
 

“COMPUTER SCIENCE & INFORMATION TECHNOLOGIES” (CSIT ’2011), 16-19 NOVEMBER 2011, LVIV, UKRAINE 

1 

Using Interactive Evolution for Exploratory Data Analysis 
Tomas Rehorek, Pavel Kordik 

Faculty of Information Technology, Czech Technical University in Prague, Thakurova 9, Prague, 16000, CZECH REPUBLIC, 
E-mails:   pavel.kordik@fit.cvut.cz   tomas.rehorek@fit.cvut.cz

Abstract – Multivariate data are difficult to explore. The 
most popular linear projection techniques mapping data to 2-
dimensional space often fail to reveal the patterns of interest. 
Non-linear mapping techniques are both slow and inefficient. 
In this paper, we propose a heuristic that allows users to adjust 
the parameters of mapping techniques just by stating their 
preferences iteratively. The preliminary results on real-world 
dataset demonstrate the power of our approach. 
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I. Introduction 
As of today, there are hundreds of KDD methods avail-

able. The problem is, however, that datasets typically dif-
fer in structure, size, and complexity, from domain to 
domain and from problem to problem. Even though simi-
lar methods can be used in medicine, geology, meteorol-
ogy, investment, marketing etc., it usually requires human 
expert to select appropriate methods and interpret the re-
sults. Typically, data mining expert needs to become fa-
miliar with the data by means of applying several DM 
methods, usually in trial-and-error manner. 

A very common form of the data being analyzed is an 
m × n matrix, where rows code objects (i.e. patients), and 
columns code attributes (i.e. age, sex, height, weight, 
bone mass, fluids ratio etc.) sometimes referred to as fea-
tures. When KDD is to be applied, it is a common task for 
expert to discover interesting relationships among attrib-
utes. While some relationships are well known in given 
field, entirely new facts can be easily extracted using 
KDD. Such facts, however, are completely unknown be-
fore the KDD procedure and hence the relationships are 
searched in highly investigative manner. Such investiga-
tive approach was defined in [15] as Exploratory data 
analysis (EDA). 

Frequent method used in EDA is to visualize the data 
matrix. Because the examples typically lie in highly di-
mensional space (i.e. the number of attributes n >> 4), 
hundreds of methods have been developed to make visu-
alization on 2 or 3-dimensional screen possible. The 
methods may classified as either linear and non-linear. 

In the case of linear mapping, matrix 2n×∈T ℝ  is used 
to do the f 2: n →ℝ ℝ  projection as f (x) = xT, resulting 
point in 2D-space. Example of popular linear projection 
technique used in EDA is Principal component analysis 
(PCA) [8], which maximizes variance in target space. 
Another linear projection approach is Linear discriminant 
analysis (LDA) [6]. LDA takes categorization of exam-
ples into account and builds on assumption that individual 
categories are normally distributed. Based on statistical 
analysis, LDA constructs a linear projection that maxi-
mizes distances between different categories in the target 
space. 

 In the case of non-linear projection, there is large num-
ber of possible options. There is a whole family of meth-
ods reffered to as Multidimensional scaling [2]. In MDS, 
the projection is build on basis of distances between all 
pairs of examples in the original space [14]. One such 
method is the Sammon projection [9], in which distances 
points in original space are tried to be preserved as much 
as possible in the target space. Another example of non-
linear projection is Kernel PCA, where the original PCA 
operators are replaced by kernel methods in Hilbert space, 
producing non-linear mapping [12]. 

There are several important notes when considering the 
above-mentioned methods. While linear projections are 
often fast, they seldom reveal the true relationships in 
data. The expressivity of linear combinations is often too 
low to capture complex patterns in real-world data. On 
the other hand, non-linear projections are able to capture 
complex patterns, but are computationaly very expensive 
and quite intractable. Appropriate parameters for non-
linear projection are generally difficult to find if we don’t 
have a priori knowledge of what we are looking for – 
which is a very common case. Another problem is that it 
is very dificult to adjust the projection if, for example, 
new observations are to be incorporated into existing 
Sammon projection. 

In recent years, a lot of progress has been done made 
the field of Interactive evolutionary computation (IEC). In 
IEC, an evolutionary algorithm is applied to problems that 
require support of human intuition. A population of can-
didate solutions is iteratively improved based of user 
feedback. In every generation, a set of solutions is pre-
sented to the user. The users evaluates the solutions based 
on his preferences, and the best solutions are selected, 
reproduced and mutated. After several generations, solu-
tions with high value for the user will be hopefully found. 

IEC has been found useful in many areas. The applica-
tions include evolution of three-dimensional objects [5], 
tracks for high-end racing game [3], graphical user inter-
faces [7], tone mapping [4], and ant paintings [1]. In [10], 
a very interesting online project is introduced. The pro-
ject, Picbreeder.org, is focused on online collaborative 
evolution of pictures. The pictures are drawn by artificial 
neural network and interactive version of NEAT algo-
rithm [13] is used. In [11], Picbreeder.org project is ana-
lyzed stating that suprisingly large amounts of needles in 
the haystack have been found. The images depict cars, 
faces, insects etc. 

In this paper, we propose a method of applying IEC to 
problems of dimenzionality reduction. We will show that 
our approach seems promising for problems even as hard 
as finding parameters of non-linear projection for real-
world data. 
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II. Dimensionality Reduction through 
2n →ℝ ℝ  Projection 

As mentioned in Section I, a frequent dataset represen-
tation used in DM is m × n matrix A. In general case, the 
matrix consists of values from various domains. It is, 
however, quite common to transform the values into real 
numbers, resulting matrix m n×∈A ℝ . In special case of 
task known as classification, the examples are divided 
into classes, i.e. there is a special attribute L∈ℓ  assigned 
to each example, where L is a set of possible classes. In 
such a case, the matrix ∈A ( n L×ℝ ) m . If the objects 
examined were patients, than the real-valued attributes 
might code various indicators from blood analysis, and L 
might equal {0,1}, coding whether given patient suffers 
from the investigated disease or not. 

If there were only 2 real-valued attributes for each ob-
ject, the dataset A could be easily visualized in Cartesian 
coordinate system: there would be m points such that x 
and y coordinates would map to the real-valued attributes, 
and the color of given point would code the class that the 
object belongs to. However, the number of attributes is 
often much larger (n > 10), making their direct mapping 
to coordinate axes impossible. 

 
Fig.1 Projection 2n L L× → ×ℝ ℝ . 

In Section I, we have stated that several dimensionality 
reduction techniques may be used, and that these can be 
roughly classified as the linear and the non-linear ones. In 
this paper, we will focus on adding interactivity to dimen-
sionality reduction through the use of IEC approach. For 
the purpose of testing IEC, we will consider two different 
projections: one linear and one non-linear. 

First projection, which we will refer to as linear, is the 
one defined as f (x) = xT, where 2n×∈T ℝ . Values of ma-
trix T, however, will be subject of evolution rather than 
variance maximization as in PCA. 

Second projection, which we will call sigmoidal, is 
non-linear projection defined as follows. Given matrix 
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resulting a point in 2D-space. Semantics of parameters a, 
b and c are best depicted on Fig. 2. 

 
Fig. 2 Parameters of sigmoidal projection for each di-

mension in original space. 

In case of our experiments, we are given a dataset 
∈A ( n L×ℝ ) m  for which dimensionality-reducing pro-

jection f is being evolved in order to make user satisfied 
with f (A) as much as possible. 

III. Interactive Evolution of 2n →ℝ ℝ  
Dimensionality-Reducing Projection 

We have stated that we propose the 2n L L× → ×ℝ ℝ  
projection to be subject of human-guided evolution. Con-
sidering linear and sigmoidal projections defined in Sec-
tion II, we will evolve matrices 2n×∈T ℝ  and 3 2n×∈S ℝ  
such that the according projections will be of high useful-
ness for the user. The term “usefulness” is rather fuzzy, 
and the only options is collect feedback from the user. We 
propose following Real-valued genetic algorithm (RCGA) 
with user feedback as basic for fitness calculation. 

Algorithm 1  Outline of human-guided RCGA 
g ← 0 
P0 = p ← init() 
E0 ← user_evaluation(P0) 
F0 ← fitness(E0) 
while terminal condition is not met  
 g ← g + 1 
 P'g ← select(Pg–1, Fg–1) 
 Pg ← mutate(P'g) 
 Eg ← user_evaluation(Pg) 
 Fg ← fitness(Eg) 
end while 
return Pg 

The algorithm works as follows. First, a random popu-
lation of candidate real matrices is generated. These ma-
trices are then subject of human evalution. According to 
human evaluation, the candidate matrices are assigned 
fitness values as in traditional RCGA. 

As long as the candidate projections are not good 
enough, an evolutionary cycle takes step iteratively. In 
each step, based on user evaluations from previous gen-
eration, best projections are selected and mutated forming 
new population. The new population is then again subject 
of user evaluation. 

IV.Experiment setup 
There are several ways of how the user may submit 

evaluations. For the purposes of our experiments, we de-
signed graphical user interface as depicted on Fig. 3. To 

a 

b 

c 



 

“COMPUTER SCIENCE & INFORMATION TECHNOLOGIES” (CSIT ’2011), 16-19 NOVEMBER 2011, LVIV, UKRAINE 

3 

make the interface as ergonomic as possible, we offer 
three feedback options to the user: good, neutral and bad. 

Selection procedure is done through tournament selec-
tion. We take advantage of the fact that there is an intui-
tive total ordering: good > netral > bad. Since tourna-
ment selection only requires the candidate solutions to be 
totally comparable, it can be employed very easily. 

 
Fig. 3 User interface for evaluating candidate projections. 

Because we use RCGA to evolve real-valued matrices, 
we need some real-valued mutation operated to be pro-
vided. We use Gaussian mutation which is very straight-
forward and allows the values of individual parameters to 
change exponentially with number of generations. 
Specifically, given mutation rate σ, we mutate the (i,j)-th 
element (ai,j) of matrix m n×=A ℝ  by random sampling the 
normal distribution N(ai,j, σ). 

In our implementation, we do not use crossover opera-
tor, though there are dosend of RCGA crossover operators 
available. These can be subject of further research. 

For the purpose of our experiments, we have chosen 
Wine dataset, which is a well-known benchmarking data-
set for DM classification task. This dataset contains re-
sults of a chemical analysis of wines produced in three 
different cultivars. The analysis determined 13 different 
values (which may be considered as real numbers). Since 
there are three types of wines, the examples are of three 
different classes (labels) [Wine]. We have chosen this 
dataset because it is balanced dataset consisting of three 
classes that are moderately difficult to separate, making it 
suitable for unbiased testing of IEC capabilities. We have 
normalized the dataset, leaving attribute weighting com-
pletely to the IEC. 

   
Fig. 4 Visualization of the Wine dataset using PCA 
(left) and SOM (right) dimensionality reduction. 

The Wine dataset visualized using PCA and SOM (an-
other popular dimensionality reduction technique) projec-
tions are shown on Fig. 4. Note that the visualization al-
gorithms do not allow user to affect the output. 

In the following sections, we will demonstrate that our 
approach offers much wider scale of options how to visu-
alize the data. 

V.Cluster Separation Experiment 
Given an n-dimensional dataset of examples with label-

ing, natural idea where to start IEC dimensionality-
reduction experiments with is to separate points of differ-
ent labels as much as possible in the target 2D space. This 
idea is depicted on Fig. 5. 

 
Fig. 5 Separation of points with different labels in 2

ℝ . 

This can be seen as inverse clustering problem. In clas-
sical clustering, we are given a set X of exmples from 
a metric space such as nℝ , and our task is to find parti-
tion 1{ , , }k=X C C…C  such that clusters from XC  are ho-

mogene and easily separable from each other. In contrast, 
in case of our experiment, we are given a partition 

1{ , , }k=X C C…C  and our task is to find a projection 

f 2: n →ℝ ℝ  such that the homogeneity and separability 
criterions are satisfied for corresponding clusters { f (C1), 
…, f (Ck) }. 

A. Separation Using Linear Projection 
The first interactive cluster separation experiment was 

performed using Linear projection on the Wine dataset. 
The user declared the objective of separating the points 
with different labels. Population of size 7 was used, as we 
found it to be reasonable equilibrium between explorativ-
ness of the algorithm and workload for the human user.  

As can be seen of Fig. 6, the initial population tends to 
project all the examples into single line. This is probably 
because in the dataset that is not normalized, there are 
some dominant attributes.  

 

 
Fig. 6 Separation using linear projection, 

sample solutions from generation #0. 

Here the natural idea is to mark line-forming projecti-
ons as bad, and the other projections as good. Fig. 7 
shows the population after 15 generations. At this point, it 
seems that sufficient attribute weighting has already been 
achived. 



 

“COMPUTER SCIENCE & INFORMATION TECHNOLOGIES” (CSIT ’2011), 16-19 NOVEMBER 2011, LVIV, UKRAINE 

4 

 
Fig. 7 Separation using linear projection, 
sample solutions from generation #15. 

Finally, Fig. 8 shows sample solutions from generation 
number 30. Not only that attributes were weighted, but 
also good linear separation has been successfully found.  

 

 
Fig. 8 Separation using linear projection, 
sample solutions from generation #30. 

B. Separation Using Sigmoidal Projection 
The second experiment was performed on the same da-

taset, this time using Sigmoidal projection. In this case, 
the search space is much more complex. For our dataset 
of 13 real-valued attributes, we need to find a matrix of 78 
strongly-connected real numbers, that will be used to ob-
tain projection according to Eq. (1) in Section II. 

Fig. 9 shows the initial population generated. Most of 
the solutions are very “messy”, but incidently, one of the 
solutions seems quite promising. Hence we marked it as 
good. 

 
Fig. 9 Separation using sigmoidal projection, 

sample solutions from generation #0. 

After only 5 generations, surprisingly, dispite the com-
plexity of the search space, we have obtained much better 
solutions, as shown on Fig. 10. 

 
Fig. 10 Separation using sigmoidal projection, 

sample solutions from generation #5. 

Fig. 11 shows candidate solutions from generation 
number 15. It seems that our approach can easily overco-
me the search space complexity, because we obtained 
really nice projections. 

 
Fig. 11 Separation using sigmoidal projection, 

sample solutions from generation #15. 

Indeed, projections evolved could be further fine-tuned 
by decreasing mutation parameter σ in Gaussian mutation. 
Nevertheless, after only 15 generations of evaluating 7 
candidate solutions as bad, neutral, or good, we have 
found matrix S that makes sigmoidal projection separate 
examples quite well in target 2D space. 

VI. Other experiments 
One important thing to note is that IEC does not force 

the user to follow some specified goal. In fact, the user 
has a wide scale of options. We will demonstate this on 
two following simple expariments. 

Fig. 12 shows the population after 5 generations in ex-
periment that we named as “blue points up”. As the name 
implies, our goal was to make the y coordinate of the blue 
examples as high as possible, leaving the same coordinate 
of other examples as small as possible. 

 
Fig. 12 The „blue points up“ experiment, 
sigmoidal projection after 5 generations. 

Frequent task in data preprocessing state of KDD pro-
cedure is to detect so-called outliers, i.e. examples that 
deviate too much from the others and were probably ge-
nerated by some other process. This can also be done 
using IEC dimensionality reduction. Fig. 13 shows suspi-
cious examples that were detected after 8 generations of 
evolving linear projection. 

 
Fig. 13 Outliers detection experiment, 
linear projection after 8 generations. 
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Conclusion 
We have applied the interactive evolution to explore the 

state space of linear and nonlinear data projection 
techniques. In contrast to traditional methods, evolving  
projections allows the user to explore the data  
interactively within few iterations and even change the 
goal during the process in order to reveal hidden patterns 
in the multidimensional space.  

As a future work, we plan to apply the interactive 
evolution to more complex problems in the data mining 
domain. 
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