Multiobjective Optimization in Recommender Systems using Ensemble Methods

Tomáš Řehořek

Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague

June 27, 2013
Outline I

1. Outline
2. Introduction
3. Main Contents
4. Experiments
Recommender Systems

Recommender Systems [F. Ricci et al., 2011]

Recommender Systems are software tools and techniques providing suggestions for items to be of use to a user.

Input data typically consist of:

1. **Users** database
 - set of unique identifiers of real people using the system,

2. **Items** catalog
 - set of products (e.g., movies, CDs, books, web pages, ...) available to the users,

3. **Transactions** made by users among items
 - product purchases, ratings (number of stars), page views...
Recommender Systems

Based on her past interaction with some items, the system generates **personalized recommendations** of other items that are likely to be relevant to the given user.

Three main approaches to personalized recommendation:

- **Knowledge-based** recommendation
 - exploits specific knowledge about the domain,
 - uses set of hard-coded rules,

- **Content-based** recommendation
 - exploits meta-data about the items,
 - builds predictive model for each user,

- **Collaborative Filtering**
 - exploits similarities between users,
 - does not require any knowledge about the domain
Knowledge-based Recommendation

if camera ∧ ¬memory-card then memory card;

if camera ∧ memory-card ∧ ¬tripod then tripod;

Several disadvantages:

• suitable for small catalogs only,
• requires human expertise,
• expensive to implement and maintain
Content-based Recommendation

Predictive modeling dataset for user X:

<table>
<thead>
<tr>
<th>ID</th>
<th>action</th>
<th>comedy</th>
<th>drama</th>
<th>...</th>
<th>horror</th>
<th>year</th>
<th>duration [min]</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>2001</td>
<td>127</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1998</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1996</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>2007</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>2010</td>
<td>102</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>2006</td>
<td>55</td>
<td>?</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>2001</td>
<td>80</td>
<td>?</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>2007</td>
<td>108</td>
<td>?</td>
</tr>
</tbody>
</table>

Disadvantages:

- requires meta-data about items (may be costly),
- computationally expensive (10^5 different models for 10^5 users)
Collaborative Filtering (CF)

<table>
<thead>
<tr>
<th>UserID</th>
<th>Item1</th>
<th>Item2</th>
<th>Item3</th>
<th>Item4</th>
<th>Item5</th>
<th>Item6</th>
<th>Item7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>?</td>
<td>3</td>
<td>?</td>
<td>?</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>?</td>
<td>4</td>
<td>?</td>
<td>5</td>
<td>?</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>?</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>2</td>
<td>?</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>?</td>
<td>?</td>
<td>5</td>
<td>4</td>
<td>?</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
<td>?</td>
<td>4</td>
<td>?</td>
<td>3</td>
<td>?</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Does not require meta-data nor domain-specific knowledge!

- dominant approach in large, real-time systems,
- recommendations are built by examining similar users,
- subject of our research
Netflix Prize

• Open competition held by Netflix, an American online movie retailer
• Grand prize of $1,000,000, awarded in 2009
• Goal was to improve the performance of an existing CF model used by Netflix by 10 %
• Encouraged researchers to put huge effort into research in the area of CF
• Contestants were to publish their algorithms during the competition
Netflix Prize: Consequences

- Put a lot of bias into the research

- Techniques and criterions used in Netflix Prize are now considered standard, most notably:
 - there are numerical, **explicit ratings** provided by users,
 - **predictive accuracy** of the model is the only criterion,
 - data matrices must be dense enough

- These conditions do not necessarily hold in all practical problems!
 - ratings may be only implicit and binary, generated from purchase history,
 - predictive accuracy might not fit business needs,
 - data matrices may be very sparse,
 - **all of these are subject to our research**
Formalization

We are given:

- Totally ordered set of items $\mathcal{I} = \{i_1, \ldots, i_n\}$,
- Totally ordered set of users $\mathcal{U} = \{U_1, \ldots, U_n\}$ such that $\forall U_i \in \mathcal{U}: U_i \subseteq \mathcal{I}$

Users are thought as sets of items

- Each user is expressed as a set of items she has purchased/viewed,
- Strong practical motivations: does not require explicit ratings to be collected

For users from \mathcal{U}, we are solving problem known as **Top-N recommendation**
Top-N Recommendation

- Problem of generating recommendations from purchase/rating history

- Searching for **predictive model** that would recommend N items most likely to be relevant
 - recommendations must be personalized, user-specific

- Frequently utilized in e-commerce
 - fixed space for recommended items
Approaches to Collaborative Filtering

1. **Memory-based methods**
 - scan the whole database to find similar users (w.r.t. some distance measure),
 - generate recommendations by averaging these users,
 - user-based or item-based k-Nearest Neighbors algorithms,
 - fast learning ("lazy learning") phase, slow recommendation phase

2. **Model-based methods**
 - build predictive model from the data,
 - drop details, captures general principles,
 - slow learning phase, fast recommendation phase,
 - clustering, Bayesian networks, Association rules...

3. **Hybrid methods**
 - combination of the two preceding
Measuring Performance of CF Models

- General approach: measuring **predictive accuracy**
- Set of **test users** is used to evaluate the model
 - we split each test user’s history into **observation** and **testing** portion
 - models are to generate predictions based on observation
 - prediction generated are compared to known testing portion
- In Netflix Prize: Root Mean Square Error (RMSE)

\[
\text{RMSE}(model) = \sqrt{\sum_{i \in \text{rated}(U)} (model(U, i) - \text{rating}(U, i))^2}
\]

- In our case of Top-\(N\) recommendation: **Precision on** \(N\)

\[
\text{precision}(model) = \frac{\text{model}(U, N) \cap \text{testing}(U)}{N}
\]
Predictive Accuracy: Issues

- Predictive accuracy may not reflect actual business needs
- Models are pushed towards bestseller items
 - This is because the predictions are compared to existing ratings
 - Recommending bestsellers is generally a good strategy to maximize accuracy
- Long tail recommendation: We want to recommend surprising new items of high value for a specific user
- Other measures were designed to overcome this deficiency, namely the **Catalog coverage**:

\[
\text{coverage(model)} = \frac{|\bigcup_{U \in \mathcal{U}} \text{model}(U, N)|}{|\mathcal{I}|}
\]
Accuracy vs. Coverage

- Accuracy and Coverage are conflicting criterions
- High accuracy leads to low coverage and vice versa
- Accuracy may be viewed as a function of Coverage
- In our research, we consider maximizing both measures as a multi-objective optimization problem
Contributions of the Report

1. Defining selection and parametrization of proper CF algorithm for a given data as an **multi-objective optimization problem**
 - Simultaneous optimization of both the accuracy and the coverage of the model,

2. **Experimental analysis** of several CF algorithms considering Accuracy-Coverage tradeoff

3. Special emphasis on **Association Rules**
 - interesting model for binary-rated data
 - proposal of unifying framework for evaluation multiple variants of rule-based recommendation

4. Experiments with **model ensembles**
 - promising method for generating new Pareto-optimal states in Accuracy-Coverage optimization
We experiment with following algorithms:

- **k-Nearest Neighbors**
 - standard approach to CF

- **Association Rules**
 - both weighted and unweighted variants
 - using different rule-quality measures: confidence, lift, conviction

- (Sequential Patterns)
k-Nearest Neighbors

- Treats users as vectors (either from \mathbb{R}^n of $\{0, 1\}^n$),
- For given user $U \in \mathcal{U}$, selects the k most similar users w.r.t. some distance measure,
- Sums the user vectors up, and recommends the movies that correspond to positions of highest values in the resulting vector
- Cosine similarity is the typical distance measure for $a, b \in \mathbb{R}^n$:
 \[
 \text{sim}(a, b) = \frac{a \cdot b}{\|a\| \cdot \|b\|}
 \]
- In our case of binary ratings, we are using much faster formula:
 \[
 \text{sim}(A, B) = \frac{|A \cap B|}{\sqrt{|A| \cdot |B|}}
 \]
Algorithm 1: k-NN-Based Recommendation

input : Set of users \mathcal{U}, Target user $U \in \mathcal{U}$,
Number of items to be recommended $N \in \mathbb{N}$,
Number of neighbors to be examined $k \in \mathbb{N}$
output: Top-N recommendations $R(U) \in \mathcal{I}^N$
dist \leftarrow init_table()
foreach $U' \in \mathcal{U}$ such that $U' \neq U$ do
\[
\text{dist}[U'] \leftarrow \text{distance}(U, U')
\]

sorted_users \leftarrow ascending_sort_by_value(dist)
cand_items \leftarrow init_table()
for $i \leftarrow 1$ to k do
\[
\text{foreach item } \in \text{sorted_users}[k] \text{ do}
\]
\[
\text{if item } \notin \text{cand_items} \text{ then}
\]
\[
\text{cand_items}[\text{item}] \leftarrow 0
\]
\[
\text{cand_items}[\text{item}] \leftarrow \text{cand_items}[\text{item}] + 1
\]

sorted_items \leftarrow descending_sort_by_value(cand_items)
recomms $\leftarrow \emptyset$
for $i \leftarrow 1$ to min (N, length (sorted_items)) do
\[
\text{recomms } \leftarrow \text{recomms } \cup \{\text{sorted_items}[i]\}
\]

return recomms
Association Rules [Agrawal1994]

Association rules are simple statements about co-occurrences of events in data.

Definition: Association Rule (AR)

Let \mathcal{I} be a finite set of **items**, and let $\mathcal{D} = \{T_1, \ldots, T_m\}$ be a finite set of **transactions** such that $\forall T_i \in \mathcal{D}: T_i \subseteq \mathcal{I}$. **Association Rule** is an implication

$$X \Rightarrow Y,$$

such that $X, Y \subseteq \mathcal{I}, X \neq \emptyset, Y \neq \emptyset, X \cap Y = \emptyset$.

We may use Association Rules to generate recommendation [Sarwar2000].
Let \mathcal{I} be a set of **items**, and let \mathcal{D} be a set of **transactions**. For a subset $A \subseteq \mathcal{I}$, we denote the **support** of A as:

$$\text{supp}(A) = \frac{|\{T \in \mathcal{D} | A \subseteq T\}|}{|\mathcal{D}|}.$$

Given **minimal support** $s_{\text{min}} \in [0, 1]$, our task is to find set of ARs $X \Rightarrow Y$ such that

$$\text{supp}(X \cup Y) \geq s_{\text{min}}.$$

Standard approach to mining ARs: APRIORI algorithm

- we use this algorithm in our experiments
Rule-Based Recommendation

- ARs can be used for Top-N recommendation
- We use two different variants
 - "Best-Rule" method as proposed in [Sarwar2000],
 - "Weighted-Rules" method following [Kononenko1992],
- We experiment with different rule-quality measures
 - confidence,
 - lift,
 - conviction
Algorithm 2: Best-Rule Recommendation

input: Set of users \mathcal{U}, Target user $U \in \mathcal{U}$,
Set of association rules \mathcal{R},
Number of items to be recommended $N \in \mathbb{N}$,

output: Top-N recommendations $R(U) \in \mathcal{I}^N$

$cand_rules \leftarrow \{(X \Rightarrow Y) \in \mathcal{R} \mid X \subseteq U\}$

$qualities \leftarrow init_table()$

for $(X \Rightarrow Y) \in cand_rules$ do
 $qualities[(X \Rightarrow Y)] \leftarrow measure((X \Rightarrow Y), U)$

$sorted_rules \leftarrow descending_sort_by_value(qualities)$

$recomms \leftarrow \emptyset$

for $i \leftarrow 1$ to length($sorted_rules$) do
 $(X \Rightarrow Y) \leftarrow sorted_rules[i]$
 for each item $\in Y$ do
 if item $\notin (U \cup recomms)$ then
 $recomms \leftarrow recomms \cup \{item\}$
 if $|recomms| = N$ then
 return recomms

return recomms
Algorithm 3: Weighted-Rules Recommendation

input: Set of users \mathcal{U}, Target user $U \in \mathcal{U}$, Set of association rules \mathcal{R}, Number of items to be recommended $N \in \mathbb{N}$

output: Top-N recommendations $R(U) \in \mathcal{I}^N$

1. $\text{applicable_rules} \leftarrow \{(X \Rightarrow Y) \in \mathcal{R} \mid X \subseteq U\}$
2. $\text{cand_items} \leftarrow \text{init_table}()$
3. for $(X \Rightarrow Y) \in \text{applicable_rules}$ do
 1. foreach item $\in (Y \setminus U)$ do
 1. if item $\notin \text{cand_items}$ then
 1. $\text{cand_items}[\text{item}] \leftarrow 0$
 2. $\text{cand_items}[\text{item}] \leftarrow \text{cand_items}[\text{item}] + \text{measure}((X \Rightarrow Y), \mathcal{U})$
4. $\text{sorted_items} \leftarrow \text{descending_sort_by_value}(\text{cand_items})$
5. $\text{recomms} \leftarrow \emptyset$
6. for $i \leftarrow 1$ to N do
 1. $\text{recomms} \leftarrow \text{recomms} \cup \{\text{sorted_items}[i]\}$
7. return recomms
Rule-Quality Measures

When sorting rules by quality, we may use several measures:

- **Confidence**

 \[
 \text{conf}(X \Rightarrow Y) = \frac{\text{supp}(X \cup Y)}{\text{supp}(X)}
 \]

- **Lift**

 \[
 \text{lift}(X \Rightarrow Y) = \frac{\text{conf}(X \Rightarrow Y)}{\text{supp}(Y)}
 \]

- **Conviction**

 \[
 \text{conv}(X \Rightarrow Y) = \frac{1 - \text{supp}(Y)}{1 - \text{conf}(X \Rightarrow Y)}
 \]
Experiments

• Several experiments were done with all the aforementioned algorithms

• We used real-world datasets from IPTV industry, namely the Video-on-Demand (VoD) service,
 • Different installations of nangu.TV platform, a comprehensive solution allowing ISPs to run IPTV services on their networks
 • Only purchase history available \rightarrow binary ratings
Experimental datasets

Nangu-TV-1 Dataset

#Users: 9004 #Items: 17558 #Purchases: 136494

<table>
<thead>
<tr>
<th>Quantity</th>
<th>MIN</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchases per User</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td>979</td>
</tr>
<tr>
<td>Purchases per Item</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1697</td>
</tr>
</tbody>
</table>

Nangu-TV-2 Dataset

#Users: 15803 #Items: 738 #Purchases: 946807

<table>
<thead>
<tr>
<th>Quantity</th>
<th>MIN</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchases per User</td>
<td>1</td>
<td>12</td>
<td>37</td>
<td>85</td>
<td>552</td>
</tr>
<tr>
<td>Purchases per Item</td>
<td>1</td>
<td>497</td>
<td>1058</td>
<td>1888</td>
<td>6480</td>
</tr>
</tbody>
</table>
k-NN on Nangu-TV-1

![Graph showing Precision-Coverage tradeoff for different values of k on the Nangu-TV-1 dataset](image)

Figure: Precision-Coverage tradeoff for different values of k on the Nangu-TV-1 dataset
Association Rules on Nangu-TV-1

Figure: Precision-Coverage tradeoff for different configurations of AR-based recommender on the *Nangu-TV-1* dataset
Comparison of k-NN and ARs on Nangu-TV-1

Figure: Different variants of Association Rules compared with k-NN on the *Nangu-TV-1* dataset.
Ensemble of k-NN and ARs on Nangu-TV-1

Figure: Ensemble of k-NN, best-rule conviction ARs, and average-rules lift ARs on the Nangu-TV-1 dataset
Figure: Precision-Coverage tradeoff for different values of k on the Nangu-TV-2 dataset
Figure: Precision-Coverage tradeoff for different configurations of AR-based recommender on the *Nangu-TV-2* dataset
Comparison of k-NN and ARs on Nangu-TV-2

Figure: Different variants of Association Rules compared with k-NN on the Nangu-TV-2 dataset
Ensemble of k-NN and ARs on Nangu-TV-1

Figure: Ensemble of k-NN, best-rule conviction ARs, and average-rules lift ARs on the Nangu-TV-2 dataset
Ensembling k-NN, ARs, and Sequential Patterns

On another dataset, Nangu-TV-3, we experimented with Sequential Patterns (SPs).

Figure: Different ensembles of k-NN, Association Rules, and Sequential Patterns on the Nangu-TV-3 dataset
Visualizing Association Rules for Nangu-TV-1

Figure: Association Rules Graph for the Nangu-TV-1 Dataset
Visualizing Association Rules for Nangu-TV-2

Figure: Association Rules Graph for the Nangu-TV-2 Dataset
Visualizing Association Rules for Nangu-TV-2

Figure: Filtered Association Rules Graph for the Nangu-TV-2 Dataset
Visualizing Association Rules for “Timeshift” Data

Figure: Association Rules for “Timeshift” Dataset
Confidence-driven AR-based Recommendation on MovieLens Dataset

Figure: Recommendations for a Specific User from the Database on the MovieLens Dataset, using Confidence as the Rule-Quality Metric
Lift-driven AR-based Recommendation on MovieLens Dataset

Figure: Recommendations for a Specific User from the Database on the MovieLens Dataset, using Lift as the Rule-Quality Metric
Title: **Meta-Learning Templates for Collaborative Filtering**

Topics:

- **Multi-Objective Optimization in Recommender Systems**
 - Extending results from this report
 - Making more experiment with more algorithms and datasets

- **Meta-Learning Templates in Collaborative Filtering**
 - Searching algorithm ensembles maximizing all the performance measures
 - universally applicable?
 - data-dependent?
Thank you for your attention!

Tomáš Řehořek
tomas.rehorek@fit.cvut.cz

Acknowledgements

Our research is partially supported by the following grants:

- Novel Model Ensembling Algorithms (SGS10/307/0HK3/3T/181) grant of the Czech Technical University in Prague,

- Research and development of the interactive and platform services for the interactive digital TV broadcast MPO/FR grant (FR-TI2/128).

We would like to thank the Alnair, a.s. company (developer of the nangu.TV platform) for supporting our research and providing us with the data.