
<Course name> <Lesson number>-

Creating Packages

Objectives

After completing this lesson, you should be able to
do the following:

Describe packages and list their possible
components

Create a package to group together related
variables, cursors, constants, exceptions,
procedures, and functions

Make a package construct either public or private

Invoke a package construct

Overview of Packages

Group logically related PL/SQL types, items, and
subprograms

Consist of two parts:

Specification

Body

Cannot be called, parameterized, or nested

Allow Oracle8 to read multiple objects into
memory at once

Components of a Package

Procedure A
declaration

Package
specification

Package
body

Procedure A
definition

Procedure B
definition

Public variable

Private variable

Public procedure

Private procedure

Public procedure

Local variable

Referencing Package Objects

Package
specification

Package
body

Procedure A
declaration

Procedure B
definition

Procedure A
definition

Developing a Package

SQL*Plus Code
Oracle

Procedure
Builder

Code
Editor

1 SQL> START file.sqlSave 2

Source code

Execute

P code

Compile

Oracle

<Course name> <Lesson number>-

Developing a Package

Saving the text of the CREATE PACKAGE
statement in two different text files facilitates later
modifications to the package.

A package specification can exist without a
package body, but a package body cannot exist
without a package specification.

If you have incorporated a stand-alone procedure
into a package, you should drop your stand-alone
procedure.

CREATE [OR REPLACE] PACKAGE package_name
IS|AS

public type and item declarations
subprogram specifications

END package_name;

Creating the Package Specification

Syntax

COMM_PACKAGE package

G_COMM

Package
specification

1

Declaring Public Constructs

RESET_COMM
procedure
declaration

2

Creating a Package Specification: Example

SQL> CREATE OR REPLACE PACKAGE comm_package IS

2 g_comm NUMBER := 10; -- initialized to 10

3 PROCEDURE reset_comm

4 (v_comm IN NUMBER);

5 END comm_package;

6 /

Creating the Package Body

Syntax

CREATE [OR REPLACE] PACKAGE BODY package_name
IS|AS

private type and item declarations
subprogram bodies

END package_name;

RESET_COMM
procedure declaration

VALIDATE_COMM
function definition

Package
specification

Package
body

1

3

2RESET_COMM
procedure definition

COMM_PACKAGE package

Public and Private Constructs

G_COMM

2

<Course name> <Lesson number>-

Creating a Package Body: Example

SQL> CREATE OR REPLACE PACKAGE BODY comm_package
2 IS
3 FUNCTION validate_comm
4 (v_comm IN NUMBER)
5 RETURN BOOLEAN
6 IS
7 v_max_comm NUMBER;
8 BEGIN
9 SELECT max(comm)

10 INTO v_max_comm
11 FROM emp;
12 IF v_comm > v_max_comm
13 THEN RETURN(FALSE);
14 ELSE RETURN(TRUE);
15 END IF;
16 END validate_comm;

17 PROCEDURE reset_comm
18 (v_comm IN NUMBER)
19 IS
20 BEGIN
21 IF validate_comm(v_comm)
22 THEN g_comm:=v_comm; --reset global variable
23 ELSE
24 RAISE_APPLICATION_ERROR
25 (-20210,'Invalid commission');
26 END IF;
27 END reset_comm;
28 END comm_package;
29 /

Creating a Package Body: Example

Invoking Package Constructs

Example 1: Invoke a function from a procedure within
the same package.

CREATE OR REPLACE PACKAGE BODY comm_package IS
. . .

PROCEDURE reset_comm
(v_comm IN NUMBER)

IS
BEGIN
IF validate_comm(v_comm)
THEN g_comm := v_comm;
ELSE

RAISE_APPLICATION_ERROR
(-20210, 'Invalid commission');

END IF;
END reset_comm;

END comm_package;

Example 2: Invoke a package procedure from
SQL*Plus.

Example 3: Invoke a package procedure in a different
schema.

Example 4: Invoke a package procedure in a remote
database.

Invoking Package Constructs

SQL> EXECUTE comm_package.reset_comm(15)

SQL> EXECUTE scott.comm_package.reset_comm(15)

SQL> EXECUTE comm_package.reset_comm@ny(15)

Global Variables

SQL> CREATE OR REPLACE PACKAGE global_vars IS
2 mile_2_kilo CONSTANT NUMBER := 1.6093;
3 kilo_2_mile CONSTANT NUMBER := 0.6214;
4 yard_2_meter CONSTANT NUMBER := 0.9144;
5 meter_2_yard CONSTANT NUMBER := 1.0936;
6 END global_vars;
7 /

SQL> EXECUTE DBMS_OUTPUT.PUT_LINE -
> ('20 miles ='||20* global_vars.mile_2_kilo||' km')
20 miles =32.186 km

PL/SQL procedure successfully completed.

Referencing a Public Variable
from a Stand-Alone Procedure

Example

SQL> CREATE PROCEDURE meter_to_yard
2 (v_meter IN NUMBER,
3 v_yard OUT NUMBER)
4 IS
5 BEGIN
6 v_yard := v_meter * global_vars.meter_2_yard;
7 END meter_to_yard;
8 /

SQL> VARIABLE yard NUMBER
SQL> EXECUTE meter_to_yard (1, :yard)

PL/SQL procedure successfully completed.
SQL> PRINT yard

YARD

1.0936

<Course name> <Lesson number>-

DROP PACKAGE package_name

Removing Packages

To remove the package specification and the body:

To remove the package body:
DROP PACKAGE BODY package_name

Developing Packages: Guidelines

Keep packages as general as possible.

Define the package specification before the body.

The package specification should only contain
constructs that you want to be public.

The package specification should contain as few
constructs as possible.

Advantages of Packages

Modularity: Encapsulate related constructs.

Easier application design: Code and compile
specification and body separately.

Information hiding:

Private constructs are hidden and
inaccessible.

All coding is hidden in the body.

Advantages of Packages

Added functionality: Persistency of variables and
cursors

Better performance:

Entire package loaded into memory when the
package is first referenced

Only one copy in memory for all users

Dependency hierarchy simplified

Overloading: Multiple subprograms of the same
name

Summary

In this lesson, you should have learned how to:

Improve organization, management, security, and
performance

Group related procedures and functions together

Change a package body without affecting a
package specification

Grant security access to the entire package

Summary

Hide the source code from users

Load the entire package into memory
on the first call

Reduce disk access for subsequent calls

Provide identifiers for the user session

<Course name> <Lesson number>-

Command

CREATE [OR REPLACE]
PACKAGE

CREATE [OR REPLACE]
PACKAGE BODY

DROP PACKAGE

DROP PACKAGE BODY

Task

Create (or modify) an existing
package specification

Create (or modify) an existing
package body

Remove both the package
specification and the package body

Remove the package body only

Summary

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

