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Abstract — Multivariate data are difficult to explore. The In the case of non-linear projection, there igéanum-
most popular linear projection techniques mapping data to 2-  per of possible options. There is a whole familynuth-

dimensional space often fail to reveal the patterns of interest. (s reffered to as Multidimensional scaling [2].MDS,
Non-linear mapping techniques are both slow and inefficient. e projection is build on basis of distances betwall
In this paper, we propose a heuristic that allows usersto adjust pairs of examples in the original space [14]. Onehs

the parameters of mapping techniques just by stating their . A . . .
preferences iteratively. The preliminary results on real-world method is the Sammon projection [9], in which distzs

dataset demonstrate the power of our approach. points in original space are tried to be presem®dnuch
Key words— Interactive Evolution, Dimensionality Reduction, @S possible in the target space. Another exampleont
Knowledge Discovery in Databases, Data Mining, Mardr linear projection is Kernel PCA, where the origifaCA
Data Projection. operators are replaced by kernel methods in Hilgate,
producing non-linear mapping [12].
|. Introduction There are several important notes when considehiag
above-mentioned methods. While linear projections a
often fast, they seldom reveal the true relatiomshin
data. The expressivity of linear combinations ieoftoo
low to capture complex patterns in real-world da@m
the other hand, non-linear projections are ableaoture
complex patterns, but are computationaly very egjven
and quite intractable. Appropriate parameters fon-n
linear projection are generally @iult to find if we don’t
have a priori knowledge of what we are looking fer
which is a very common case. Another problem i$ iha
: ﬁ very dficult to adjust the projection if, for example,

m x n matrix, where rows code objects (i.e. patientsy, angew observa}tiotr)s are to be incorporated into ewjsti
columns code attributes (i.e. age, sex, heightghtei allmmon ptrOJEC lon. ot of has b dorde
bone massfluids ratio etc.) sometimes referred tofea- n recent years, a lot ol progress has been doreema

tures When KDD is to be applied, it is a common task fo}g%ﬁeld of Ir|1tt:,_ract|ve Tzvol_t:ﬁon_ary colmgljttatlogb(lli)l?[?i
expert to discover interesting relationships amatigb- » an evolutionary aigorithm IS apptied fo pr a

utes. While some relationships are well known ivegi require support of human intuition. A population azin-

field, entirely new facts can be easily extractechaisi d'dgtlf Sk°“|m°ns IS |terat|v?ly |mprotve(f:i b?s:?d cst_am
KDD. Such facts, however, are completely unknown béee gc ’ hn everyTghenera lon, alse 0 ;O ;D;ﬂ.ﬂre'd
fore the KDD procedure and hence the relationshies sented to the user. The users evaluates the ase

searched in highly investigative manner. Such itigas on his preferences, and the best solutions arg:tselle
tive approach was d@ieed in [15] as Exploratory data rgprodl_Jced_ and mutated. After seyeral generatisolsi-
analysis (EDA). tions with high value for the user will be hopejulbund.

Frequent method used in EDA is to visualize theada’;[. IEC. halsdbeen f?li.nd usfel‘ﬁl n r(?any areasl. Th.e applic
matrix. Because the examples typically lie in hygHi- ions include evolution of three-dimensional obgef3),

mensional space (i.e. the number of attributes> 4), tracks for high-end racing game [3], graphical useer-

hundreds of methods have been developed to make vigaces [7_]’ tone_mapping [4], "J?”d ant _paintings (4]i10],
alization on 2 or 3-dimensional screen possiblee THR Very Interesting online project is introduced eTpro-

methods may clagséd as either linear and non-linear. Ject, Picbreeder.org, Is foc_used on online coI_Iati_me
In the case of linear mapping, matfixJR™? is used evolution of pictures. The pictures are drawn hyfiaral
to do thef :R" - R? projection ad () = xT, resulting neural network and interactive version of NEAT algo

N : . rithm [13] is used. In [11], Picbreeder.org projéctana-
point in 2D-space. Example of popular linear prtgmc . o ,
technique used in EDA is Principal component arialyslyzed stating that suprisingly large am(_)unts ofdlegm

; oo X . the haystack have been found. The images depist car
(PCA) [8], which maximizes variance in target spac

Another linear projection approach is Linear disgnant efaces, Insects etc.

; o In this paper, we propose a method of applying t&C
analysis (LDA) [6]. LDA takes categorization of exa ; . . . ;
pIes%nto ;ccoan[t €];1nd builds on assu?nption thaviddal problems of dimenzionality reduction. We will shakat

categories are normally distributed. Based on stiedil our approach seems promlsmg.for problgm; everags h
: : o . as finding parameters of non-linear projection for real-
analysis, LDA constructs a linear projection thaaxin world data
mizes distances between different categories irtatget '
space.

As of today, there are hundreds of KDD methodslavai
able. The problem is, however, that datasets tilpid#-
fer in structure, size, and complexity, from domain
domain and from problem to problem. Even thoughi-sim
lar methods can be used in medicine, geology, mateo
ogy, investment, marketing etc., it usually regsiineiman
expert to select appropriate methods and intetpeete-
sults. Typically, data mining expert needs to beedm
miliar with the data by means of applying severdll D
methods, usually in trial-and-error manner.
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[I. Dimensionality Reduction through
R" — R? Projection
As mentioned in Section |, a frequent dataset szpre
tation used in DM isn x n matrix A. In general case, the
matrix consists of values from various domainsisit

however, quite common to transform the values ietd
numbers, resulting matrik JR™". In special case of

Cc :

task known as clag#tation, the examples are divided Fig. 2 Parameters of sigmoidal projection for edich

into classes, i.e. there is a special attribtféL assigned

mension in original space.

to each example, wheleis a set of possible classes. In

such acase, the matriA O(R"xL)™. If the objects
examined were patients, than the real-valued atth
might code various indicators from blood analysisd L
might equal {0,1}, coding whether given patient feu$
from the investigated disease or not.

If there were only 2 real-valued attributes for leab-

ject, the dataseh could be easily visualized in Cartesian

coordinate system: there would bepoints such thak

In case of our experiments, we are given a dataset
AO(R"xL)™ for which dimensionality-reducing pro-

jectionf is being evolved in order to make user segs

with f (A) as much as possible.

1. Interactive Evolution of R" - R?
Dimensionality-Reducing Projection

andy coordinates would map to the real-valued attrigute We have stated that we propose héxL — R*xL

and the color of given point would code the clded the
object belongs to. However, the number of attribute

projection to be subject of human-guided evolutiGon-
sideringlinear and sigmoidal projections dfined in Sec-

often much largern(> 10), making their direct mapping tion Il, we will evolve matricesT OR™* and SOR™*"

to coordinate axes impossible.

2D

Examples in
n-Dimensional
space

Fig.1 ProjectionR"xL — R*xL.

In Section |, we have stated that several dimeiadityn
reduction techniques may be used, and that thesdea

roughly clasdied as the linear and the non-linear ones. In

this paper, we will focus on adding interactivioydimen-
sionality reduction through the use of IEC approdetr
the purpose of testing IEC, we will consider twéfatient
projections: one linear and one non-linear.

First projection, which we will refer to disiear, is the
one déined ad (x) = xT, where T OR™. Values of ma-

trix T, however, will be subject of evolution rather thar]

variance maximization as in PCA.
Second projection, which we will caligmoidal, is

non-linear projection dmed as follows. Given matrix

SOR**such that

|

A o ey Ay, : Bp By -or 8y
S=\b, b, .., b1n’i By Dym oo by,
Gy G woos Gyl G Com ooy Cy

the projectiorf : R" — R? is realized as follows:
3 a; N &
f(x ) , i
(x) iZ::I;l+ gulr-ea) IZ:; 1+ @ lra) |’ (1)

resulting a point in 2D-space. Semantics of paramet
b andc are best depicted on Fig. 2.
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such that the according projections will be of higieful-
ness for the user. The term “usefulness” is rafbery,
and the only options is collect feedback from teeruWe
propose following Real-valued genetic algorithm (R&
with user feedback as basic fitness calculation.

Algorithm 1 Outline of human-guided RCGA

g0

Py =p «— init()

Eo < user_evaluatioiiy)

Fo « fitnessky)

while terminal condition is not met
g—g+l
P’y < selectPy_4, Fg_1)
Py < mutateP'y)
Ey < user_evaluatiofiy)
Fgy < fitnessky)

end while

return Py

The algorithm works as follows. First, a random pop
ation of candidate real matrices is generated.s&hma-
trices are then subject of human evalution. Accaydio
human evaluation, the candidate matrices are asdign
fitness values as in traditional RCGA.

As long as the candidate projections are not good
enough, an evolutionary cycle takes step iterativél
each step, based on user evaluations from pregens
eration, best projections are selected and mufateaing
new population. The new population is then agaijestt
of user evaluation.

IV.Experiment setup

There are several ways of how the user may submit
evaluations. For the purposes of our experimenésder
signed graphical user interface as depicted on Fig.o
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make the interface as ergonomic as possible, wer off In the following sections, we will demonstrate tloair
three feedback options to the ugprod neutralandbad  approach offers much wider scale of options howisa-
Selection procedure is done through tournamentselealize the data.

tion. We take advantage of the fact that therenignéui-

tive total ordering:good > netral > bad Since tourna- V.Cluster Separation Experiment

ment selection only requires the candidate solsttonbe . . . .

totally comparable, it can be employed very easily. . Given ann-d_|men3|onal dataset of examp!es W't.h Iabgl—
ing, natural idea where to start IEC dimensionality

. reduction experiments with is s@paratepoints of differ-
‘ . ’ b ent labels as much as possible in the target 2BPesddis
e, . . . .
‘ ‘ ’ % idea is depicted on Fig. 5.
CR x- A, -
‘ . N \‘ ‘ .snx. S .". ®
| AN e ; ot
Q . oS
BZA/D! NEUTRA G(;OD! E?D! NEUTRA: G[é)%D‘ E?D! NEUTRAC GE}OD! (L q ° ‘:'J.).l\
. . . . .. i °q 0P
Fig. 3 User interface for evaluating candidate @ctpns. Y ° -'.‘*,-'bﬂ?s
Because we use RCGA to evolve real-valued matrice_,

we need some real-valued mutation operated to be pr Fig. 5 Separation of points with different labeisi?.
vided. We use Gaussian mutation which is very gittai

forward and allows the values of individual paragnetto _1his can be seen a@sverse clusteringroblem. In clas-
change exponentially with number of generationsical clustering, we are given a sétof exmples from
Speciically, given mutation rate, we mutate thei{)-th @ metric space such a&", and our task is téind parti-
element &) of matrix A = R™" by random sampling the tion Cx ={C,,...,C,} such that clusters frorg, are ho-
normal distributiorN(a;j, o). mogene and easily separable from each other. ltrasin

In our implementation, we do not use crossover aperin case of our experiment, we are given a partition
tor, though there are dosend of RCGA crossoveratpey C, ={C,,...,C,} and our task is tdind a projection

available. These can be subject of further research f:R" - R? such that the homogeneity and separability

For the purpose of our experiments, we have chosgferions are satfed for corresponding clusters {C,),
Wine datasetwhich is a well-known benchmarking data- f(CY )

set for DM clasdication task. This dataset contains re- _ ' _ o
sults of a chemical analysis of wines producedhiee A. Separation Using Linear Projection

different cultivars. The analysis determined 13edént  The first interactive cluster separation experiment was
values (which may be considered as real numbeis}eS performed using Linear projection on the Wine dettas
there are three types of wines, the examples atbreé The user declared the objective of separating thiatp
different classes (labels) [Wine]. We have chosiis t with different labels. Population of size 7 wasdisas we
dataset because it is balanced dataset COﬂSiS‘tiﬁg&E found it to be reasonable equi]ibrium between epq]]g-
classes that are moderatelyfiilt to separate, making it ness of the algorithm and workload for the humaar.us
suitable for unbiased testing of IEC capabiliti&e have As can be seen of Fig. 6, the initial populationds to

normalized the dataset, leaving attribute weightog-  project all the examples into single line. Thipisbably

pletely to the IEC. because in the dataset that is not normalizedge thee
i - a0 . T some dominant attributes.
“ | o° o e ‘. . 250 ooog gDDZao ° :O ® . . .a. °
0 g ‘.(gj::'.c.'., 200 . o, oe eoen 0 ’!
L ‘27 .,..; o N "‘.175 5 ® a0 e oo.:zl'.. 4 o .
g‘—zn ° .‘,. ° '.: * ° §1Z: ' .. =o o, %t o” e g "’
-40 e b 75 ° DD Do o“ : .- . * ; * 4 ,. B
-50 > OO @ ! ¢ ...l ¢ had ,’l
) -500 -250 o0 250 500 750 1,000 0 5 1n 15 20 25 30 ;['7‘ NEUTRAL F?P NEUTRAL =2 6{7 NEUTRAL é,\,‘
pc1 SOM_0 BAD! GOOD! BAD! GooD! BAD! GooD!
(left) and SOM (right) dimensionality reduction. sample solutions from generation #0.

The Wine dataset visualized using PCA and SOM (an- Here the natural idea is to mark line-forming potije
other popular dimensionality reduction technique)jgc-  ons asbad and the other projections amod Fig. 7
tions are shown on Fig. 4. Note that the visuabrel-  shows the population after 15 generations. At phist, it
gorithms do not allow user to affect the output. seems that sfitient attribute weighting has already been

achived.
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5 Fig. 11 shows candidate solutions from generation
‘ i ‘ H ‘ ;, number 15. It seems that our approach can easdycov
‘ ::-... ) ‘ % ‘ % me the search space complexity, because we obtained
‘apls . X 2N really nice projections.
‘ . ..‘;f-‘: .‘ S Q’ ‘ ‘$#x
‘ e ¢ ‘ e ‘
& & 'f': oo °
57;/\/0! NEHTRA G%m 2! NETRA sg\\é’m é?»;/nl HETRe séﬁm .l :. ,.. ::#.i.é.f ’ I ’;gg\'
Fig. 7 Separation using linear projection, \ﬁ- . ot ’ ., we
sample solutions from generation #15. ‘ X ‘
Finally, Fig. 8 shows sample solutions from generat ~ N ~ N ~ IN
number 30. Not only that attributes were weighted o T coom sor | coom oo "™ coom
also good linear separation has been successfulhdf Fig. 11 Separation using sigmoidal projection,

sample solutions from generation #15.

Indeed, projections evolved could be furtlfi@e-tuned
by decreasing mutation parametén Gaussian mutation.
Nevertheless, after only 15 generations of evalgafl
candidate solutions asad neutral or good we have
found matrixS that makes sigmoidal projection separate
examples quite well in target 2D space.

& ;
U vema | © 7 . & v ema
BAD! GOOoD! BAD! GOoD! BAD! GOOD!

Fig. 8 Separation using linear projection,

V1. Other experiments

Samp'e solutions from generation #30. One important th|ng to note is that IEC does notdo
) ) ) ) o the user to follow some spéeid goal. In fact, the user
B. Separation Using Sigmoidal Projection has a wide scale of options. We will demonstate dri

The second experiment was performed on the same dwo following simple expariments.
taset, this time using Sigmoidal projection. Instease,  Fig. 12 shows the population after 5 generationsxin
the search space is much more complex. For ouselataperiment that we named as “blue points up”. Asrthme
of 13 real-valued attributes, we needital a matrix of 78 implies, our goal was to make theoordinate of the blue
strongly-connected real numbers, that will be usedb- examples as high as possible, leaving the samelicate
tain projection according to Eq. (1) in Section II. of other examples as small as possible.

Fig. 9 shows the initial population generated. Maofst
the solutions are very “messy”, but incidently, afehe ’ j ‘ ’ ':.g--
solutions seems quite promising. Hence we markexd it ' ‘ Woe . ( Gl
good o . R {3
l N7 [ o ;3“'
e T ’ ok ‘ .‘? } J »#.'
=tatp o N, L eger
Pk A ! ¥ AR
P Rl AT £ 380 LR EL 7 I & 7 I & 2 Bl &
; ‘.: o8 J..‘.. L .ﬁz . . ;;. :.':.:‘. " BAD! : GooD! BAD! : GooD! BAD! ! GooD!
y? '»3 - ..':"*-‘- Fig. 12 The ,blue points up“ experiment,
‘ R ‘ ‘ . f_.f sigmoidal projection after 5 generations.
7 .Y o I - Frequent task in data preprocessing state of KD pr

- . . . . . cedure is to detect so-called outliers, i.e. exasghat

Fig. 9 Separa‘uon using sigmoidal projection, deviate too much from the others and were probgbly
sample solutions from generation #0. nerated by some other process. This can also be don

After only 5 generations, surprisingly, dispite tem-  using IEC dimensionality reduction. Fig. 13 showss-

plexity of the search space, we have obtained rbatier ~ cious examples that were detected after 8 genasatid

solutions, as shown on Fig. 10. evolving linear projection.
.-*..
% S
.;’" .5-;?:

B MO

| -

| |
Nugs AEEN) 2

el A =) =] S © 5 & )
EiD! it GO‘:‘D B[NJ! il Géi‘l)! EZ.D! bt eii‘m én;m e 54;;)5 B%! N Gg‘;’)n E%g e Gg%n!
Fig. 10 Separation using sigmoidal projection, Fig. 13 Outliers detection experiment,
sample solutions from generation #5. linear projection after 8 generations.
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Conclusion [12] B. Schoélkopf, A. Smola, and K.-R. Mijl&xonlin-

We have applied the interactive evolution to explibre ear component analysis as a kernel eigenvalue prob-

: : o lem“. Neural Computation. 1998.
state space of linear and nonlinear data projectio, - e .
techniques. In contrast to traditional methods, \érg ﬂ3] K. O. Stanley, R. MiikkulainerfEvolving Neural

o Networks Through Augmenting Topologie“. Evolu-
projections allows the user to explore the data ) :
interactively within few iterations and even chartpe tionary Computation 10 (2), pp. 99_127. 2002,

: : : [14] S. Togerson“Multidimensional scaling: | Theory
ig:]o;\]I edrl:]r:ﬂt?dfsqeeﬁ;?;f ;ssgﬁag;der to reveal hiddattepns and method”. Psychometrika, 17, 401-419, 1952.

As a future work, we plan to apply the interactive[ls] J. W. TukeyExploratory Data Analysis. Addison-

evolution to more complex problems in the data mgni Wesley Publishing Company. 1977.
domain.
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