PD, A_F is a non-negative self-adjoint extension of A and for the corresponding measure one has $\text{supp}(\mu) \subset [0, \infty)$. So there is a solution of the Stieltjes moment problem.
- Hence we arrive at the theorem on the existence of the solution.

Theorem (existence):

i) A necessary and sufficient condition for $\mathcal{M}_H \neq \emptyset$ (with infinite support) is

$$\det H_N(s) > 0 \quad \forall N \in \mathbb{N}.$$

ii) A necessary and sufficient condition for $\mathcal{M}_S \neq \emptyset$ (with infinite support) is

$$\det H_N(s) > 0 \land \det S_N(s) > 0 \quad \forall N \in \mathbb{N}.$$
Existence of the solution

- We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.
- If, additionally, each S_N is PD, A_F is a non-negative self-adjoint extension of A and for the corresponding measure one has $\text{supp}(\mu) \subset [0, \infty)$. So there is a solution of the Stieltjes moment problem.
- Hence we arrive at the theorem on the existence of the solution.

Theorem (existence):

i) A necessary and sufficient condition for $\mathcal{M}_H \neq \emptyset$ (with infinite support) is

$$\det H_N(s) > 0 \quad \forall N \in \mathbb{N}.$$

ii) A necessary and sufficient condition for $\mathcal{M}_S \neq \emptyset$ (with infinite support) is

$$\det H_N(s) > 0 \land \det S_N(s) > 0 \quad \forall N \in \mathbb{N}.$$

- Historically, this result has not been obtained by using the spectral theorem that was invented later.
In view of the connection of the moment problem and self-adjoint extensions, the following result is reasonable.
Uniqueness

In view of the connection of the moment problem and self-adjoint extensions, the following result is reasonable.

Theorem (uniqueness):

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator A is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

ii) A necessary and sufficient condition for the Stieltjes moment problem to be determinate is that the operator A has a unique non-negative self-adjoint extension.
In view of the connection of the moment problem and self-adjoint extensions, the following result is reasonable.

Theorem (uniqueness):

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator A is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

ii) A necessary and sufficient condition for the Stieltjes moment problem to be determinate is that the operator A has a unique non-negative self-adjoint extension.

It is not easy to prove the theorem.
Existence and uniqueness of the solution - operator approach

Uniqueness

- In view of the connection of the moment problem and self-adjoint extensions, the following result is reasonable.

Theorem (uniqueness):

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator A is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

ii) A necessary and sufficient condition for the Stieltjes moment problem to be determinate is that the operator A has a unique non-negative self-adjoint extension.

- It is not easy to prove the theorem.

- In one direction, it is not clear that distinct self-adjoint extensions A'_1 and A'_2 give rise to distinct measures μ_1 and μ_2.

Uniqueness

In view of the connection of the moment problem and self-adjoint extensions, the following result is reasonable.

Theorem (uniqueness):

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator A is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

ii) A necessary and sufficient condition for the Stieltjes moment problem to be determinate is that the operator A has a unique non-negative self-adjoint extension.

It is not easy to prove the theorem.

In one direction, it is not clear that distinct self-adjoint extensions A'_1 and A'_2 give rise to distinct measures μ_1 and μ_2.

The other direction is even less clear. For not only is it not obvious, it is false that every solution of the moment problem arise from some measure given by spectral measure of some self-adjoint extension.
In view of the connection of the moment problem and self-adjoint extensions, the following result is reasonable.

Theorem (uniqueness):

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator A is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

ii) A necessary and sufficient condition for the Stieltjes moment problem to be determinate is that the operator A has a unique non-negative self-adjoint extension.

It is not easy to prove the theorem.

In one direction, it is not clear that distinct self-adjoint extensions A_1' and A_2' give rise to distinct measures μ_1 and μ_2.

The other direction is even less clear. For not only is it not obvious, it is **false** that every solution of the moment problem arise from some measure given by spectral measure of some self-adjoint extension.

A solution of the moment problem which comes from a self-adjoint extension of A is called N-extremal solution (von Neumann [Simon], extremal [Shohat–Tamarkin]).
Contents

1 Motivation

2 What the moment problem is?

3 Existence and uniqueness of the solution - operator approach

4 Jacobi matrix and Orthogonal Polynomials

5 Sufficient conditions for determinacy

6 The set of solutions of indeterminate moment problem
Let each $H_N(s)$ be PD. The set $\{1, x, x^2, \ldots \} \subset \mathcal{H}^{(s)}$ is total and linearly independent.
Let each $H_N(s)$ is PD. The set $\{1, x, x^2, \ldots\} \subset \mathcal{H}^{(s)}$ is total and linearly independent.

By applying the Gramm-Schmidt procedure, we obtain an orthonormal basis $\{P_n\}_{n=0}^{\infty}$ of $\mathcal{H}^{(s)}$.

{P_n}_{n=0}^{\infty}$ are determined by moment sequence $\{s_n\}_{s=0}^{\infty}$,
Let each $H_N(s)$ is PD. The set \(\{1, x, x^2, \ldots \} \subset \mathcal{H}^{(s)} \) is total and linearly independent.

By applying the Gramm-Schmidt procedure, we obtain an orthonormal basis \(\{P_n\}_{n=0}^\infty \) of $\mathcal{H}^{(s)}$.

By construction, P_n is a polynomial of degree n with real coefficients and

\[
\langle P_m, P_n \rangle = \delta_{mn}, \quad \forall m, n \in \mathbb{N}_0.
\]

These are well-known Orthogonal Polynomials.
Let each \(H_N(s) \) is PD. The set \(\{1, x, x^2, \ldots \} \subset \mathcal{H}(s) \) is total and linearly independent.

By applying the Gramm-Schmidt procedure, we obtain an orthonormal basis \(\{P_n\}_{n=0}^\infty \) of \(\mathcal{H}(s) \).

By construction, \(P_n \) is a polynomial of degree \(n \) with real coefficients and

\[
\langle P_m, P_n \rangle = \delta_{mn}, \quad \forall m, n \in \mathbb{N}_0.
\]

These are well-known **Orthogonal Polynomials**.

\(\{P_n\}_{n=0}^\infty \) are determined by moment sequence \(\{s_n\}_{s=0}^\infty \),

\[
P_n(x) = \frac{1}{\sqrt{\det[H_{n+1}(s)H_n(s)]}} \begin{vmatrix} s_0 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n-1} & s_n & \ldots & s_{2n-1} \\ 1 & x & \ldots & x^n \end{vmatrix}.
\]
Since

\[\text{span}(1, x, \ldots, x^n) = \text{span}(P_0, P_1, \ldots, P_n), \]

the polynomial \(xP_n(x) \) has an expansion in \(P_0, P_1, \ldots, P_{n+1} \).
Since
\[\text{span}(1, x, \ldots, x^n) = \text{span}(P_0, P_1, \ldots, P_n), \]
the polynomial \(xP_n(x) \) has an expansion in \(P_0, P_1, \ldots, P_{n+1} \).

Moreover, if \(0 \leq j \leq n - 1 \), one has
\[\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0. \]
Since
\[\text{span}(1, x, \ldots, x^n) = \text{span}(P_0, P_1, \ldots, P_n), \]
the polynomial \(xP_n(x) \) has an expansion in \(P_0, P_1, \ldots, P_{n+1} \).

Moreover, if \(0 \leq j < n - 1 \), one has
\[\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0. \]

There are sequences \(\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}, \text{ and } \{c_n\}_{n=0}^{\infty} \) such that
\[xP_n(x) = c_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x), \quad (P_{-1}(x) := 0), \]
for \(n \in \mathbb{N}_0 \).
Since

$$\text{span}(1, x, \ldots, x^n) = \text{span}(P_0, P_1, \ldots, P_n),$$

the polynomial $xP_n(x)$ has an expansion in $P_0, P_1, \ldots, P_{n+1}$.

Moreover, if $0 \leq j < n - 1$, one has

$$\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0.$$

There are sequences $\{a_n\}_{n=0}^\infty$, $\{b_n\}_{n=0}^\infty$, and $\{c_n\}_{n=0}^\infty$ such that

$$xP_n(x) = c_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x), \quad (P_{-1}(x) := 0),$$

for $n \in \mathbb{N}_0$.

Furthermore, by the Gramm-Schmidt procedure, $c_n > 0$, and

$$c_n = \langle P_{n+1}, xP_n \rangle = \langle P_n, xP_{n+1} \rangle = a_n.$$
Since
\[\text{span}(1, x, \ldots, x^n) = \text{span}(P_0, P_1, \ldots, P_n), \]
the polynomial \(xP_n(x) \) has an expansion in \(P_0, P_1, \ldots, P_{n+1} \).
Moreover, if \(0 \leq j < n - 1 \), one has
\[\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0. \]
There are sequences \(\{a_n\}_{n=0}^\infty \), \(\{b_n\}_{n=0}^\infty \), and \(\{c_n\}_{n=0}^\infty \) such that
\[xP_n(x) = c_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x), \quad (P_{-1}(x) := 0), \]
for \(n \in \mathbb{N}_0 \).
Furthermore, by the Gramm-Schmidt procedure, \(c_n > 0 \), and
\[c_n = \langle P_{n+1}, xP_n \rangle = \langle P_n, xP_{n+1} \rangle = a_n. \]
Thus, any sequence of orthogonal polynomials satisfies a three-term recurrence
\[xP_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x) \]
where \(a_n > 0 \) and \(b_n \in \mathbb{R} \).
Since
\[\text{span}(1, x, \ldots, x^n) = \text{span}(P_0, P_1, \ldots, P_n), \]
the polynomial \(xP_n(x) \) has an expansion in \(P_0, P_1, \ldots, P_{n+1} \).

Moreover, if \(0 \leq j < n - 1 \), one has
\[\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0. \]

There are sequences \(\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}, \) and \(\{c_n\}_{n=0}^{\infty} \) such that
\[xP_n(x) = c_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x), \quad (P_{-1}(x) := 0), \]
for \(n \in \mathbb{N}_0 \).

Furthermore, by the Gramm-Schmidt procedure, \(c_n > 0 \), and
\[c_n = \langle P_{n+1}, xP_n \rangle = \langle P_n, xP_{n+1} \rangle = a_n. \]

Thus, any sequence of orthogonal polynomials satisfies a three-term recurrence
\[xP_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x) \]
where \(a_n > 0 \) and \(b_n \in \mathbb{R} \).

And \(A \) has, in the basis \(\{P_n\}_{n=0}^{\infty} \), a symmetric tridiagonal matrix representation.
Under the unitary mapping

\[U : \mathcal{H}^{(s)} \to \ell^2(\mathbb{N}_0) : P_n \mapsto e_n \]

the operator \(A \) is transformed to the operator \(U^* AU \) which we denote again by \(A \) only.
Under the unitary mapping

\[U : \mathcal{H}^{(s)} \to \ell^2(\mathbb{N}_0) : P_n \mapsto e_n \]

the operator \(A \) is transformed to the operator \(U^*AU \) which we denote again by \(A \) only.

One has

\[A = \begin{pmatrix} b_0 & a_0 & & \\ a_1 & b_1 & a_1 & \\ a_2 & b_2 & b_3 & \\ & & \ddots & \ddots \end{pmatrix}, \quad \text{Dom} \ A = \text{span}\{e_n \mid n \in \mathbb{N}_0\}. \]
Under the unitary mapping

\[U : \mathcal{H}^{(s)} \rightarrow \ell^2(\mathbb{N}_0) : P_n \mapsto e_n \]

the operator \(A \) is transformed to the operator \(U^* AU \) which we denote again by \(A \) only.

One has

\[
A = \begin{pmatrix}
 b_0 & a_0 & & \\
 a_1 & b_1 & a_1 & \\
 a_2 & b_2 & b_3 & \\
 & \ldots & \ldots & \ldots
\end{pmatrix}, \quad \text{Dom } A = \text{span}\{e_n \mid n \in \mathbb{N}_0\}.
\]

Thus, to a given sequence of moments \(\{s_n\}_{n=0}^{\infty} \), we can find real \(\{b_n\}_{n=0}^{\infty} \) and positive \(\{a_n\}_{n=0}^{\infty} \) which give rise to the operator \(A \) and the spectral measures of its self-adjoint realization yield (some) solutions to the moment problem.
Under the unitary mapping

\[U : \mathcal{H}^{(s)} \to \ell^2(\mathbb{N}_0) : P_n \mapsto e_n \]

the operator \(A \) is transformed to the operator \(U^* AU \) which we denote again by \(A \) only.

One has

\[
A = \begin{pmatrix}
b_0 & a_0 & & \\
a_1 & b_1 & a_1 & \\
a_2 & b_2 & b_3 & \\
& & & & \ddots
\end{pmatrix}, \quad \text{Dom } A = \text{span}\{e_n \mid n \in \mathbb{N}_0\}.
\]

Thus, to a given sequence of moments \(\{s_n\}_{n=0}^{\infty} \), we can find real \(\{b_n\}_{n=0}^{\infty} \) and positive \(\{a_n\}_{n=0}^{\infty} \) which give rise to the operator \(A \) and the spectral measures of its self-adjoint realization yield (some) solutions to the moment problem.

There are explicit formulas for the \(b_n \)'s and \(a_n \)'s in terms of the determinants of the \(s_n \)'s.
Under the unitary mapping
\[U : \mathcal{H}^{(s)} \to \ell^2(\mathbb{N}_0) : P_n \mapsto e_n \]
the operator \(A \) is transformed to the operator \(U^*AU \) which we denote again by \(A \) only.

One has
\[A = \begin{pmatrix} b_0 & a_0 \\ a_1 & b_1 \\ a_2 & b_2 & b_3 \\
& & \ddots & \ddots & \ddots \end{pmatrix}, \quad \text{Dom } A = \text{span}\{e_n \mid n \in \mathbb{N}_0\}. \]

Thus, to a given sequence of moments \(\{s_n\}_{n=0}^{\infty} \), we can find real \(\{b_n\}_{n=0}^{\infty} \) and positive \(\{a_n\}_{n=0}^{\infty} \) which give rise to the operator \(A \) and the spectral measures of its self-adjoint realization yield (some) solutions to the moment problem.

There are explicit formulas for the \(b_n \)'s and \(a_n \)'s in terms of the determinants of the \(s_n \)'s.

The set of moments \(\{s_n\}_{n=0}^{\infty} \) is associated to the Jacobi matrix \(A \) through identity
\[s_n = (e_0, A^n e_0). \]
Under the unitary mapping

\[U : \mathcal{H}(s) \to \ell^2(\mathbb{N}_0) : P_n \mapsto e_n \]

the operator \(A \) is transformed to the operator \(U^*AU \) which we denote again by \(A \) only.

One has

\[
A = \begin{pmatrix}
 b_0 & a_0 & & \\
 a_1 & b_1 & a_1 & \\
 a_2 & b_2 & b_3 & \\
 & \ddots & \ddots & \ddots
\end{pmatrix}, \quad \text{Dom } A = \text{span}\{e_n \mid n \in \mathbb{N}_0\}.
\]

Thus, to a given sequence of moments \(\{s_n\}_{n=0}^{\infty} \), we can find real \(\{b_n\}_{n=0}^{\infty} \) and positive \(\{a_n\}_{n=0}^{\infty} \) which give rise to the operator \(A \) and the spectral measures of its self-adjoint realization yield (some) solutions to the moment problem.

There are explicit formulas for the \(b_n \)'s and \(a_n \)'s in terms of the determinants of the \(s_n \)'s.

The set of moments \(\{s_n\}_{n=0}^{\infty} \) is associated to the Jacobi matrix \(A \) through identity

\[s_n = (e_0, A^n e_0). \]

Consequently, we obtained the following correspondences:

- moment sequence \(\leftrightarrow \) Jacobi matrix
- \(\downarrow \) \(\uparrow \)
- Orthogonal Polynomials \(\leftrightarrow \) three-term recurrence
Contents

1 Motivation

2 What the moment problem is?

3 Existence and uniqueness of the solution - operator approach

4 Jacobi matrix and Orthogonal Polynomials

5 Sufficient conditions for determinacy

6 The set of solutions of indeterminate moment problem
Sufficient conditions for determinacy - moment sequence

It is desirable to be able to decide whether the moment problem is determinate (or indeterminate) just by looking at the moment sequence \(\{s_n\}_{n=0}^{\infty} \), or the Jacobi matrix (seq. \(\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty} \)), or orthogonal polynomials \(\{P_n\}_{n=0}^{\infty} \).

Theorem (Carleman, 1922, 1926):

1) \(\sum_{n=1}^{\infty} \frac{n}{s_n} = \infty \) or 2) \(\sum_{n=1}^{\infty} \frac{1}{a_n} = \infty \)

then the Hamburger moment problem is determinate.

If \(\sum_{n=1}^{\infty} \frac{n}{s_n} = \infty \)

then both Hamburger and Stieltjes moment problems are determinate.

Hence, e.g., if \(\{a_n\}_{n=0}^{\infty} \) is bounded or there are \(R, C > 0 \) such that \(\left| s_n \right| \leq CR^n n! \), for all \(n \) sufficiently large, we have determinate Hamburger m.p. If \(\left| s_n \right| \leq CR^n (2^n)^n \), for all \(n \) sufficiently large, we have determinate Stieltjes m.p.
It is desirable to be able to decide whether the moment problem is determinate (or indeterminate) just by looking at the moment sequence \(\{s_n\}_{n=0}^{\infty} \), or the Jacobi matrix (seq. \(\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty} \)), or orthogonal polynomials \(\{P_n\}_{n=0}^{\infty} \).

Theorem (Carleman, 1922, 1926):

If

\[
1) \sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{|s_{2n}|}} = \infty \quad \text{or} \quad 2) \sum_{n=1}^{\infty} \frac{1}{a_n} = \infty
\]

then the Hamburger moment problem is determinate.

If

\[
\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{|s_n|}} = \infty
\]

then both Hamburger and Stieltjes moment problems are determinate.
Sufficient conditions for determinacy - moment sequence

It is desirable to be able to decide whether the moment problem is determinate (or indeterminate) just by looking at the moment sequence \(\{s_n\}_{n=0}^{\infty} \), or the Jacobi matrix (seq. \(\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty} \)), or orthogonal polynomials \(\{P_n\}_{n=0}^{\infty} \).

Theorem (Carleman, 1922, 1926):

If
\begin{align*}
1) \quad \sum_{n=1}^{\infty} \frac{1}{2n \sqrt{|s_{2n}|}} = \infty \quad \text{or} \quad 2) \quad \sum_{n=1}^{\infty} \frac{1}{a_n} = \infty
\end{align*}

then the Hamburger moment problem is determinate.

If
\[\sum_{n=1}^{\infty} \frac{1}{2n \sqrt{|s_n|}} = \infty \]

then both Hamburger and Stieltjes moment problems are determinate.

Hence, e.g., if \(\{a_n\}_{n=0}^{\infty} \) is bounded or there are \(R, C > 0 \) such that
\[|s_n| \leq CR^n n! , \]
for all \(n \) sufficiently large, we have determinate Hamburger m.p. If
\[|s_n| \leq CR^n (2n)! , \]
for all \(n \) sufficiently large, we have determinate Stieltjes m.p.
Theorem (Chihara, 1989):

Let

\[\lim_{n \to \infty} b_n = \infty \quad \text{and} \quad \lim_{n \to \infty} \frac{a_n^2}{b_n b_{n+1}} = L < \frac{1}{4}. \]

then the Hamburger moment problem is determinate if

\[\liminf_{n \to \infty} \sqrt[n]{b_n} < \frac{1 + \sqrt{1 - 4L}}{1 - \sqrt{1 - 4L}} \]

and indeterminate if the opposite (strict) inequality holds.
Theorem (Chihara, 1989):

Let

\[\lim_{n \to \infty} b_n = \infty \quad \text{and} \quad \lim_{n \to \infty} \frac{a_n^2}{b_n b_{n+1}} = L < \frac{1}{4}. \]

then the Hamburger moment problem is determinate if

\[\liminf_{n \to \infty} \sqrt[n]{b_n} < \frac{1 + \sqrt{1 - 4L}}{1 - \sqrt{1 - 4L}} \]

and indeterminate if the opposite (strict) inequality holds.

- Chihara uses totally different approach to the problem - concept of chain sequences.
Recall \(\{P_n\}_{n=0}^{\infty} \) are determined by the three-term recurrence

\[
x P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)
\]

with initial settings \(P_0(x) = 1 \) and \(P_1(x) = \frac{1}{b_0} (x - a_0) \).
Recall \(\{P_n\}_{n=0}^{\infty} \) are determined by the three-term recurrence

\[
x P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)
\]

with initial settings \(P_0(x) = 1 \) and \(P_1(x) = \frac{1}{b_0} (x - a_0) \).

Let us denote by \(\{Q_n\}_{n=0}^{\infty} \) a polynomial sequence that solve the same recurrence as \(\{P_n\}_{n=0}^{\infty} \) with initial conditions \(Q_0(x) = 0 \) and \(Q_1(x) = \frac{1}{b_0} \).
Recall $\{P_n\}_{n=0}^\infty$ are determined by the three-term recurrence

$$x P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)$$

with initial settings $P_0(x) = 1$ and $P_1(x) = \frac{1}{b_0} (x - a_0)$.

Let us denote by $\{Q_n\}_{n=0}^\infty$ a polynomial sequence that solve the same recurrence as $\{P_n\}_{n=0}^\infty$ with initial conditions $Q_0(x) = 0$ and $Q_1(x) = \frac{1}{b_0}$.

These two polynomial sequences are linearly independent and any solution of the three-term recurrence is a linear combination of them.

Theorem (Hamburger, 1920-21):
The Hamburger moment problem is determinate if and only if

$$\sum_{n=0}^\infty (P_{2n}(0) + Q_{2n}(0)) = \infty.$$
Sufficient conditions for determinacy

Recall \(\{ P_n \}_{n=0}^{\infty} \) are determined by the three-term recurrence

\[
x P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)
\]

with initial settings \(P_0(x) = 1 \) and \(P_1(x) = \frac{1}{b_0} (x - a_0) \).

Let us denote by \(\{ Q_n \}_{n=0}^{\infty} \) a polynomial sequence that solve the same recurrence as \(\{ P_n \}_{n=0}^{\infty} \) with initial conditions \(Q_0(x) = 0 \) and \(Q_1(x) = \frac{1}{b_0} \).

These two polynomial sequences are linearly independent and any solution of the three-term recurrence is a linear combination of them.

Theorem (Hamburger, 1920-21):

The Hamburger moment problem is determinate if and only if

\[
\sum_{n=0}^{\infty} \left(P_n^2(0) + Q_n^2(0) \right) = \infty.
\]
Recall $\{P_n\}_{n=0}^\infty$ are determined by the three-term recurrence

$$x P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)$$

with initial settings $P_0(x) = 1$ and $P_1(x) = \frac{1}{b_0} (x - a_0)$.

Let us denote by $\{Q_n\}_{n=0}^\infty$ a polynomial sequence that solve the same recurrence as $\{P_n\}_{n=0}^\infty$ with initial conditions $Q_0(x) = 0$ and $Q_1(x) = \frac{1}{b_0}$.

These two polynomial sequences are linearly independent and any solution of the three-term recurrence is a linear combination of them.

Theorem (Hamburger, 1920-21):

The Hamburger moment problem is determinate if and only if

$$\sum_{n=0}^\infty (P_n^2(0) + Q_n^2(0)) = \infty.$$
Recall \(\{ P_n \}_{n=0}^{\infty} \) are determined by the three-term recurrence

\[
x P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)
\]

with initial settings \(P_0(x) = 1 \) and \(P_1(x) = \frac{1}{b_0}(x - a_0) \).

Let us denote by \(\{ Q_n \}_{n=0}^{\infty} \) a polynomial sequence that solve the same recurrence as \(\{ P_n \}_{n=0}^{\infty} \) with initial conditions \(Q_0(x) = 0 \) and \(Q_1(x) = \frac{1}{b_0} \).

These two polynomial sequences are linearly independent and any solution of the three-term recurrence is a linear combination of them.

Theorem (Hamburger, 1920-21):

The Hamburger moment problem is determinate if and only if

\[
\sum_{n=0}^{\infty} (P_n^2(0) + Q_n^2(0)) = \infty.
\]

Actually, one can write some \(x \in \mathbb{R} \) instead of zero in the condition.

It is even necessary and sufficient that there exists a \(z \in \mathbb{C} \setminus \mathbb{R} \) such that both \(\{ P_n(z) \}_{n=0}^{\infty} \) and \(\{ Q_n(z) \}_{n=0}^{\infty} \) does not belong to \(\ell^2(\mathbb{Z}_+) \).
Contents

1. Motivation
2. What the moment problem is?
3. Existence and uniqueness of the solution - operator approach
4. Jacobi matrix and Orthogonal Polynomials
5. Sufficient conditions for determinacy
6. The set of solutions of indeterminate moment problem
The problem about describing M_H was solved by Nevanlinna in 1922 using complex function theory.
The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.

A function ϕ is called Pick (or Nevanlinna–Pick or Herglotz–Nevanlinna) function if it is holomorphic in $\mathbb{C}_+ := \{z \in \mathbb{C} \mid \Im z > 0\}$ and $\Im \phi(z) \geq 0$ for $z \in \mathbb{C}_+$.

Denote the set of Pick functions by \mathcal{P}. $\mathcal{P} \cup \{\infty\}$ denotes the one-point compactification of \mathcal{P} (\mathcal{P} inherits the topology of holomorphic functions on $\mathbb{C} \setminus \mathbb{R}$).

Nevanlinna, 1922

The solutions of the Hamburger moment problem in the indeterminate case are parametrized via homeomorphism $\phi \mapsto \mu_{\phi}$ of $\mathcal{P} \cup \{\infty\}$ onto \mathcal{M}_H given by

$$\int_{\mathbb{R}} d\mu_{\phi}(x) x - z \phi(z) - C(z) \phi(z) - D(z) \phi(z), \quad z \in \mathbb{C} \setminus \mathbb{R},$$

where A, B, C, D are certain entire functions determined by the problem (i.e., the moment sequence, or orthogonal polynomials, ...).

A, B, C, D are called Nevanlinna functions and $(A \ C

B \ D)$ the Nevanlinna matrix.

The solution μ_{ϕ} can be then expressed by using Stiltjes-Perron inversion formula.
The set of solutions of indeterminate moment problem

- The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.
- A function ϕ is called *Pick* (or *Nevanlinna–Pick* or *Herglotz–Nevanlinna*) function if it is holomorphic in $\mathbb{C}_+ := \{ z \in \mathbb{C} | \Im z > 0 \}$ and $\Im \phi(z) \geq 0$ for $z \in \mathbb{C}_+$.
- Denote the set of Pick functions by \mathcal{P}.

\[
\int_{\mathbb{R}} d\mu_\phi(x) x - z = -A(z) \phi(z) - C(z) B(z) \phi(z) - D(z), \quad z \in \mathbb{C} \setminus \mathbb{R},
\]
where A, B, C, D are certain entire functions determined by the problem (i.e., the moment sequence, or orthogonal polynomials, ...).

A, B, C, D are called *Nevanlinna functions* and \((A \ C \\
B \ D)\) the *Nevanlinna matrix*.

The solution μ_ϕ can be then expressed by using Stiltjes–Perron inversion formula.
The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.

A function ϕ is called *Pick* (or *Nevanlinna–Pick* or *Herglotz–Nevanlinna*) function if it is holomorphic in $\mathbb{C}_+ := \{z \in \mathbb{C} | \Im z > 0\}$ and $\Im \phi(z) \geq 0$ for $z \in \mathbb{C}_+$.

Denote the set of Pick functions by \mathcal{P}.

$\mathcal{P} \cup \{\infty\}$ denotes the one-point compactification of \mathcal{P} (\mathcal{P} inherits the topology of holomorphic functions on $\mathbb{C} \setminus \mathbb{R}$).
The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.

A function ϕ is called Pick (or Nevanlinna–Pick or Herglotz–Nevanlinna) function if it is holomorphic in $\mathbb{C}_+ := \{ z \in \mathbb{C} | \Im z > 0 \}$ and $\Im \phi(z) \geq 0$ for $z \in \mathbb{C}_+$.

Denote the set of Pick functions by \mathcal{P}.

$\mathcal{P} \cup \{ \infty \}$ denotes the one-point compactification of \mathcal{P} (\mathcal{P} inherits the topology of holomorphic functions on $\mathbb{C} \setminus \mathbb{R}$).

Nevanlinna, 1922

The solutions of the Hamburger moment problem in the indeterminate case are parametrized via homeomorphism $\phi \mapsto \mu_\phi$ of $\mathcal{P} \cup \{ \infty \}$ onto \mathcal{M}_H given by

$$
\int_{\mathbb{R}} \frac{d\mu_\phi(x)}{x - z} = -\frac{A(z)\phi(z) - C(z)}{B(z)\phi(z) - D(z)}, \quad z \in \mathbb{C} \setminus \mathbb{R},
$$

where A, B, C, D are certain entire function determined by the problem (i.e., the moment sequence, or orthogonal polynomials, ...).
The set of solutions of indeterminate moment problem

- The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.
- A function ϕ is called Pick (or Nevanlinna–Pick or Herglotz–Nevanlinna) function if it is holomorphic in $\mathbb{C}_+ := \{ z \in \mathbb{C} \mid \Im z > 0 \}$ and $\Im \phi(z) \geq 0$ for $z \in \mathbb{C}_+$.
- Denote the set of Pick functions by \mathcal{P}.
- $\mathcal{P} \cup \{ \infty \}$ denotes the one-point compactification of \mathcal{P} (\mathcal{P} inherits the topology of holomorphic functions on $\mathbb{C} \setminus \mathbb{R}$).

Nevanlinna, 1922

The solutions of the Hamburger moment problem in the indeterminate case are parametrized via homeomorphism $\phi \mapsto \mu_\phi$ of $\mathcal{P} \cup \{ \infty \}$ onto \mathcal{M}_H given by

$$ \int_{\mathbb{R}} \frac{d\mu_\phi(x)}{x - z} = - \frac{A(z)\phi(z) - C(z)}{B(z)\phi(z) - D(z)}, \quad z \in \mathbb{C} \setminus \mathbb{R}, $$

where A, B, C, D are certain entire function determined by the problem (i.e., the moment sequence, or orthogonal polynomials, ...).

- A, B, C, D are called Nevanlinna functions and $\begin{pmatrix} A & C \\ B & D \end{pmatrix}$ the Nevanlinna matrix.
The set of solutions of indeterminate moment problem

- The problem about describing M_H was solved by Nevanlinna in 1922 using complex function theory.
- A function ϕ is called *Pick* (or *Nevanlinna–Pick* or *Herglotz–Nevanlinna*) function if it is holomorphic in $\mathbb{C}_+ := \{z \in \mathbb{C} \mid \Im z > 0\}$ and $\Im \phi(z) \geq 0$ for $z \in \mathbb{C}_+$.
- Denote the set of Pick functions by \mathcal{P}.
- $\mathcal{P} \cup \{\infty\}$ denotes the one-point compactification of \mathcal{P} (\mathcal{P} inherits the topology of holomorphic functions on $\mathbb{C} \setminus \mathbb{R}$).

Nevanlinna, 1922

The solutions of the Hamburger moment problem in the indeterminate case are parametrized via homeomorphism $\phi \mapsto \mu_\phi$ of $\mathcal{P} \cup \{\infty\}$ onto M_H given by

$$
\int_{\mathbb{R}} \frac{d\mu_\phi(x)}{x-z} = - \frac{A(z)\phi(z) - C(z)}{B(z)\phi(z) - D(z)}, \quad z \in \mathbb{C} \setminus \mathbb{R},
$$

where A, B, C, D are certain entire function determined by the problem (i.e., the moment sequence, or orthogonal polynomials, ...).

- A, B, C, D are called *Nevanlinna functions* and $\begin{pmatrix} A & C \\ B & D \end{pmatrix}$ the *Nevanlinna matrix*.
- The solution μ_ϕ can be then expressed by using Stiltjes-Perron inversion formula.
Properties of \mathcal{M}_H

We take a closer look at the set of solutions \mathcal{M}_H of an indeterminate Hamburger moment problem.
Properties of \mathcal{M}_H

We take a closer look at the set of solutions \mathcal{M}_H of an indeterminate Hamburger moment problem.

- \mathcal{M}_H is convex (therefore infinite).

\[\mu \text{ is an extreme point in } \mathcal{M}_H \text{ if and only if polynomials } C[x] \text{ are dense in } L^1(\mathbb{R}, \mu), \text{ [Naimark, 1946].} \]

\[\text{Extreme points are dense in } \mathcal{M}_H. \]
Properties of \mathcal{M}_H

We take a closer look at the set of solutions \mathcal{M}_H of an indeterminate Hamburger moment problem.

- \mathcal{M}_H is convex (therefore infinite).
- \mathcal{M}_H is a compact infinite dimensional set.
Properties of \mathcal{M}_H

We take a closer look at the set of solutions \mathcal{M}_H of an indeterminate Hamburger moment problem.

- \mathcal{M}_H is convex (therefore infinite).
- \mathcal{M}_H is a compact infinite dimensional set.
- The subsets of absolutely continuous, discrete and singular continuous solutions each are dense in \mathcal{M}_H, [Berg and Christensen, 1981].
Properties of \mathcal{M}_H

We take a closer look at the set of solutions \mathcal{M}_H of an indeterminate Hamburger moment problem.

- \mathcal{M}_H is convex (therefore infinite).
- \mathcal{M}_H is a compact infinite dimensional set.
- The subsets of absolutely continuous, discrete and singular continuous solutions each are dense in \mathcal{M}_H, [Berg and Christensen, 1981].
- μ is an extreme point in \mathcal{M}_H if and only if polynomials $\mathbb{C}[x]$ are dense in $L^1(\mathbb{R}, \mu)$, [Naimark, 1946].
Properties of \mathcal{M}_H

We take a closer look at the set of solutions \mathcal{M}_H of an indeterminate Hamburger moment problem.

- \mathcal{M}_H is convex (therefore infinite).
- \mathcal{M}_H is a compact infinite dimensional set.
- The subsets of absolutely continuous, discrete and singular continuous solutions each are dense in \mathcal{M}_H, [Berg and Christensen, 1981].
- μ is an extreme point in \mathcal{M}_H if and only if polynomials $\mathbb{C}[x]$ are dense in $L^1(\mathbb{R}, \mu)$, [Naimark, 1946].
- Extreme points are dense in \mathcal{M}_H.
An example due to Stieltjes

Note first that, for $k \in \mathbb{Z}_+$,

$$\int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0.$$

(Change of variables $v = -(k + 1)/2 + \ln u \leadsto$ an odd function integrated along \mathbb{R}.)
An example due to Stieltjes

Note first that, for $k \in \mathbb{Z}_+$,

$$\int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0.$$

(Change of variables $v = -(k + 1)/2 + \ln u \leadsto$ an odd function integrated along \mathbb{R}.)

Thus, for any $\vartheta \in [-1, 1]$, it holds

$$\frac{1}{\sqrt{\pi}} \int_0^\infty u^k u^{-\ln u} [1 + \vartheta \sin(2\pi \ln u)] du = e^{\frac{1}{4}(k+1)^2}.$$
An example due to Stieltjes

- Note first that, for $k \in \mathbb{Z}_+$,
 \[
 \int_{0}^{\infty} u^k u^{-\ln u} \sin(2\pi \ln u) du = 0.
 \]
 (Change of variables $v = -(k + 1)/2 + \ln u \rightsquigarrow$ an odd function integrated along \mathbb{R}.)

- Thus, for any $\vartheta \in [-1, 1]$, it holds
 \[
 \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} u^k u^{-\ln u} \left[1 + \vartheta \sin(2\pi \ln u)\right] du = e^{\frac{1}{4}(k+1)^2}.
 \]
An example due to Stieltjes

- Note first that, for $k \in \mathbb{Z}_+$,
 \[
 \int_0^{\infty} u^k u^{-\ln u} \sin(2\pi \ln u) du = 0.
 \]

 (Change of variables $v = -(k + 1)/2 + \ln u \rightsquigarrow$ an odd function integrated along \mathbb{R}.)

- Thus, for any $\vartheta \in [-1, 1]$, it holds
 \[
 \frac{1}{\sqrt{\pi}} \int_0^{\infty} u^k u^{-\ln u} [1 + \vartheta \sin(2\pi \ln u)] du = e^{\frac{1}{4}(k+1)^2}.
 \]

- So $s_k = \exp(1/4(k + 1)^2)$ is a moment set for an indeterminate Stieltjes problem.
An example due to Stieltjes

- Note first that, for \(k \in \mathbb{Z}_+ \),
 \[
 \int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0.
 \]
 (Change of variables \(v = -(k + 1)/2 + \ln u \) \(\sim \) an odd function integrated along \(\mathbb{R} \).)

- Thus, for any \(\vartheta \in [-1, 1] \), it holds
 \[
 \frac{1}{\sqrt{\pi}} \int_0^\infty u^k u^{-\ln u} [1 + \vartheta \sin(2\pi \ln u)] du = e^{\frac{1}{4}(k+1)^2}.
 \]

- So \(s_k = \exp(1/4(k + 1)^2) \) is a moment set for an indeterminate Stieltjes problem.

- Moreover, denoting
 \[
 d\mu_\vartheta(u) = \frac{1}{\sqrt{\pi}} u^{-\ln u} [1 + \vartheta \sin(2\pi \ln u)] du,
 \]
 then, for \(\vartheta \in (-1, 1) \), function
 \[
 f_\vartheta(u) = \frac{\sin(2\pi \ln u)}{1 + \vartheta \sin(2\pi \ln u)}
 \]
 is in \(L^2(d\mu_\vartheta) \) and it is orthogonal to all polynomials.
The set of solutions of indeterminate moment problem

An example due to Stieltjes

- Note first that, for $k \in \mathbb{Z}_+$,
 \[\int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0. \]
 (Change of variables $v = -(k + 1)/2 + \ln u \mapsto$ an odd function integrated along \mathbb{R}.)

- Thus, for any $\vartheta \in [-1, 1]$, it holds
 \[\frac{1}{\sqrt{\pi}} \int_0^\infty u^k u^{-\ln u} [1 + \vartheta \sin(2\pi \ln u)] du = e^{\frac{1}{4}(k+1)^2}. \]

- So $s_k = \exp(1/4(k+1)^2)$ is a moment set for an indeterminate Stieltjes problem.

- Moreover, denoting
 \[d\mu_\vartheta(u) = \frac{1}{\sqrt{\pi}} u^{-\ln u} [1 + \vartheta \sin(2\pi \ln u)] du, \]

 then, for $\vartheta \in (-1, 1)$, function
 \[f_\vartheta(u) = \frac{\sin(2\pi \ln u)}{1 + \vartheta \sin(2\pi \ln u)} \]

 is in $L^2(d\mu_\vartheta)$ and it is orthogonal to all polynomials.

- Hence polynomials are not dense in $L^2(d\mu_\vartheta)$. This is a typical situation for solutions of indeterminate moment problems which are not N-extremal.
In some sense, to solve indeterminate Hamburger moment problem means to find the Nevanlinna functions $A, B, C, \text{ and } D$ (in particular B and D).
Nevanlinna functions $A, B, C,$ and D

- In some sense, to solve indeterminate Hamburger moment problem means to find the Nevanlinna functions $A, B, C,$ and D (in particular B and D).
- They can be computed by using orthogonal polynomials,

$$A(z) = z \sum_{k=0}^{\infty} Q_k(0) Q_k(z), \quad C(z) = 1 + z \sum_{k=0}^{\infty} P_k(0) Q_k(z)$$

$$B(z) = -1 + z \sum_{k=0}^{\infty} Q_k(0) P_k(z), \quad D(z) = z \sum_{k=0}^{\infty} P_k(0) P_k(z),$$

where sums converge locally uniformly in \mathbb{C}.
Nevanlinna functions $A, B, C, \text{ and } D$

- In some sense, to solve indeterminate Hamburger moment problem means to find the Nevanlinna functions $A, B, C, \text{ and } D$ (in particular B and D).
- They can by computed by using orthogonal polynomials,

\[
A(z) = z \sum_{k=0}^{\infty} Q_k(0) Q_k(z), \quad C(z) = 1 + z \sum_{k=0}^{\infty} P_k(0) Q_k(z)
\]

\[
B(z) = -1 + z \sum_{k=0}^{\infty} Q_k(0) P_k(z), \quad D(z) = z \sum_{k=0}^{\infty} P_k(0) P_k(z),
\]

where sums converge locally uniformly in \mathbb{C}.

More on A, B, C, D:

- A, B, C, D are entire functions of order ≤ 1, if the order is 1, the exponential type is 0 [Riesz, 1923]
- A, B, C, D have the same order, type and Phragmén-Lindenlöf indicator function [Berg and Pedersen, 1994]
Important solutions 1/2

- If \(\phi(z) = t \in \mathbb{R} \cup \{\infty\} \) then \(\phi \in \mathcal{P} \cup \{\infty\} \) and \(\mu_t \) is a discrete measure of the form

\[
\mu_t = \sum_{x \in \Lambda_t} \rho(x)\delta(x).
\]
The set of solutions of indeterminate moment problem

Important solutions 1/2

- If $\phi(z) = t \in \mathbb{R} \cup \{\infty\}$ then $\phi \in \mathcal{P} \cup \{\infty\}$ and μ_t is a discrete measure of the form
 \[\mu_t = \sum_{x \in \Lambda_t} \rho(x) \delta(x). \]

- Λ_t denotes the set of zeros of $x \mapsto B(x)t - D(x)$ (or $x \mapsto B(x)$ if $t = \infty$) and
 \[\frac{1}{\rho(x)} = \sum_{n=0}^{\infty} P_n^2(x) = B'(x)D(x) - B(x)D'(x), \quad x \in \mathbb{R}. \]
Important solutions 1/2

- If \(\phi(z) = t \in \mathbb{R} \cup \{\infty\} \) then \(\phi \in \mathcal{P} \cup \{\infty\} \) and \(\mu_t \) is a discrete measure of the form

\[
\mu_t = \sum_{x \in \Lambda_t} \rho(x) \delta(x).
\]

- \(\Lambda_t \) denotes the set of zeros of \(x \mapsto B(x)t - D(x) \) (or \(x \mapsto B(x) \) if \(t = \infty \)) and

\[
\frac{1}{\rho(x)} = \sum_{n=0}^{\infty} P_n^2(x) = B'(x)D(x) - B(x)D'(x), \quad x \in \mathbb{R}.
\]

- Measures \(\mu_t, t \in \mathbb{R} \cup \{\infty\} \), are all N-extremal solutions.
Important solutions 1/2

- If \(\phi(z) = t \in \mathbb{R} \cup \{\infty\} \) then \(\phi \in P \cup \{\infty\} \) and \(\mu_t \) is a discrete measure of the form
 \[
 \mu_t = \sum_{x \in \Lambda_t} \rho(x) \delta(x).
 \]

- \(\Lambda_t \) denotes the set of zeros of \(x \mapsto B(x)t - D(x) \) (or \(x \mapsto B(x) \) if \(t = \infty \)) and
 \[
 \frac{1}{\rho(x)} = \sum_{n=0}^{\infty} P_n^2(x) = B'(x)D(x) - B(x)D'(x), \quad x \in \mathbb{R}.
 \]

- Measures \(\mu_t \), \(t \in \mathbb{R} \cup \{\infty\} \), are all N-extremal solutions.

- They are the only solutions for which polynomials \(\mathbb{C}[x] \) are dense in \(L^2(\mathbb{R}, \mu_t) \) (\(\{P_n\} \) forms an orthonormal basis of \(L^2(\mathbb{R}, \mu_t) \)), [Riesz, 1923].
The set of solutions of indeterminate moment problem

Important solutions 1/2

If $\phi(z) = t \in \mathbb{R} \cup \{\infty\}$ then $\phi \in \mathcal{P} \cup \{\infty\}$ and μ_t is a discrete measure of the form

$$\mu_t = \sum_{x \in \Lambda_t} \rho(x)\delta(x).$$

Λ_t denotes the set of zeros of $x \mapsto B(x)t - D(x)$ (or $x \mapsto B(x)$ if $t = \infty$) and

$$\frac{1}{\rho(x)} = \sum_{n=0}^{\infty} P_n^2(x) = B'(x)D(x) - B(x)D'(x), \quad x \in \mathbb{R}.$$

Measures μ_t, $t \in \mathbb{R} \cup \{\infty\}$, are all N-extremal solutions.

They are the only solutions for which polynomials $\mathbb{C}[x]$ are dense in $L^2(\mathbb{R}, \mu_t)$ ($\{P_n\}$ forms an orthonormal basis of $L^2(\mathbb{R}, \mu_t)$), [Riesz, 1923].

N-extremal solutions are indeed extreme points in \mathcal{M}_H - but not the only ones.
If we set

$$
\phi(z) = \begin{cases}
\beta + i\gamma, & \Im z > 0, \\
\beta - i\gamma, & \Im z < 0,
\end{cases}
$$

for $\beta \in \mathbb{R}$ and $\gamma > 0$, then $\phi \in \mathcal{P}$ and $\mu_{\beta,\gamma}$ is absolutely continuous with density

$$
\frac{d\mu_{\beta,\gamma}}{dx} = \frac{\gamma/\pi}{(\beta B(x) - D(x))^2 + (\gamma B(x))^2}, \quad x \in \mathbb{R}.
$$
If we set

\[\phi(z) = \begin{cases} \beta + i\gamma, & \Im z > 0, \\ \beta - i\gamma, & \Im z < 0, \end{cases} \]

for \(\beta \in \mathbb{R} \) and \(\gamma > 0 \), then \(\phi \in \mathcal{P} \) and \(\mu_{\beta,\gamma} \) is absolutely continuous with density

\[\frac{d\mu_{\beta,\gamma}}{dx} = \frac{\gamma/\pi}{(\beta B(x) - D(x))^2 + (\gamma B(x))^2}, \quad x \in \mathbb{R}. \]

Polynomials \(\mathbb{C}[x] \) are not dense in \(L^1(\mathbb{R}, \mu_{\beta,\gamma}) \).
If we set

\[\phi(z) = \begin{cases}
\beta + i\gamma, & \Im z > 0, \\
\beta - i\gamma, & \Im z < 0,
\end{cases} \]

for \(\beta \in \mathbb{R} \) and \(\gamma > 0 \), then \(\phi \in \mathcal{P} \) and \(\mu_{\beta,\gamma} \) is absolutely continuous with density

\[\frac{d\mu_{\beta,\gamma}}{dx} = \frac{\gamma}{\pi} \frac{1}{(\beta B(x) - D(x))^2 + (\gamma B(x))^2}, \quad x \in \mathbb{R}. \]

Polynomials \(\mathbb{C}[x] \) are not dense in \(L^1(\mathbb{R}, \mu_{\beta,\gamma}) \).

The solution \(\mu_{0,1} \) is the one that maximizes certain entropy integral, (see Krein’s condition). More general and additional information are provided in [Gabardo, 1992].
Nevanlinna parametrization in the case of Stieltjes moment problem

Suppose $\{s_n\}_{n=0}^{\infty}$ is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.

The quantity $\alpha \leq 0$ plays an important role and can be obtained as the limit $\alpha = \lim_{n \to \infty} \frac{P_n(0)}{Q_n(0)}$.

The moment problem is determinate in the sense of Stieltjes if and only if $\alpha = 0$.

The only $\cal N$-extremal solutions supported within $[0, \infty)$ are μ_t with $\alpha \leq t \leq 0$.

For the indeterminate Stieltjes moment problem there is a slightly more elegant way how to describe $\cal M_S$ known as Krein parametrization, [Krein, 1967].
The set of solutions of indeterminate moment problem

Nevanlinna parametrization in the case of Stieltjes moment problem

- Suppose \(\{s_n\}_{n=0}^{\infty} \) is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.
- To describe \(\mathcal{M}_S \) one can still use the Nevanlinna parametrization.

\[\alpha \leq \phi(x) \leq 0 \quad \text{for} \quad x < 0, \quad \text{[Pedersen, 1997]} \]

The quantity \(\alpha \leq 0 \) plays an important role and can be obtained as the limit

\[\alpha = \lim_{n \to \infty} P_n(0) Q_n(0) \]

The moment problem is determinate in the sense of Stieltjes if and only if \(\alpha = 0 \).

The only N-extremal solutions supported within \([0, \infty)\) are \(\mu_t \) with \(\alpha \leq t \leq 0 \).

For the indeterminate Stieltjes moment problem there is a slightly more elegant way how to describe \(\mathcal{M}_S \) known as Krein parametrization, [Krein, 1967].
Suppose \(\{s_n\}_{n=0}^{\infty} \) is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.

To describe \(\mathcal{M}_S \) one can still use the Nevanlinna parametrization.

Just restrict oneself to consider only the Pick functions \(\phi \) which have an analytic continuation to \(\mathbb{C} \setminus [0, \infty) \) such that \(\alpha \leq \phi(x) \leq 0 \) for \(x < 0 \), [Pedersen, 1997]
Nevanlinna parametrization in the case of Stieltjes moment problem

- Suppose \(\{s_n\}_{n=0}^{\infty} \) is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.
- To describe \(\mathcal{M}_S \) one can still use the Nevanlinna parametrization.
- Just restrict oneself to consider only the Pick functions \(\phi \) which have an analytic continuation to \(\mathbb{C} \setminus [0, \infty) \) such that \(\alpha \leq \phi(x) \leq 0 \) for \(x < 0 \), [Pedersen, 1997]
- The quantity \(\alpha \leq 0 \) plays an important role and can be obtain as the limit

\[
\alpha = \lim_{n \to \infty} \frac{P_n(0)}{Q_n(0)}.
\]
Nevanlinna parametrization in the case of Stieltjes moment problem

- Suppose \(\{s_n\}_{n=0}^{\infty} \) is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.
- To describe \(\mathcal{M}_S \) one can still use the Nevanlinna parametrization.
- Just restrict oneself to consider only the Pick functions \(\phi \) which have an analytic continuation to \(\mathbb{C} \setminus [0, \infty) \) such that \(\alpha \leq \phi(x) \leq 0 \) for \(x < 0 \), [Pedersen, 1997]
- The quantity \(\alpha \leq 0 \) plays an important role and can be obtain as the limit
 \[
 \alpha = \lim_{n \to \infty} \frac{P_n(0)}{Q_n(0)}.
 \]
- The moment problem is determinate in the sense of Stieltjes if and only if \(\alpha = 0 \).
Suppose \(\{s_n\}_{n=0}^\infty \) is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.

To describe \(\mathcal{M}_S \) one can still use the Nevanlinna parametrization.

Just restrict oneself to consider only the Pick functions \(\phi \) which have an analytic continuation to \(\mathbb{C} \setminus [0, \infty) \) such that \(\alpha \leq \phi(x) \leq 0 \) for \(x < 0 \), [Pedersen, 1997]

The quantity \(\alpha \leq 0 \) plays an important role and can be obtain as the limit

\[
\alpha = \lim_{n \to \infty} \frac{P_n(0)}{Q_n(0)}.
\]

The moment problem is determinate in the sense of Stieltjes if and only if \(\alpha = 0 \).

The only N-extremal solutions supported within \([0, \infty) \) are \(\mu_t \) with \(\alpha \leq t \leq 0 \).
Suppose \(\{s_n\}_{n=0}^{\infty} \) is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.

To describe \(\mathcal{M}_S \) one can still use the Nevanlinna parametrization.

Just restrict oneself to consider only the Pick functions \(\phi \) which have an analytic continuation to \(\mathbb{C} \setminus [0, \infty) \) such that \(\alpha \leq \phi(x) \leq 0 \) for \(x < 0 \), [Pedersen, 1997]

The quantity \(\alpha \leq 0 \) plays an important role and can be obtain as the limit

\[
\alpha = \lim_{n \to \infty} \frac{P_n(0)}{Q_n(0)}.
\]

The moment problem is determinate in the sense of Stieltjes if and only if \(\alpha = 0 \).

The only N-extremal solutions supported within \([0, \infty) \) are \(\mu_t \) with \(\alpha \leq t \leq 0 \).

For the indeterminate Stieljes moment problem there is a slightly more elegant way how to describe \(\mathcal{M}_S \) known as *Krein parametrization*, [Krein, 1967].
References:

References:

Thank you!