
<Course name> <Lesson number>-

Creating Database Triggers

Objectives

After completing this lesson, you should be able to
do the following:

Describe database triggers and their use

Create database triggers

Describe database trigger firing rules

Remove database triggers

Overview of Triggers

A trigger is a PL/SQL block that executes implicitly
whenever a particular event takes place.

A trigger can be either a database trigger or an
application trigger.

Designing Triggers: Guidelines

Design triggers to:

Perform related actions

Centralize global operations

Do not design triggers:

Where functionality already exists

Which duplicate other triggers

Application

SQL> INSERT INTO EMP
2 . . .;

EMP table
EMPNO

7838

7698

7369

7788

ENAME

KING

BLAKE

SMITH

SCOTT

JOB

PRESIDENT

MANAGER

CLERK

ANALYST

SAL

5000

2850

800

3000

CHECK_SAL trigger

Database Trigger: Example Creating Triggers

Trigger timing

For table: BEFORE, AFTER

For view: INSTEAD OF

Triggering event: INSERT, UPDATE, or DELETE

Table name: On table or view

Trigger type: Row or statement

When clause: Restricting condition

Trigger body: PL/SQL block

<Course name> <Lesson number>-

Trigger Components

Trigger timing: When should the trigger fire?

BEFORE: Execute the trigger body before the
triggering DML event on a table.

AFTER: Execute the trigger body after the
triggering DML event on a table.

INSTEAD OF: Execute the trigger body instead of
the the triggering statement. Used for VIEWS that
are not otherwise modifiable.

Trigger Components

Triggering user event:

What DML statement will cause the trigger to
execute?

INSERT

UPDATE

DELETE

Trigger Components

Trigger type:

Should the trigger body execute for each row the
statement affects or only once?

Statement: The trigger body executes once for the
triggering event. This is the default.

Row: The trigger body executes once for each row
affected by the triggering event.

Trigger Components

Trigger body:

What action should the trigger perform?

The trigger body is a PL/SQL block or a call to a
procedure.

DEPTNO

10

20

30

40

DNAME

ACCOUNTING

RESEARCH

SALES

OPERATIONS

LOC

NEW YORK

DALLAS

CHICAGO

BOSTON

Triggering Action

Firing Sequence

BEFORE statement trigger

BEFORE row trigger50 EDUCATION NEW YORK
AFTER row trigger
AFTER statement trigger

SQL> INSERT INTO dept (deptno, dname, loc)
2 VALUES (50, 'EDUCATION', 'NEW YORK');

DML Statement

Firing sequence of a trigger on a table, when a single
row is manipulated:

EMPNO

7839

7698

7788

ENAME

KING

BLAKE

SMITH

DEPTNO

30

30

30

BEFORE statement trigger

BEFORE row trigger
AFTER row trigger
BEFORE row trigger
AFTER row trigger
BEFORE row trigger
AFTER row trigger

AFTER statement trigger

Firing Sequence

SQL> UPDATE emp
2 SET sal = sal * 1.1
3 WHERE deptno = 30;

Firing sequence of a trigger on a table, when many
rows are manipulated:

<Course name> <Lesson number>-

Syntax for Creating
Statement Triggers

CREATE [OR REPLACE] TRIGGER trigger_name
timing

event1 [OR event2 OR event3]
ON table_name

trigger_body

SQL> CREATE OR REPLACE TRIGGER secure_emp

2 BEFORE INSERT ON emp

3 BEGIN

4 IF (TO_CHAR (sysdate,'DY') IN ('SAT','SUN')) OR

5 (TO_CHAR(sysdate,'HH24') NOT BETWEEN

6 '08' AND '18')

7 THEN RAISE_APPLICATION_ERROR (-20500,

8 'You may only insert into EMP during business hours.');

9 END IF;

10 END;

11 /

Creating Statement Triggers
Using SQL*Plus

Creating Statement Triggers
Using Procedure Builder

Testing SECURE_EMP

SQL> INSERT INTO emp (empno, ename, deptno)

2 VALUES (7777, 'BAUWENS', 40);

INSERT INTO emp (empno, ename, deptno)

*

ERROR at line 1:

ORA-20500: You may only insert into EMP during normal hours.

ORA-06512: at "A_USER.SECURE_EMP", line 4

ORA-04088: error during execution of trigger

'A_USER.SECURE_EMP'

Using Conditional Predicates

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT OR UPDATE OR DELETE ON emp
BEGIN
IF (TO_CHAR (sysdate,'DY') IN ('SAT','SUN')) OR

(TO_CHAR (sysdate, 'HH24') NOT BETWEEN '08' AND '18')
THEN
IF DELETING
THEN RAISE_APPLICATION_ERROR (-20502,

'You may only delete from EMP during normal hours.');
ELSIF INSERTING
THEN RAISE_APPLICATION_ERROR (-20500,
'You may only insert into EMP during normal hours.');

ELSIF UPDATING ('SAL')
THEN RAISE_APPLICATION_ERROR (-20503,
'You may only update SAL during normal hours.');

ELSE
RAISE_APPLICATION_ERROR (-20504,
'You may only update EMP during normal hours.');

END IF;
END IF;

END;

Creating a Row Trigger

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3]
ON table_name

[REFERENCING OLD AS old | NEW AS new]
FOR EACH ROW

[WHEN condition]
trigger_body

<Course name> <Lesson number>-

Creating Row Triggers Using SQL*Plus

SQL> CREATE OR REPLACE TRIGGER RESTRICT_SALARY

2 BEFORE INSERT OR UPDATE OF sal ON emp

3 FOR EACH ROW

4 BEGIN

5 IF NOT (:NEW.JOB IN ('MANAGER' , 'PRESIDENT'))

6 AND :NEW.SAL > 5000

7 THEN

8 RAISE_APPLICATION_ERROR

9 (-20202, 'EMPLOYEE CANNOT EARN THIS AMOUNT');

10 END IF;

11 END;

Creating Row Triggers Using
Procedure Builder

Using Old and New Qualifiers

SQL>CREATE OR REPLACE TRIGGER audit_emp_values

2 AFTER DELETE OR INSERT OR UPDATE ON emp

3 FOR EACH ROW

4 BEGIN

5 INSERT INTO audit_emp_table (user_name,

6 timestamp, id, old_last_name, new_last_name,

7 old_title, new_title, old_salary, new_salary)

8 VALUES (USER, SYSDATE, :OLD.empno, :OLD.ename,

9 :NEW.ename, :OLD.job, :NEW.job,

10 :OLD.sal, :NEW.sal);

11 END;

12 /

USER_NAME

EGRAVINA

NGREENBE

TIMESTAMP

12-NOV-97

10-DEC-97

ID

NULL

7844

OLD_LAST_NAME

NULL

MAGEE

NEW_LAST_NAME

HUTTON

TURNER

OLD_TITLE

NULL

CLERK

NEW_TITLE

ANALYST

SALESMAN

NEW_SALARY

3500

1100

Continuation
OLD_SALARY

NULL

1100

Audit_Emp_Table

Restricting a Row Trigger

SQL>CREATE OR REPLACE TRIGGER derive_commission_pct
2 BEFORE INSERT OR UPDATE OF sal ON emp
3 FOR EACH ROW
4 WHEN (NEW.job = 'SALESMAN')
5 BEGIN
6 IF INSERTING
7 THEN :NEW.comm := 0;
8 ELSIF :OLD.comm IS NULL
9 THEN :NEW.comm := 0;

10 ELSE :NEW.comm := :OLD.comm * (:NEW.sal/:OLD.sal);
11 END IF;
12 END;
13 /

An INSTEAD OF Trigger

Application

SQL> INSERT INTO my_view
2 . . .;

MY_VIEW

INSTEAD OF
Trigger

INSERT
TABLE1

UPDATE
TABLE2

<Course name> <Lesson number>-

Creating an INSTEAD OF Trigger

CREATE [OR REPLACE] TRIGGER trigger_name
INSTEAD OF
event1 [OR event2 OR event3]
ON view_name

[REFERENCING OLD AS old | NEW AS new]
[FOR EACH ROW]
trigger_body

Creating an INSTEAD OF Trigger

EMPNO

7836

7782

7934

7566

ENAME

KING

CLARK

MILLER

JONES

SAL

5000

2450

1300

2975

DEPTNO

10

10

10

20

DNAME

NEW YORK

NEW YORK

NEW YORK

DALLAS

TOT_DEPT_SAL

8750

8750

8750

10875

INSERT INTO EMP_DETAILS (EMPNO, ENAME, SAL, DEPTNO)
VALUES (9001,'ABBOTT',1000,10)

INSTEAD OF
INSERT into
EMP_DETAILS

INSERT into
EMPLOYEES
EMPNO
7939

7698

7782

9001

ENAME
KING

BLAKE

CLARK

ABBOTT

SAL
5000

2850

2450

1000

DEPTNO
10

20

30

DNAME
ACCOUNTING

RESEARCH

SALES

TOT_DEPT_SAL
9750

10875

9400

UPDATE
DEPARTMENTS

Differentiating Between Triggers and
Stored Procedures

Triggers

Defined with CREATE TRIGGER

Data dictionary contains source
and p-code

Implicitly invoked

COMMIT, SAVEPOINT,
ROLLBACK not allowed

Procedures

Defined with CREATE PROCEDURE

Data dictionary contains source and
p-code

Explicitly invoked

COMMIT, SAVEPOINT, ROLLBACK
allowed

Differentiating Between Triggers
and Form Builder Triggers

SQL> INSERT INTO EMP
2 . . .;

EMP table
EMPNO

7838

7698

7369

7788

ENAME

KING

BLAKE

SMITH

SCOTT

JOB

PRESIDENT

MANAGER

CLERK

ANALYST

SAL

5000

2850

800

3000

CHECK_SAL trigger

BEFORE
INSERT
row

ALTER TRIGGER trigger_name DISABLE | ENABLE

Managing Triggers

Disable or reenable a database trigger:

ALTER TABLE table_name DISABLE | ENABLE ALL TRIGGERS

Disable or reenable all triggers for a table:

ALTER TRIGGER trigger_name COMPILE

Recompile a trigger for a table:

DROP TRIGGER Syntax

To remove a trigger from the database, use the DROP
TRIGGER syntax:

DROP TRIGGER trigger_name

SQL> DROP TRIGGER secure_emp;
Trigger dropped

Example

<Course name> <Lesson number>-

Trigger Test Cases

Test each triggering data operation, as well as
nontriggering data operations

Test each case of the WHEN clause

Cause the trigger to fire directly from a basic data
operation, as well as indirectly from a procedure

Test the effect of the trigger upon other triggers

Test the effect of other triggers upon the trigger

Trigger Execution Model and Constraint
Checking

1. Execute all BEFORE STATEMENT triggers

2. Loop for each row affected

a. Execute all BEFORE ROW triggers

b. Execute the DML statement and perform
integrity constraint checking

c. Execute all AFTER ROW triggers

3. Complete deferred integrity constraint checking

4. Execute all AFTER STATEMENT triggers

DML into
EMP VAR_PACK

Package

AUDIT_EMP_TRIG
FOR EACH ROW
Increment Variables

AUDIT_EMP_TAB
AFTER STATEMENT
Copy then Reset
Variables

AUDIT_TABLE

A Sample Demonstration Demonstration: Triggers

CREATE OR REPLACE TRIGGER audit_emp_trig
AFTER UPDATE or INSERT or DELETE on EMP
FOR EACH ROW
BEGIN

IF DELETING THEN var_pack.set_g_del(1);
ELSIF INSERTING THEN var_pack.set_g_ins(1);
ELSIF UPDATING ('SAL')

THEN var_pack.set_g_up_sal(1);
ELSE var_pack.set_g_upd(1);
END IF;

END audit_emp_trig;

CREATE OR REPLACE TRIGGER audit_emp_tab
AFTER UPDATE or INSERT or DELETE on EMP
BEGIN

audit_emp;
END audit_emp_tab;

Demonstration: VAR_PACK Package
Specification

CREATE OR REPLACE PACKAGE var_pack
IS
-- these functions are used to return the
-- values of package variables

FUNCTION g_del RETURN NUMBER;
FUNCTION g_ins RETURN NUMBER;
FUNCTION g_upd RETURN NUMBER;
FUNCTION g_up_sal RETURN NUMBER;

-- these procedures are used to modify the
-- values of the package variables

PROCEDURE set_g_del (p_val IN NUMBER);
PROCEDURE set_g_ins (p_val IN NUMBER);
PROCEDURE set_g_upd (p_val IN NUMBER);
PROCEDURE set_g_up_sal (p_val IN NUMBER);

END var_pack;

CREATE OR REPLACE PROCEDURE audit_emp IS
v_del NUMBER := var_pack.g_del;
v_ins NUMBER := var_pack.g_ins;
v_upd NUMBER := var_pack.g_upd;
v_up_sal NUMBER := var_pack.g_up_sal;

BEGIN
IF v_del + v_ins + v_upd != 0 THEN
UPDATE audit_table SET
del = del + v_del, ins = ins + v_ins,
upd = upd + v_upd

WHERE user_name = user AND tablename = 'EMP'
AND column_name IS NULL;

END IF;
IF v_up_sal != 0 THEN
UPDATE audit_table SET upd = upd + v_up_sal
WHERE user_name = user AND tablename = 'EMP'
AND column_name = 'SAL';

END IF;
-- resetting global variables in package VAR_PACK

var_pack.set_g_del (0); var_pack.set_g_ins (0);
var_pack.set_g_upd (0); var_pack.set_g_up_sal (0);

END audit_emp;

Demonstration: Procedure

<Course name> <Lesson number>-

Procedure Package Trigger
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx

Procedure A
declaration

Procedure B
definition

Summary

Procedure A
definition

Local
variable

Practice Overview

This practice covers the following topics:

Creating statement and row triggers

Creating advanced triggers to add to the
capabilities of the Oracle database

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

