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Abstract

This report presents an algorithm for two-level Boolean minimization (BOOM) based on a
new implicant generation paradigm. In contrast to all previous minimization methods, where
the implicants are generated bottom-up, the proposed approach uses a top-down approach.
Thus instead of increasing the dimensionality of implicants by omitting literals from their
terms, the dimension of a term is gradually decreased by adding new literals. One of the
drawbacks of the classical approach to prime implicant generation, dating back to the
original Quine-McCluskey method, is the use of terms (be it minterms or terms of higher
dimension) found in the definition of the function to be minimized, as a basis for the solution.
Thus the choice of terms used originally for covering the function may influence the final
solution. In the proposed method, the original coverage influences the final solution only
indirectly, through the number of literals used. Starting from an n-dimensional hypercube
(where n is the number of input variables), new terms are generated, whereas only the on-set
and off-set are consulted. Thus the original choice of the implicant terms is of a small
importance.

Most minimization methods use two basic phases introduced by Quine-McCluskey, known
as prime implicant generation and the covering problem solution. Some more modern
methods, including the well-known ESPRESSO, combine these two phases, reducing the
number of implicants to be processed. A sort of combination of prime implicant generation
with the solution of the covering problem is also used in the BOOM approach proposed here,
because the search for new literals to be included into a term aims at maximum coverage of
the output function (coverage-directed search). The implicants generated during the
CD-search are then expanded to become primes. Different heuristics are used during the
CD-search and when solving the covering problem.

The function to be minimized is defined by its on-set and off-set, listed in a truth table. Thus
the don't care set, which normally represents the dominant part of the truth table, need not be
specified explicitly. The proposed minimization method is efficient above all for functions with
several hundreds of input variables and with a large portion of don't care states.

The minimization method has been tested on several different kinds of problems. The
MCNC standard benchmarks were solved several times in order to evaluate the minimality of
the solution and the runtime. Both "easy" and "hard" MCNC benchmarks were solved and
compared with the solutions obtained by ESPRESSO. In many cases the time needed to find
the minimum solution on an ordinary PC was non-measurable.

The procedure is so fast that even for large problems with hundreds of input variables it
often finds a solution in a fraction of a second. Hence if the first solution does not meet the
requirements, it can be improved in an iterative manner. Larger problems (with more than
100 input variables and more than 100 terms with defined output values) were generated
randomly and solved by BOOM and by ESPRESSO. BOOM was in this case up to 166 times
faster. For problems with more than 300 input variables no comparison with any other
minimization tool was possible, because no other system, including ESPRESSO, can solve
such problems. The dimension of the problems solved by BOOM can easily be increased over
1000 input variables, because the runtime grows linearly with the number of inputs. On the
other hand, as the runtime grows roughly with the square of the size of the care set, for
problems of very high dimension the success largely depends on the number of care terms.
The quality of the proposed method was also tested on other problems like graph coloring
and symmetric function minimization.
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1. Introduction

The problem of two-level minimization of Boolean functions is old, but surely not dead. It
is encountered in many design environments, e.g., multi-level logical design, PLA design,
artificial intelligence, software engineering, etc. The minimization methods started with the
papers by Quine and McCluskey [McC56], [Qui52], which formed a basis for many follow-up
methods. They mostly copied the structure of the original method, implementing the two basic
phases known as prime implicant (PI) generation and covering problem (CP) solution. Some
more modern methods, including the well-known ESPRESSO [Esp1], [Hac96], try to
combine these two phases. This is motivated above all by the fact that the problems
encountered in modern application areas like design of control systems, design of built-in
self-test equipment, etc., often require minimization of functions with hundreds of input
variables, where the number of PIs is prohibitively large. Also the number of don't care states
is mostly so large that modern minimization methods must be able to take advantage of all
don’ t care states without enumerating them.

One of the most successful Boolean minimization methods is ESPRESSO and its later
improvements. The original ESPRESSO generates near-minimal solutions, as can be seen
from the comparison with the results obtained by using alternative methods – see Section 9.
ESPRESSO-EXACT [Rud87] was developed in order to improve the quality of the results.
The improvement consisted above all in combining the PI generation with set covering.
Finally, ESPRESSO-SIGNATURE [McG93] was developed, accelerating the minimization
by reducing the number of prime implicants to be processed by introducing the concept of a
“signature” , which is an intersection of all primes covering one minterm. This in turn was an
alternative name given to the concept of “minimal implicants”  introduced in [Ngu87].

A combination of PI generation with solution of the CP, leading to a reduction of the total
number of PIs generated, is also used in the BOOM (BOOlean Minimizer) approach proposed
here. The most important difference between the approaches of ESPRESSO and BOOM is the
way they work with the on-set received as function definition. ESPRESSO uses it as an initial
solution, which has to be modified (improved) by expansions, reductions, etc. BOOM, on the
other hand, uses the input sets (on-set and off-set) only as a reference, which determines
whether a tentative solution is correct or not. This allows us to remain to a great extent
independent of the properties of the original function coverage. The second main difference is
the top-down approach in generating implicants. Instead of expanding the source cubes in
order to obtain better coverage, BOOM reduces the universal hypercube until it no longer
intersects the off-set while the coverage of the source function is satisfied. The basic
principles of the proposed method and the BOOM algorithms were published in some
previous reports [1-5]. BOOM was programmed in Borland C++ Builder and tested under
MS Windows NT.

This report has the following structure. After a formal problem statement in Section 2, the
structure of the BOOM system is described in Section 3 and its iterative mode in Section 4.
The initial generation of implicants is described in Section 5 and their expansion into prime
implicants in Section 6. The extension of the method to multi-output functions is described in
Section 7 and covering problem solution in Section 8. Experimental results are evaluated and
commented in Section 9. Section 10 evaluates the time complexity of the algorithm and in
Section 11 the BOOM program is described together with its data formats and controls.
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2. Problem Statement
2.1. Boolean Minimization

Let us have a set of m Boolean functions of n input variables F1(x1, x2, … xn), F2(x1, x2, …
xn), … Fm(x1, x2, … xn), whose output values are defined by truth tables. These truth tables
describe the on-set Fi(x1, x2, … xn) and off-set Ri(x1, x2, … xn) for each of the functions Fi. The
terms not represented in the input field of the truth table are implicitly assigned don’ t care
values for all output functions. The don’ t care set Di(x1, x2, … xn) of the function Fi is thus
represented by all the terms not used in the input part of the truth table and by the terms to
which the don't care values are assigned in the i-th output column. Listing the two care sets
instead of an on-set and a don’ t care set, which is usual, e.g., in MCNC benchmarks, is more
practical for problems with a large number of input variables, because in these cases the size
of the don’ t care set exceeds the two care sets. We will assume that n is of the order of
hundreds and that only a few of the 2n minterms have an output value assigned, i.e., the
majority of the minterms are don't care states. Moreover, using off-set in the function
definition simplifies checking whether a term is an implicant of the given function. Without
the explicit off-set definition, more complicated methods, such as tautology checking used in
ESPRESSO [Bra84], must be used, which slows down the minimization process.

Our task is to formulate a synthesis algorithm which will for each output function Fi

produce a sum-of-products expression Gi = g1i+g2i+…+gti, where Fi ⊆ Gi and Gi ∩ Ri = ∅.
The expression T = Σti (i = 1…m) should be kept minimal.

This formulation of the minimization process uses the number of product terms
(implicants) as a universal quality criterion. This is mostly justified, but it should be kept in
mind that the measure of minimality should correspond to the needs of the intended
application. Thus, e.g., for PLAs, the number of product terms is what counts, whereas the
total number of literals has no importance. In some other cases, like in custom design, the
total number of literals and the output cost, i.e., the number of inputs into all output OR gates,
may be important. Hence we will formulate the method in such a way, that all criteria can be
used on demand and allow the user to choose among them.

2.2. Motivation

An example of a design problem with many input variables and many don't care states can
be found in the design of built-in self-test (BIST) devices for VLSI circuits. A very common
method of BIST design is based on the use of a linear feedback shift register (LFSR)
generating a code whose code words are used as test input patterns for the circuit under test.
However, before being used as test patterns, these words usually have to be transformed into
the patterns needed for fault detection [Cha95]. The LFSR may have more than one hundred
stages and the sequence used for testing may have several thousands of states. Thus, e.g., for a
circuit with 100 LFSR stages and 1000 test patterns the design of the decoder is a problem
with 100 input variables and 2100-1000 don't care states.

Another typical problem with a large number of input variables and only a few care terms
is the design of a logic function given by its behavioral description. It is mostly very difficult -
or even impossible - to enumerate explicitly all terms to which the output value 1 should be
assigned. More likely we will formulate some rules specifying, which outputs have to have a
certain value (0,1 or not influenced) for given values of input variables. These rules can be
described by a truth table where the on-sets and off-sets of output functions are specified and
the rest are don't cares.
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3. BOOM Structure

Like most other Boolean minimization algorithms, BOOM consists of two major phases:
generation of implicants (PIs for single-output functions, group implicants for multi-output
functions) and the subsequent solution of the cover ing problem. The generation of
implicants for single-output functions consists of two steps: first the Coverage-Directed
Search (CD-Search) generates a sufficient set of implicants needed for covering the source
function and these are then passed to the Implicant Expansion (IE) phase, which converts
them into PIs.

Multi-output functions are minimized in a similar manner. Each of the output functions is
first treated separately; the CD-search and IE phases are performed in order to produce primes
covering all output functions. However, to obtain the minimal solution, we may need
implicants of more than one output function that are not primes of any (group implicants).
Here, Implicant Reduction takes place. Then the Group Cover ing Problem is solved and
Output Reduction is performed. Fig. 3.1 shows the block schematic of the BOOM system.

Fig. 3.1 Structure of BOOM

The BOOM system improves the quality of the solution by repeating the implicant
generation phase several times and recording all different implicants that were found. At the
end of each iteration we have a set of implicants that is sufficient for covering the output
function. In each following iteration, another sufficient set is generated and new implicants
are added to the previous ones (if the solutions are not equal). After that the covering problem
is solved using all obtained primes.
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4. I terative Minimization

Most current heuristic Boolean minimization tools use deterministic algorithms. The
minimization process leads then always to the same solution, never mind how many times it is
repeated. On the contrary, in the BOOM system the result of minimization depends to a
certain extent on random events, because when there are several equal possibilities to choose
from, the decision is made randomly. Thus there is a chance that repeated application of the
same procedure to the same problem would yield different solutions.

4.1. The Effect of I terative Approach

The iterative minimization concept takes advantage of the fact that each iteration produces
a new set of prime implicants satisfactory for covering all minterms of all output functions.
The set of implicants gradually grows until a maximum reachable set is obtained. The typical
growth of the size of a PI set as a function of the number of iterations is shown in Fig. 4.1
(thin line). This curve plots the values obtained during the solution of a problem with 20 input
variables and 200 minterms. Theoretically, the more primes we have, the better the solution
that can be found after solving the covering problem, but the maximum set of primes is often
extremely large. In reality, the quality of the final solution, measured by the number of literals
in the resulting SOP form, improves rapidly during the first few iterations and then remains
unchanged, even though the number of PIs grows further. This fact can be observed in Fig.
4.1 (thick line).

Fig. 4.1 Growth of PI number and decrease of SOP length during iterative minimization

From the curves in Fig. 4.1 it is obvious that selecting a suitable moment T1 for terminating
the iterative process is of key importance for the efficiency of the minimization. The
approximate position of the stopping point can be found by observing the relative change of
the solution quality during several consecutive iterations. If the solution does not change
during a certain number of iterations (e.g., twice as many iterations as were needed for the last
improvement), the minimization is stopped. The amount of elapsed time may be used as an
emergency exit for the case of unexpected problem size and complexity.



5

The iterative minimization of a group of functions Fi (i = 1,2,…m) can be described by the
following pseudo-code. The inputs are the on-sets Fi and off-sets Ri of the m functions, the
output is a minimized disjunctive form G = (G1, G2,...Gm).

Algorithm 1

BOOM( F[ 1. . m] ,  R[ 1. . m] )  {
G = ∅
do

I  = ∅
f or  ( i  = 1;  i  <= m;  i ++)

I ’  = CD_Sear ch( F[ i ] ,  R[ i ] )
Expand( I ’ ,  R[ i ] )
Reduce( I ’ ,  R[ 1. . m] )
I  = I  ∪ I ’

G’  = Gr oup_cover ( I ,  F[ 1. . m] )
Reduce_out put ( G’ ,  F[ 1. . m] )
i f  ( Bet t er ( G’ ,  G) )  t hen G = G’

unt i l  ( st op)
r et ur n G

}

4.2. Accelerating I terative Minimization

When the CD-search phase is repeated, identical implicants are quite often generated in
different iterations. These are then passed to the Implicant Expansion phase, which might be
unnecessarily repeated. To prevent this, all implicants that were ever produced by the
CD-search are stored in the I-buffer (Implicant buffer). Each new implicant is looked up in
this buffer, and if it is already present, its further processing is stopped. A flow diagram of the
whole minimization algorithm for a multi-output function is shown in Fig. 4.2.

Fig. 4.2 Iterative minimization schematic plan

Each newly generated implicant is first looked up in the I-buffer and, if it is not present, it
is stored both in the I-buffer and E-buffer (Expansion buffer). The E-buffer serves as a storage
of implicants that are candidates for expansion into PIs. After expansion, they are removed
from the E-buffer. Then they are reduced to group implicants and, after duplicity and
dominance checks, the newly created group implicants are stored in the R-buffer (Reduced
implicants buffer). Finally, the covering problem is solved using all the implicants from the
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R-buffer. For multioutput functions there are separate I- and E-buffers for each output. The
R-buffer is common.

The main implementation requirement for the I-buffer is its high look-up speed, hence it is
structured as a ternary tree whose depth is equal to n. At the k-th level of the tree the direction
is chosen according to the polarity (0,1,-) of the k-th variable in the searched term. The
presence of an implicant is represented by the existence of its corresponding leaf. The tree is
dynamically constructed during the addition of implicants into the buffer. An example of such
a tree is shown in Fig. 4.3.

Fig. 4.3 I-buffer tree structure

The example shows the structure of a three-variable I-buffer containing implicants 0-0, 10-
and 11-. If, e.g., implicant 0-1 is looked for, the search will fail in the node 0- where no path
leading to 0-1 is present.

The main properties and advantages of a tree buffer can be visualized by Tab. 4.1 as a
comparison between a tree buffer and a linear buffer. Here i denotes the number of stored
implicants and n is the number of input variables.

Tab. 4.1 Tree buffer properties

Tree buffer Linear buffer

< n.i, when i << 3n n.ibuffer size

< 3n+1, when i ~ 3n n.i  ~ n.3n

maximal lookup & insert time n (on success) n.i (on failure)

minimal lookup time 1 (on failure) i (on success)

5. Coverage-Directed Search
5.1. Basis of the Method

The idea of combining implicant generation with the covering problem solution gave rise to
the coverage-directed search (CD-search) method used in the BOOM system. This consists in
a directed search for the most suitable literals that should be added to some previously
constructed term. Thus instead of increasing the dimension of an implicant starting from a
1-minterm, we reduce an n dimensional hypercube by adding literals to its term, until it
becomes an implicant of Fi. This happens at the moment when this hypercube does not
intersect with any 0-term.
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The search for suitable literals that should be added to a term is directed towards finding an
implicant that covers as many 1-terms as possible. To do this, we start implicant generation by
selecting the most frequent input literal from the given on-set, because any term
corresponding to a subcube of cube H must contain all literals describing H. The selected
literal describes an n-1 dimensional hypercube, which may be an implicant, if it does not
intersect with any 0-term. If there are some 0-minterms covered, we add one literal and verify
whether the new term already corresponds to an implicant by comparing it with 0-terms that
can intersect this term. We continue adding literals until an implicant is generated, then we
record it and start searching for other implicants.

During the CD-search, the key factor is the efficient selection of literals to be included into
the term under construction. After each literal selection we temporarily remove from the
on-set the terms that cannot be covered by any term containing the selected literal. These are
the terms containing that literal with the opposite polarity. In the remaining on-set we find the
most frequent literal and include it into the previously found product term. Again we compare
this term with 0-terms and check if it is an implicant. After obtaining an implicant, we remove
from the original on-set those terms that are covered by this implicant. Thus we obtain a
reduced on-set containing only uncovered terms. Now we repeat the procedure from the
beginning and apply it to the uncovered terms, selecting the next most frequently used literal,
until another implicant is generated. In this way we generate new implicants, until the whole
on-set is covered. The output of this algorithm is a set of product terms covering all 1-terms
and not intersecting any 0-term.

The basic CD-search algorithm for a single-output function can be described by the
following function in pseudo-code. The inputs are the on-set (F) and the off-set (R), and the
output is the sum of products (H) that covers the given on-set. Let us remark that H in this
case consists of implicants, which need not be prime.

Algorithm 2

CD_Sear ch( F,  R)  {
H = ∅ / /  H i s  t he cube t hat  i s  bei ng cr eat ed
do

F’  = F / /  F’  i s  t he r educed on- set
t  = t r ue / /  t  i s  t he t er m i n pr ogr ess
do

v = most _f r equent _l i t er al ( F’ )
t  = t  AND v
F’  = F’  – cubes_not _i ncl udi ng( t )

whi l e ( t  ∩ R ≠ ∅)
H = H ∪ t
F = F -  F’

unt i l  ( F == ∅)
r et ur n H

}

5.2. Immediate Implicant Checking

When selecting the most frequent literal, it may happen that two or more literals have the
same frequency of occurrence. In these cases another decision criterion can be applied. We
construct terms as candidates for implicants by multiplying all newly selected literals by the
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previously selected one(s). Among these terms we select only the implicants (if any) and
reject the rest. When there are still more possibilities to choose from, we select one at random.

Sometimes this feature prevents a term from being unnecessarily prolonged, because it
would have to be shortened during the IE. The effects of using this additional criterion are
following:

• it reduces the runtime of CD-search and the whole minimization

• it reduces the number of PIs that are generated

This can be illustrated by the following table. A single-output function with 20 input
variables and 500 defined terms was minimized for 1000 iterations. In the first experiment the
immediate implicant checking was not used, in the second it was used.

Tab. 5.1 Immediate implicant checking effects

not used used

total CD-search time [s] 318,9 265,1

total minimization time [s] 6688,3 4782,8

number of PIs found 27194 21741

5.3. CD-Search Example

Let us have a partially defined Boolean logic function of ten input variables and ten defined
minterms given by a truth table in Tab. 5.2. Input variables are named x0 ..x9. The 1-minterms
are highlighted.

Tab. 5.2

var :  0123456789
0.    0000000010 1
1.    1000111011 1
2.    0000011001 1
3.    1111011000 0
4.    1011001100 0
5.    1111000100 1
6.    0100010100 0
7.    0011011011 0
8.    0010111100 1
9.    1110111000 1

As the first step we count the occurrence of literals in the 1-minterms. The “0”-line and
“1”-line in Tab. 5.3 give counts of xi’  and xi literals respectively. In this table we select the
most frequent literal.
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Tab. 5.3

var :  0123456789
0:    3435322444
1:    3231344222

The most frequent literal is x3‘  with five occurrences. This literal alone describes a function
that is a superset of an implicant, because it covers the 6th minterm (0-minterm) in the original
function. Hence another literal must be added. When searching for the next literal, we can
reduce the scope of our search by suppressing 1-minterms containing the selected literal with
the opposite polarity (in Tab. 5.4 shaded dark). An implicant containing a literal x3‘  cannot
cover the 5th minterm, because it contains the x3 literal. Thus, we temporarily suppress this
minterm. In the remaining 1-minterms we find the most frequent literal.

Tab. 5.4

var :  0123456789
0.    0000000010 1
1.    1000111011 1
2.    0000011001 1
3.    1111011000 0
4.    1011001100 0
5.    1111000100 1
6.    0100010100 0
7.    0011011011 0
8.    0010111100 1
9.    1110111000 1

var :  0123456789
0:    343- 211433
1:    212- 344122

As there are several literals with maximal frequency of occurrence 4 (x1’ , x5, x6, x7’ ), the
second selection criterion must be applied. We use these literals tentatively as implicant
builders and create four product terms using the previously selected literal x3‘ : x3‘x1’ , x3‘x5,
x3‘x6, x3‘x7’ . Then we check which of them are already implicants. The term x3‘x5 is not an
implicant (it covers the 6th minterm), so it is discarded. Now one of the remaining 3 terms
representing implicants must be chosen. We should choose a term, which covers the
maximum of yet uncovered 1-minterms (in Tab. 5.4 shaded lightly). As each of these
implicants covers four 1-minterms, we can select randomly – e.g. x3‘x6. This implicant is
stored and the search continues.

The search for literals of the next implicants is described in Tab. 5.5. We omit minterms
covered by the selected implicant x3‘x6 (dark shading) and select the most frequent literal in
the remaining minterms.
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Tab. 5.5

var :  0123456789
0.    0000000010 1
1.    1000111011 1
2.    0000011001 1
3.    1111011000 0
4.    1011001100 0
5.    1111000100 1
6.    0100010100 0
7.    0011011011 0
8.    0010111100 1
9.    1110111000 1

var :  0123456789
0:    1111222112
1:    1111000110

As seen in the lower part of Tab. 5.5, we have four equal possibilities, so we choose one
randomly – e.g. x5’ . When we add the x6’  literal we have an implicant covering the remaining
two 1-minterms.

The resulting form of the function is x3’x6+ x5’x6’ .

5.4. Weights

The fact that the input file may contain both 1-minterms and 1-terms of higher dimension
may complicate the search for the most frequent literal. In fact, every term with k don’ t care
input values (representing a k-dimensional hypercube) might be replaced by 2k minterms, thus
increasing the occurrence of the used literals 2k times. Strictly speaking, each of these literals
should be assigned a weight corresponding to this factor. This is, however, not feasible,
because for functions with several hundreds of input variables the number of vertices of any
hypercube may reach astronomic values. Different approaches to the solution of this problem
have been evaluated and tested. The best results were obtained when no weights were
assigned to the literals in connection with the dimensions of the input terms.

5.5. Mutations

The heuristics used to implement individual steps of this procedure are based on a study of
the statistical properties of the given Boolean functions. In some cases this selection criterion
may prevent reaching the minimum solution. In other words, there may exist implicants that
are unreachable by a strict CD-search, although they are necessary for obtaining the minimum
solution. In such cases the mutations, implemented as a random choice used in place of
a deterministic decision, may be of help. These mutations may be used in several places in the
procedure. This subsection will investigate their usefulness, i.e., the quality of the solution
obtained and the time needed to find the solution.

First let us introduce a formal definition of a mutation. We assume a set X of elements xi

with weights w(xi) assigned. The selection function S(Y), Y⊂X, is a mapping into X such that
the function S returns the element xj∈Y with the highest value of w. As a mutation of the
function S(Y) we will denote a random selection of an element from Y, i.e., a selection that is
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not influenced by the weights. The selection function affected by the mutations will be
denoted as Sm(Y, k), where k∈<0,1> is the mutation rate. Sm then returns a random element
from Y with the probability k and the element S(Y) with the probability 1-k.

The more mutations are implanted, the faster is the growth of the number of primes during
iterative minimization. This is caused by the variety of implicants that are being produced.
Figs. 5.1 and 5.2 show the growth of the number of prime implicants as a function of the
number of iterations and the time, respectively. The mutation rate k was changed as a
parameter from 20 to 100 %. The problem solved was the minimization of a single-output
function of 20 input variables with 300 defined minterms.

Although the number of PIs grows faster for higher mutation rates, the CD-search is slowed
down. This is because implicants that cover fewer 1-terms are produced and thus more of
them must be generated to cover all the on-set. The time needed for one pass of the CD-search
as a function of the mutation rate is shown in Fig. 5.3.
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The effects documented above can be summarized in the following way: the mutations
slow down the whole minimization process and make it less effective, hence selecting literals
with maximum frequency of occurrence is the best method of literal selection. The necessary
set of implicants for covering the on-set is then reached in the shortest time, and any deviation
from this rule will slow down the algorithm.

However, experiments show that 2-5% of mutations can improve the result by producing
some originally unreachable implicants. For example, it can easily be proved that for the
problem given by the truth table in Tab. 5.6 a simple CD-search without the use of mutations
cannot reach the minimum two-term solution shown below.

Tab. 5.6 Mutations example

abcdef
001000 0
000101 0
111011 0
010111 0
101011 0
101110 1
001110 1
000110 0
100000 1
010000 1

exact  sol ut i on:  cd + c ' d'
sol ut i on wi t hout  t he use of  mut at i ons:  af '  + bf '  + cef '

5.6. CD-Search History

The key motivation for the iterative minimization is the generation of new implicants in the
CD-search phase. However, it often generates equal solutions. It is difficult to prevent this,
but we may easily prevent the CD-search from following the same way it went ever before.

Each pass through the CD-search can be symbolized as a path from the root of a tree to its
leaf. The root represents the beginning (no literals were selected yet), every level represents
one literal selection and the leaf is the final solution. Every branching represents more choices
of literal selection, while some of the branches are preferable.

When running the CD-search, we may construct this tree and mark every node with a
symbol indicating whether there is any possibility of branching. If there is a branching
possible, we keep this node "open" for the next pass, otherwise we close it and next time the
algorithm should not enter this node. This will prevent reaching the same leaf twice. When all
possibilities of choice are exhausted, the root node will become closed and we cannot produce
any new implicants any more. This tree will be denoted as a CD-search history.

Until now we have assumed that the branching occurs only when two equal literal
selections are possible and one is made randomly. The criteria for literal selection are the
following:

1. the literal has maximal frequency of occurrence and makes an implicant

2. the literal has maximal frequency of occurrence
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3. the literal has non-zero frequency of occurrence

All of these are possible, while only the first one is used in the simple CD-search, the others
are used e.g. in mutations, even if randomly and spontaneously. Intuitively, the preference of
these criteria is decreasing (1 is the best one), but also the other possibilities may be of any
use (see mutations). Using the history we can gradually try out all these possibilities by a
simple modification of the previous algorithm. Instead of marking whether a node is simply
"open" or "closed" we mark whether it is closed for a particular level of literal selection (we
assign a value to the attribute closed). For example, if all literal selections according to the
first criterion are exhausted for all branches of a node, this node is marked as closed for the
first criterion (closed = 1). Initially the root and all newly created nodes are marked
closed = 0. Now when repeating the CD-search we simply do not enter nodes that have a
bigger  closed attribute than the node we are currently in. The effect of this is that first we
exhaust all possibilities of a "strict" literal selection according to the first criterion. When
there are no more possibilities and the root is marked closed for 1, we try the selection
according to the second criterion and finally the third one. Note that when using the third
criterion, we do not select a literal at random, but again the literal with the maximal frequency
of occurrence among the "free" ones is selected. At the end, when the root is closed for all
criteria, no other implicants can be ever produced.

The progress of the CD-search when using history is shown in Fig. 5.4. A very simple
problem of 5 input variables and 10 minterms defined was solved, in more complex problems
the process is much slower. The three curves show the numbers of nodes marked 0, 1 and 2.
When the solid curve representing the 0-marked nodes sinks to zero (near 2000 iterations), all
best possible selections are exhausted (according the first selection criterion) and the root
node is marked 1. When both solid and dashed lines sink to zero (near 11000 iterations), all
selections according criterion 2 are exhausted, the root node is marked 2 and next even the
third criterion can be used. After that the scope of possible selections is very large and the
number of 0, 1 and 2-marked nodes grows very fast.
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6. Implicant Expansion

As mentioned above, the implicants constructed during the CD search need not be prime.
To reduce the number of implicants needed to cover all 1-terms of the given function, we
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have to increase their size by IE, which means removing literals (variables) from their terms.
When no literal can be removed from the term any more, we get a prime implicant. The
expansion is a very sensitive operation in the sense that much effort may be wasted if a bad
strategy is chosen, and the result may be far from optimum at that.

There are basically two problems to be solved in connection with implicant expansion. One
of them is the mechanism that effectively checks whether a tentative literal removal is
acceptable. The other is the selection of the literals and the order in which they are to be
removed from the implicant term. First let us discuss the checking mechanism.

6.1. Checking a L iteral Removal

Removing a variable from a term doubles the number of minterms covered by the term.
The newly covered minterms may be 1-minterms or DC-minterms, but none of them should
be a 0-minterm. In BOOM, individual literals are tried for removal and checked whether the
expanded term does not intersect the off-set. This means that the DC terms need not be
enumerated explicitly, because every newly created implicant is compared with the 0-terms. If
an intersection is found, the removal is cancelled.

6.2. Expansion Strategy

The second problem is the selection strategy for the literals to be removed. The expansion
of one implicant may yield several different prime implicants. To find them all, we have to try
systematically to remove each literal, whereas the order of the literals selected plays an
important role. Trying all possible sequences of literals to be removed will be denoted as an
exhaustive search or Exhaustive Implicant Expansion. Using recursion or queue, all
possible literal removals can be systematically tried until all primes are obtained.
Unfortunately, the complexity of this algorithm is exponential. Hence this method is usable
only in problems with up to 20 input variables. Nevertheless, the modification of this method
called Distributed Exhaustive Implicant Expansion is generally usable and quite effective -
see below.

There exist several other IE methods differing in complexity and quality of results
obtained. Some of them that are used in BOOM are described below.

The simplest one, namely a Sequential Search, systematically tries to remove from each
term all literals one by one, starting from a randomly chosen position. Every removal is
checked against the off-set as above, but if the removal is successful, we make it permanent.
If, on the contrary, some 0-minterm is covered, we put the literal back and proceed to the next
one. After removing all possible literals we obtain one prime implicant covering the original
term. This algorithm is greedy, i.e., we stay with one PI even if there are more than one PIs
that can be derived from the original implicant. The complexity of this algorithm is linear.

A sequential search obviously cannot reduce the number of product terms, but it reduces
the number of literals. The experimental results show that this reduction may reach
approximately 25%.

With a Multiple Sequential Search we try all possible starting positions and each
implicant thus may expand into several PIs. The upper bound of the number of PIs that can be
produced from one implicant is n-d, where n is the number of input variables and d is the
dimension of the original implicant. The complexity of this algorithm is O(n.p), where p is the
number of defined on-terms.
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Some search algorithms, especially Exhaustive Implicant Expansion and the Multiple
Sequential Search are rather time consuming for large problems. Therefore a distributed
version for each of them was proposed and tested. Distr ibuted Expansion is based on the
idea of distributing the expansion steps among several consecutive iterations. The advantage
of this approach is the possibility to stop the expansion at the moment when an acceptable
result is reached and save a considerable amount of time, because the quality of the solution is
checked after each iteration.

In the Distr ibuted Multiple Sequential Search only one pass of a sequential search is
made for every implicant. After that, these implicants are stored in the E-buffer. In the
following iteration they are processed again together with the newly created implicants, while
another starting position for the sequential search is used. When all meaningful starting
positions are exhausted, the corresponding implicant is removed from the buffer. In other
words, if the Multiple Sequential Search produces j primes from some implicant in one pass,
the Distributed Multiple Sequential Search will find all of them in j iterations.

Distr ibuted Exhaustive Implicant Expansion uses the same mechanism as the
Distributed Multiple Sequential Search. In this case, also the partially expanded implicants are
stored in the E-buffer. This ensures the exhaustiveness of the expansion.

6.3. Evaluation of Expansion Strategies

The properties of the proposed IE methods and their influence on the minimization process
(time and quality of the final solution) will be discussed in this section. The distributed mode
of the implicant expansion methods will not be studied separately, as it is always a simple
modification of the original algorithm. Hence the results for the given example are similar.

The choice of IE method may influence two properties of the minimization process: the
time of minimization and the quality of the result obtained. Fig. 6.1 shows the time of the
minimization of a single-output function of 30 input variables and 500 defined minterms as a
function of the number of iterations. The growth for the sequential search is linear, which
means that an equal time is needed for each iteration. The time for the multiple sequential
search and the exhaustive expansion grows faster at the beginning and then it turns to linear
with a slower growth. At this point the CD-search no longer produces new implicants and
thus the IE and the following phases are not executed. This causes the simple sequential
search, which is seemingly the fastest, to become the slowest after a certain number of
iterations.

Fig. 6.2 illustrates the growth of the PI set as a function of time. We can see that the
Sequential Search achieves the lowest values, although it is the fastest implicant expansion
method. However, when this method is used we cannot take advantage of the I-buffer. The
implicants are repetitively expanded, even if they have already been expanded in all possible
ways. The two other methods achieve higher values, because they put an implicant into the
E-buffer only once and then they are blocked by the I-buffer. Hence when the same
implicants are generated repetitively by the CD-search, they are not processed any more,
which speeds up the whole minimization. We can see that the most complex method, namely
exhaustive expansion, produces PIs at the fastest rate.
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We saw in subsection 4.1 that even a small number of PIs may give the minimum solution.
Moreover, the quality of the final solution strongly depends on the CP solution algorithm.
With a large number of PIs exact solving is impossible and some heuristic must be used. Here
the large number of implicants may misguide the CP solution algorithm and thereby prevent
the minimum solution being achieved. Practice shows that the more complex IE methods are
more advantageous for less sparse functions, where the number of implicants in the final
solution is big, while the simplest sequential search is better for very sparse functions.

7. Minimizing Multi-Output Functions

To minimize multi-output functions, only few modifications of the algorithm must be done.

First each of the output functions Fi is treated separately, the CD-search and IE phases are
performed. After that, we have a set of primes sufficient for covering all m functions.
However, for obtaining the minimal solution we may need implicants of more than one input
function that are not primes of any Fi. Here the next part of minimization – the Implicant
Reduction finds place.

As a solution of the covering problem we get a set of implicants needed to cover all F1 ...
Fm. For every output we may find all implicants that do not intersect the off-set of the output
function. However, to generate the required output values, some of these implicants may not
be necessary. These implicants would create redundant inputs into the output OR gate.
Sometimes it is harmless (e.g. in PLAs), moreover it could prevent hazards. Nevertheless, for
hardware-independent minimization the redundant outputs should be removed. This is done at
the end of the minimization by solving m covering problems for all m functions
independently.

7.1. Implicant Reduction (IR)

All obtained primes are tried for reduction by adding literals in order to become implicants
of more output functions. The method of implicant reduction is similar to the CD-search.
Literals that prevent intersecting given term with most off-set terms are added until there is no
chance that the implicant will be used for more functions. Preferably there are selected literals
that prevent intersecting with most of the terms of the off-set of all F1 ... Fm (i.e. yielding
reduced terms that cover the least zeros). When no further reduction leads to any possible
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improvement, the reduction is stopped and the implicant is recorded. A term that no longer
intersects with the off-set of any Fi becomes its implicant. All implicants that were ever found
are stored and output functions are assigned to them. Then simple dominance checks are
performed in order to eliminate implicants that are dominated by another implicant in all
functions Fi. Fig. 7.1 shows the typical growth of the number of group implicants (non-
primes) as a function of the number of iterations. Here the function of 13 input variables, 13
output variables and 200 defined terms was used for demonstration. We can see that the
number of implicants first rapidly grows, but then it falls to approx. 15 % of the maximum
value. This is due the fact that new prime implicants are constantly produced and the most of
group implicants are absorbed by them in the preliminary dominance checks.

When group implicants are generated, the Group Cover ing Problem is solved using the
same heuristic as described in Section 8.
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7.2. Implicant Reduction Mutations

Not only the CD-search, but also implicant reduction can be enhanced by mutations. Here
the mutation is a random selection of a literal that prevents intersecting a given term with at
least one zero term. The number of group implicants (non-primes) grows very rapidly with
increasing mutation rate – see Fig. 7.2. However, the experimental results show that the final
result of minimization (the quality of the solution) depends on the rate of IR mutations only
slightly. The group implicants that arise from the mutations are mostly not necessary for
reaching the minimum solution. However, there may exist functions that require the use of
mutations in order to find the minimum solution.
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8. Cover ing Problem Solution

The covering problem can be solved either exactly, or by using some heuristics. The exact
CP solving may be sometimes rather time-consuming, especially when it is performed after
more iterations, when a large number of implicants needs to be processed. In this case, a
heuristic approach is the only possible solution. We will describe three heuristic methods:
LCMC cover, Contribution-based selection and Contribution-based removal.

8.1. LCMC Cover

LCMC (Least covered, most covering) algorithm is a common heuristic for the solution of
covering problem. First, implicants covering minterms covered by the lowest number of other
implicants are preferred. If there are more such implicants, implicants covering the highest
number of yet uncovered 1-minterms are selected. From these primes we select the “shortest”
ones, i.e., terms constructed of the lowest number of literals. When still more primes could be
selected, we select one randomly.

8.2. Contr ibution-Based Techniques

More sophisticated heuristic methods for CP solution are based on computing the
contributions (scoring functions) of terms as a criterion for their inclusion into the solution.
Similar methods were also discussed in [Ser75] and [Rud89]. In the following text we will
describe these methods as they are used in BOOM.

First, we will formulate some basic definitions:

Definition 8.1

Let X={x1, x2, …, xr} be a set of rows and Y={y1, y2, …, ys} a set of columns in a Boolean
covering matrix A of dimensions r x s. An element yj∈Y covers an element xi∈X if A[i, j] = 1,
otherwise A[i, j] = 0. The unate set cover ing problem consists in finding a minimum subset
of Y that covers X.

Definition 8.2

The strength of coverage SC of the row xi is defined as
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In other words: if the row xi is covered by k columns, then the SC of the row xi is equal to
1/k. Hence the more ones are in one row, the weaker is the role of each of them. An essential
row has SC = 1.

Definition 8.3

The column contr ibution (CC) of the column yj is defined as
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CC expresses the importance of a column, because it summarizes the strengths of all ones
that it contains.

Example 8.1

The following example shows the calculation of SC and CC (zeros in the matrix are
omitted).

Tab. 8.1 Contributions example

y1 y2 y3 y4 y5 y6 SC
x1 1 1 1 1 1/4=0.25
x2 1 1 1 1/3=0.33
x3 1 1 1/2=0.50
x4 1 1 1/2=0.50
x5 1 1/1=1.00
x6 1 1 1/2=0.50
x7 1 1 1/2=0.50

CC 1.58 0.58 0.75 1.83 1.25 1.00

8.3. Contr ibution-Based Selection

This solution method uses the CC values as a criterion for the selection of columns to be
included into the final solution. First the contributions are evaluated and the column with the
highest value is selected. After the selection this column is removed from the matrix together
with all rows it covers. Then all values are recomputed and again the column with the highest
CC value is selected. This is repeated until all rows are covered. When there are more
columns with equal maximal CC values, one is selected at random.

Note that this method is used not only for a heuristic cyclic core solution (like e.g. in
[Rud89]), but for solution of the whole CP. In most cases the stand-alone algorithm is capable
to resolve the row and column dominances and, if properly implemented, this is done even
faster than when using standard algorithms (see the Recomputing of contributions).

Example 8.2

In Example 8.1 the column y4 has the highest CC value and is thus selected. The matrix is
reduced to:

Tab. 8.2

y1 y2 y3 y4 y5 y6 SC
x1 1 1 1 1 1/4=0.25
x3 1 1 1/2=0.50
x6 1 1 1/2=0.50
x7 1 1 1/2=0.50
CC 1.25 0.25 0.25 1.25 1.00
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Columns y1 and y5 have now the same CC value, one (y1) is selected at random:

Tab. 8.3

y1 y2 y3 y4 y5 y6 SC
x6 1 1 1/2
CC 0 0 0 0 0.50 0.50

Again, both remaining columns have an equal CC value, one has to be selected at random
(y5). The final solution is Y={ y1, y4, y5}.

8.4. Recomputing of contr ibutions

After every column selection the column contributions must be recomputed in order to
select the next column with the highest contribution. However, we will show that not all row
and column contribution values need to be recomputed because some are not affected by the
reduction of the covering matrix. Values that are to be modified can be recomputed on-line,
when a column is being selected.

Let us consider the first move in Example 8.1:

Tab. 8.4

y1 y2 y3 y4 y5 y6 SC
x1 1 1 1 1 1/4=0.25
x2 1 1 1 1/3=0.33
x3 1 1 1/2=0.50
x4 1 1 1/2=0.50
x5 1 1/1=1.00
x6 1 1 1/2=0.50
x7 1 1 1/2=0.50

CC 1.58 0.58 0.75 1.83 1.25 1.00

y1 y2 y3 y4 y5 y6 SC
x1 1 1 1 1 1/4=0.25
x3 1 1 1/2=0.50
x6 1 1 1/2=0.50
x7 1 1 1/2=0.50
CC 1.25 0.25 0.25 1.25 1.00

Row strengths are not affected by the selection, because all rows whose values should be
modified are removed from the matrix (shaded dark). This removal causes that only CC
values of columns covering these rows must be modified (light shading). Let X’  be a set of
rows covered by the column y. After y is selected all column contributions have to be
modified in the following way:
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For columns, that do not cover removed rows, all A[i, j] values are equal to zero, thus the
CC remains unchanged.

8.5. Contr ibution-Based Removal

A modification of the above method is the use of the CC value for elimination, instead of
selection of columns. Then the terms (columns) with the lowest CC value would be
eliminated from the table, until the irredundant cover of the on-set is reached.

9. Exper imental Results

Extensive experimental work was done to evaluate the efficiency of the proposed
algorithm, especially for problems of large dimensions. Both runtime in seconds and result
quality were evaluated. The processor used was a Celeron 433 MHz with 160 MB RAM. The
quality of the results was measured by three parameters: total number of literals, output cost,
and number of product terms (implicants). However, one of them had to be chosen as
a minimization criterion. Several groups of experiments, listed in the following subsections,
were performed.

9.1. Standard MCNC Benchmarks

A set of 123 standard MCMC benchmarks [Esp2] was solved by ESPRESSO, ESPRESSO-
EXACT and BOOM. The so-called "hard" benchmarks were treated separately and the results
are presented in Subsection 9.2. Of the 123 standard problems, 51.22 % were solved by
BOOM in a shorter time than ESPRESSO (in Tab. 9.1 the shaded values in column "time").
In all cases only one iteration of BOOM was used. In 45.52 % of problems BOOM gave the
same result as ESPRESSO (in column "lit/out/terms" the shaded entries). In one case (dc2) we
found even a better solution than ESPRESSO or ESPRESSO-EXACT. In 30.89 % these
results were reached faster than by ESPRESSO. It is also worth mentioning, that in 28 cases
the BOOM runtime was non-measurable and the timer inserted a default value of .01 sec. The
benchmarks were also solved by ESPRESSO-EXACT in order to obtain the minimum
solution for comparison. Note that in this case the minimality criterion is only the number of
terms and thus some "exact" solutions are worse than those reached by ESPRESSO or
BOOM. Some benchmarks were not solved by ESPRESSO-EXACT because of its extremely
long runtimes (blank entries in Tab. 9.1).

ESPRESSO solutions that are equal to the exact ones are shaded in the ESPRESSO
column. In BOOM column there are shaded run times that are shorter than ESPRESSO times
and solutions that are equal or better than solutions obtained by ESPRESSO.
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Tab. 9.1 Runtimes and minimal solutions for the standard MCNC benchmarks

ESPRESSO ESPRESSO-EXACT BOOM – 1it.
bench i/o/p time lit/out/terms time lit/out/terms time lit/out/terms

5xp1 7/10/141 0,10 260/87/65 0,23 263/97/63 0,06 260/87/65
9sym 9/1/158 0,12 516/86/86 0,12 516/86/86 0,05 516/86/86
al2 16/47/139 0,15 324/103/66 41,3 324/103/66 0,95 324/103/66
alcom 15/38/90 0,13 174/49/40 11,0 174/49/40 0,30 177/45/42
alu1 12/8/39 0,10 41/19/19 0,52 41/19/19 0,01 41/19/19
alu2 10/8/241 0,20 268/79/68 0,45 268/79/68 0,06 268/79/68
alu3 10/8/273 0,19 279/70/65 0,54 278/74/64 0,07 279/68/66
alu4 14/8/1184 1,63 4443/644/575 39,9 4495/648/575 24,6 4443/644/575
amd 14/24/272 0,16 442/212/66 0,47 443/214/66 1,12 480/194/74
apex1 45/45/1440 0,69 1739/1103/206 118 1742/1108/206 146,00 1850/1084/219
apex2 39/3/1576 5,90 14453/1075/1035 301 14453/1075/1035 29,4 14489/1065/1041
apex3 54/50/1036 1,49 2270/1020/280 6,12 2284/1023/280 115,00 2433/867/314
apex4 9/19/1907 2,98 3684/1736/435 3,09 3646/1804/427 36,5 4270/1424/532
apex5 117/88/2710 15,2 6089/1192/1088 2940 6089/1192/1088
apla 10/12/119 0,14 163/58/25 0,45 163/58/25 0,04 187/49/31
b10 15/11/333 0,19 818/182/100 1,29 821/181/100 0,60 837/182/103
b11 8/31/74 0,11 122/59/27 0,13 122/59/27 0,11 124/52/28
b12 15/9/72 0,13 149/59/42 2,67 158/75/41 0,03 148/58/43
b2 16/7/509 0,25 972/969/106 1,20 967/1003/104 3,68 1191/825/136
b3 32/20/621 0,55 2120/392/211 11,7 2117/390/210 7,37 2146/361/216
b4 33/23/680 0,22 437/109/54 22,7 437/109/54 6,51 471/103/58
b7 8/31/74 0,11 122/59/27 0,13 122/59/27 0,10 124/52/28
b9 16/5/292 0,18 754/119/119 2,54 754/119/119 0,22 754/119/119
br1 12/8/107 0,12 206/48/19 0,13 206/48/19 0,02 206/48/19
br2 12/8/83 0,11 134/38/13 0,14 134/38/13 0,01 134/38/13
bw 5/28/93 0,15 102/246/22 0,23 102/251/22 0,19 114/203/27
clip 9/5/271 0,16 630/162/120 0,53 614/155/117 0,15 548/161/127
clpl 11/5/40 0,12 55/20/20 0,15 55/20/20 0,01 55/20/20
con1 7/2/18 0,10 23/9/9 0,13 23/9/9 0,01 23/9/9
cordic 23/2/2105 5,19 13825/914/914 9,39 13843/914/914 22,6 13825/914/914
cps 24/109/855 0,90 1890/946/163 7,69 1884/983/158 194,00 1950/860/171
dc1 4/7/25 0,12 27/27/9 0,13 27/27/9 0,01 27/27/9
dc2 8/7/101 0,13 207/52/39 0,15 208/52/39 0,03 206/51/39
dekoder 4/7/20 0,11 18/29/9 0,12 19/29/9 0,01 18/26/10
dist 8/5/314 0,20 709/160/123 0,28 710/169/120 0,16 710/160/123
dk17 10/11/59 0,13 103/32/18 0,30 103/32/18 0,01 114/30/21
dk27 9/9/24 0,10 31/15/10 0,23 31/15/10 0,01 31/15/10
dk48 15/17/64 0,24 115/28/22 1,73 115/28/22 0,03 115/28/22
duke2 22/29/404 0,18 751/245/86 0,90 759/256/86 2,72 796/241/90
e64 65/65/327 0,27 2145/65/65 0,25 2145/65/65 26,6 2145/65/65
ex5 8/63/208 0,90 373/884/72 5,97 422/493/96
ex7 16/5/292 0,19 754/119/119 2,52 754/119/119 0,23 754/119/119
exep 30/63/643 0,52 1175/110/110 2,11 1170/108/108 15,00 1175/110/110
exp 8/18/317 0,18 405/153/59 0,28 400/175/57 0,36 432/141/66
exps 8/38/851 0,51 961/947/133 0,96 961/936/132 17,4 1063/748/153
f51m 8/8/178 0,14 323/77/77 0,28 326/76/76 0,06 323/77/77
gary 15/11/372 0,22 896/221/107 0,53 899/218/107 0,75 927/218/113
check 4/1/5 0,09 2/1/1 0,10 2/1/1 0,01 2/1/1
chkn 29/7/370 0,26 1598/141/140 0,62 1602/142/140 0,97 1598/141/140
in0 15/11/376 0,21 896/221/107 0,53 899/218/107 0,78 928/218/113
in1 16/17/509 0,29 972/969/106 1,29 967/1003/104 4,61 1137/858/129
in2 19/10/399 0,25 1169/251/136 0,53 1172/257/134 1,14 1172/247/137
in3 35/29/341 0,18 508/263/74 2,04 508/263/74 5,31 544/257/82
in4 32/20/642 0,53 2183/413/213 10,1 2162/411/212 9,78 2233/384/219
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ESPRESSO ESPRESSO-EXACT BOOM – 1it.
bench i/o/p time lit/out/terms time lit/out/terms time lit/out/terms

in5 24/14/348 0,15 533/208/62 0,84 533/208/62 0,71 580/204/67
in6 33/23/317 0,15 437/110/54 14,6 437/110/54 1,46 458/104/57
in7 26/10/142 0,14 337/90/54 3,43 337/90/54 0,20 337/90/54
inc 7/9/94 0,09 136/61/30 0,14 133/62/29 0,03 137/58/31
intb 15/7/1190 1,58 5260/631/631 28,4 5282/629/629 4,29 5262/631/631
luc 8/27/126 0,14 130/238/26 0,27 130/238/26 0,24 139/199/29
m1 6/12/53 0,10 99/118/19 0,15 99/118/19 0,03 99/69/22
m2 8/16/163 0,19 319/320/47 0,23 322/337/47 0,33 338/259/52
m3 8/16/201 0,20 426/385/64 0,28 419/412/62 0,41 487/244/81
m4 8/16/329 0,30 640/518/105 0,86 634/580/101 1,26 663/461/113
mark1 20/31/72 0,59 97/57/19 3,59 97/57/19 0,09 92/52/22
max1024 10/6/744 0,65 1874/383/273 0,97 1932/373/286
max128 7/24/256 0,31 451/632/80 0,49 450/714/78 1,18 493/411/97
max46 9/1/155 0,14 395/46/46 0,15 395/46/46 0,02 395/46/46
max512 9/6/382 0,27 869/213/145 0,57 816/216/133 0,25 880/212/148
misex1 8/7/41 0,12 51/45/12 0,12 51/45/12 0,01 51/45/12
misex2 25/18/101 0,13 183/30/28 0,15 183/30/28 0,19 183/30/28
misex3 14/14/1391 4,97 6380/1288/676 19,8 6956/1289/745
misex3c 14/14/1566 2,39 1306/253/197 3,26 1327/252/207
mlp4 8/8/373 0,21 736/156/128 1,76 709/160/121 0,27 764/154/136
mp2d 14/14/114 0,16 122/76/31 1,44 123/78/30 0,09 122/76/34
newapla 12/10/60 0,10 74/28/17 0,12 74/28/17 0,02 74/28/17
newapla1 12/7/25 0,10 64/12/10 0,10 64/12/10 0,01 64/12/10
newapla2 6/7/22 0,09 42/7/7 0,11 42/7/7 0,01 42/7/7
newbyte 5/8/16 0,09 40/8/8 0,11 40/8/8 0,01 40/8/8
newcond 11/2/72 0,11 208/31/31 0,12 208/31/31 0,01 208/31/31
newcpla1 9/16/90 0,12 201/63/38 0,18 204/69/38 0,07 203/62/40
newcpla2 7/10/62 0,11 87/42/19 0,11 87/42/19 0,01 91/42/20
newcwp 4/5/24 0,10 31/19/11 0,10 31/19/11 0,01 31/19/11
newill 8/1/18 0,13 42/8/8 0,12 42/8/8 0,01 42/8/8
newtag 8/1/12 0,16 18/8/8 0,13 18/8/8 0,01 18/8/8
newtpla 15/5/63 0,15 176/23/23 0,14 176/23/23 0,01 176/23/23
newtpla1 10/2/15 0,16 33/4/4 0,13 33/4/4 0,01 33/4/4
newtpla2 10/4/26 0,19 54/15/9 0,13 54/15/9 0,01 54/15/9
newxcpla1 9/23/93 0,17 197/86/39 0,19 201/108/39 0,14 200/75/41
opa 17/69/382 0,36 559/540/79 0,76 554/559/77 13,20 581/487/85
p82 5/14/74 0,17 93/56/21 0,13 93/56/21 0,03 95/54/22
prom2 9/21/1470 3,53 2572/2954/287 51,00 3249/1705/407
rd53 5/3/67 0,09 140/35/31 0,12 140/35/31 0,01 140/35/31
rd73 7/3/274 0,14 756/147/127 0,17 756/147/127 0,10 756/147/127
rd84 8/4/511 0,35 1774/296/255 0,37 1774/296/255 0,51 1774/296/255
risc 8/31/71 0,12 129/53/29 0,11 127/60/28 0,09 129/53/29
root 8/5/157 0,14 297/88/57 0,15 300/76/57 0,05 308/77/61
ryy6 16/1/119 0,15 624/112/112 0,11 624/112/112 0,10 624/112/112
sao2 10/4/137 0,11 421/75/58 0,19 420/75/58 0,04 421/75/58
seq 41/35/2014 1,21 4369/1876/336 74,8 4343/1877/334 266,00 4687/1791/368
sex 9/14/61 0,12 69/36/21 0,11 69/36/21 0,02 69/36/21
spla 16/46/837 1,61 2558/643/251 31,6 1564/450/181 17,5 2793/543/280
sqn 7/3/95 0,10 184/46/38 0,12 184/45/38 0,01 184/46/38
sqr6 6/12/119 0,11 195/65/49 0,29 199/75/47 0,06 199/64/50
sqrt8 8/4/66 0,11 144/44/38 0,13 151/44/38 0,01 144/44/38
squar5 5/8/65 0,12 87/32/25 0,13 88/32/25 0,01 88/30/26
t1 21/23/211 0,26 449/163/102 178 478/176/101 0,80 449/163/102
t2 17/16/183 0,14 286/74/53 0,39 285/73/53 0,27 290/74/54
t3 12/8/97 0,11 217/33/33 0,12 218/33/33 0,03 217/33/33
t4 12/8/55 0,12 61/28/16 0,34 61/28/16 0,01 65/23/19
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ESPRESSO ESPRESSO-EXACT BOOM – 1it.
bench i/o/p time lit/out/terms time lit/out/terms time lit/out/terms

t481 16/1/841 0,59 4752/481/481 0,51 4752/481/481 3,48 4752/481/481
table3 14/14/1686 0,51 2001/642/175 0,62 2001/642/175 10,5 2069/622/182
table5 17/15/1600 0,39 1895/606/158 0,55 1896/607/158 12,5 1944/603/163
tms 8/16/119 0,20 217/248/30 0,22 208/204/30 0,17 213/170/32
vg2 25/8/304 0,15 804/110/110 0,98 804/110/110 0,54 804/110/110
vtx1 27/6/305 0,17 964/110/110 0,88 964/110/110 0,45 964/110/110
wim 4/7/22 0,11 18/25/9 0,11 18/29/9 0,01 19/24/11
x1dn 27/6/305 0,17 964/110/110 0,88 964/110/110 0,45 964/110/110
x6dn 39/5/310 0,17 641/177/82 0,85 632/186/81 0,29 663/177/85
x9dn 27/7/315 0,20 1138/120/120 1,04 1138/120/120 0,53 1138/120/120
xor5 5/1/32 0,08 80/16/16 0,12 80/16/16 0,01 80/16/16
z5xp1 7/10/159 0,12 262/97/63 0,16 263/97/63 0,08 261/89/65
z9sym 9/1/72 0,09 226/34/34 0,14 226/34/34 0,01 226/34/34

9.2. Hard MCNC Benchmarks

The set of 19 "hard" MCNC benchmarks was solved by BOOM and ESPRESSO. The
common property of these problems is a large number of PIs, hence, the minimum solution is
really hard to find. Moreover, the number of output variables and/or terms is also high and
thus they are very difficult for BOOM to handle, hence the BOOM runtimes are in all but one
case longer. Tab. 9.2 shows that for 10 problems BOOM found the same solution as
ESPRESSO, once in a shorter time (shaded cells), 4 problems gave slightly worse solutions
and 5 problems could not be solved because of high memory demands. This is due to the high
number of terms, because for BOOM the runtime (and memory demand) grows with the
square of the number of terms - see Section 10.

Tab. 9.2 Hard MCNC Benchmarks

ESPRESSO BOOM – 1 iteration
bench i/o/p time lit/out/terms Time lit/out/terms

ex1010 10/10/1304 1,47 1982/758/283 5,91 2422/734/370
ex4 128/28/654 1,45 1649/279/279 32,3 1649/279/279
ibm 48/17/499 0,24 882/173/173 2,81 882/173/173
jbp 36/57/402 0,41 807/220/122 11,9 838/202/131
mainpla 27/54/2507 1,91 2338/6383/172
misg 56/23/120 0,23 172/75/69 0,58 172/75/69
mish 94/43/158 0,25 147/91/82 3,71 147/91/82
misj 35/14/55 0,11 54/48/35 0,08 54/48/35
pdc 16/40/822 2,26 828/432/136 7,33 901/328/167
shift 19/16/200 0,12 388/105/100 0,32 388/105/100
signet 39/8/3627 1,09 490/146/119 4,67 490/146/119
soar 83/94/779 2,58 2454/549/353
test2 11/35/8181 82,3 9936/5686/1097
test3 10/35/3970 13,1 4139/2484/541
ti 47/72/839 0,99 1882/741/214 117 1975/696/226
ts10 22/16/262 0,16 896/128/128 0,81 896/128/128
x2dn 82/56/345 0,33 528/119/105 15,40 528/119/105
x7dn 66/15/1456 1,60 4128/539/539 17,70 4128/539/539
xparc 41/73/3226 3,28 4813/2653/254
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9.3. Test Problems with n>50

The MCNC benchmarks have relatively few input terms and few input variables (only for 3
standard benchmarks does n exceed 50) and then also have a small number of don’ t care
terms. To compare the performance and result quality achieved by the minimization programs
on larger problems, a set of problems with up to 300 input variables and up to 300 minterms
was solved. The truth tables were generated by a random number generator, for which only
the number of input variables, number of care terms and number of don’ t cares in the input
portion of the truth table were specified. The number of outputs was set equal to 5. The on-set
and off-set of each function were kept approximately of the same size. For each problem size
ten different samples were generated and solved and average values of the ten solutions were
computed.

First the minimality of the result was compared. BOOM was always run iteratively, using
the same total runtime as ESPRESSO needed for one pass. The quality criterion selected for
BOOM was the sum of the number of literals and the output cost to match the criterion used
by ESPRESSO. The first row of each cell in Tab. 9.3 contains the BOOM results, the second
row shows the ESPRESSO results. We can see that in most cases BOOM found a better
solution than ESPRESSO. The missing ESPRESSO results in the lower right-hand corner
indicate the problems for which ESPRESSO could not be used because of the long runtimes.
Hence only one iteration of BOOM was performed, and its duration in seconds is given as a
last value.

Tab. 9.3 Solution of problems with n>50 - comparing the result quality

p/n 60 100 140 180 220 260 300

20
22/12/9(67)
23/15/9/1.01

18/11/8(96)
23/13/8/1.95

18/10/8(127)
22/14/8/3.47

16/10/8(161)
19/13/8/5.59

17/10/8(201)
19/12/7/9.52

16/10/8(219)
18/11/7/12.03

16/9/8(262)
20/12/8/16.44

60
76/29/22(54)
86/40/21/6.54

68/24/20(77)
75/34/19/14.26

65/22/19(127)
73/34/19/28.99

61/21/19(151)
68/30/17/42.46

58/21/17(183)
62/28/16/57.53

56/20/17(218)
64/29/17/78.68

55/19/17(271)
65/27/17/111.62

100
143/42/35(45)
150/61/33/13.85

127/38/32(74)
133/55/29/41.26

118/36/30(100)
127/52/28/69.02

110/32/28(157)
121/46/27/124.22

108/31/28(162)
116/46/26/152.44

105/31/27(215)
116/45/26/248.67

102/30/27(260)
112/44/25/328.37

140
206/56/47(46)
215/80/43/28.70

190/50/44(70)
191/72/39/71.23

177/46/41(94)
177/66/36/129.66

165/44/39(127)
171/63/36/206.76

159/44/37(160)
164/60/34/273.15

154/39/36(210)
164/60/33/452.93

149/40/36(231)
156/55/32/516.63

180
288/70/61(45)
284/101/54/48.70

251/61/54(79)
253/92/48/141.97

230/56/51(111)
233/84/44/261.95

220/55/49(139)
228/80/44/397.36

209/50/46(181)
220/77/42/630.53

255/49/48/1.36
-

250/48/48/1.60
-

220
363/85/72(48)
352/120/63/80.68

310/74/64(88)
310/109/57/256.40

291/68/60(118)
290/103/53/392.86

273/65/57(146)
285/98/52/632.04

329/61/60/1.79
-

320/60/59/2.09
-

308/58/57/2.43
-

260
436/98/84(46)
427/144/74/108.50

374/84/74(87)
382/124/67/336.32

353/81/70(116)
348/119/61/580.84

420/75/73/2.15
-

398/71/70/2.55
-

391/70/69/2.98
-

372/66/65/3.39
-

300
521/109/96(40)
489/160/83/120.69

450/97/87(81)
447/149/75/427.72

422/88/81(107)
416/139/71/719.54

493/84/8/32.88
-

469/80/79/3.48
-

449/77/77/3.91
-

441/77/75/4.75
-

Entry format: BOOM: #of literals/output cost/#of implicants(# of iterations).

ESPRESSO: #of literals/output cost/#of implicants/time in seconds

A second group of experiments for n>50 was performed to compare the runtimes. Again
random problems were solved, but this time BOOM was running until a solution of the same
or  better  quality was reached. The quality criterion selected was the sum of the number of
literals and the output cost. The results given in Tab. 9.4 show that for all samples the same or
better solution was found by BOOM in much shorter time than by ESPRESSO (up to 300
times faster).
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Tab. 9.4 Solution of problems with n>50 - comparing the runtime

p/n 50 100 150 200 250 300
50 111/0.06 (1)

132/5.71
92/0.08 (1)
92/7.15

83/0.12 (1)
84/20.00

77/0.59 (4)
88/42.77

77/0.39 (2)
77/51.29

75/8.69 (35)
76/110.74

100 219/2.36 (9)
220/7.38

190/2.57 (7)
190/27.95

174/4.19 (9)
176/104.38

163/31.05 (35)
165/114.65

155/14.74 (19)
158/184.31

154/1.40 (2)
154/317.39

150 330/2.34 (4)
334/21.42

287/9.44 (10)
287/79.47

289/1.11 (1)
289/129.20

249/31.23 (20)
253/367.19

231/57.38 (29)
233/396.01

247/44.66 (19)
248/569.44

200 338/20.26 (11)
447/55.24

401/37.79 (15)
404/209.27

349/91.96 (25)
350/297.20

344/63.23 (20)
347/557.54

331/2.27 (1)
334/794.97

321/2.89 (1)
328/857.19

250 576/32.38 (9)
576/80.27

460/242.27 (36)
463/323.27

443/142.71 (23)
450/404.09

409/481.63 (50)
445/934.13

423/196.56 (27)
425/1607.45

385/507.23 (52)
389/2354.24

300 594/83.35 (13)
597/105.20

580/203.06 (22)
588/333.90

505/446.42 (38)
508/798.84

506/416.01 (34)
512/847.05

500/470.90 (38)
500/1822.01

465/205.76 (32)
466/3012.90

Entry format: BOOM: #of literals+output cost / time in seconds (# of iterations)

ESPRESSO: #of literals+output cost / time in seconds

9.4. Solution of Very Large Problems

A third group of experiments aims at establishing the limits of applicability of BOOM. For
this purpose, a set of large test problems was generated and solved by BOOM. For each
problem size (# of variables, # of terms) 10 different problems were generated and solved.
Each problem was a group of 10 output functions. For problems with more than 300 input
variables ESPRESSO cannot be used at all. Hence when investigating the limits of
applicability of BOOM, it was not possible to verify the results by any other method. The
results of this test are listed in Tab. 9.5, where the average time in seconds needed to complete
one iteration for various problem sizes is shown. We can see that a problem with 1000 input
variables, 10 outputs and 2000 care minterms was solved by BOOM in less than 5 minutes.

Tab. 9.5 Time for one iteration on very large problems

p/n 200 400 600 800 1000
200 0.21 0.38 0.55 0.90 1.06
400 0.98 1.90 3.30 4.84 5.96
600 2.48 4.73 6.94 11.52 18.10
800 4.89 9.76 14.56 24.06 38.58
1000 8.34 15.51 27.88 48.85 74.29
1200 17.64 29.66 42.15 58.37 64.18
1400 23.72 41.49 58.58 74.09 106.65
1600 36.05 73.43 104.90 118.98 161.42
1800 49.53 95.78 146.28 178.29 210.99
2000 60.62 118.39 206.44 204.16 288.87

9.5. Graph Color ing Problem

The graph coloring problem can be formulated using Boolean functions, as was shown in
[Ost74]: a Boolean function has as many input variables as there are regions in the graph,
each variable representing one region. The on-set specifies the areas that can share the same
color, while the off-set defines the neighboring areas that cannot be colored by the same color.
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The minimal cover of this function corresponds to the minimal number of colors needed for
coloring the graph.

An example with 14 regions presented in [Ost74] was solved by BOOM, ESPRESSO and
ESPRESSO-EXACT. The on-set consists of 14 terms, and the off-set consists of 33 terms.
The results listed in Tab. 9.6 show that ESPRESSO-EXACT reached the minimum of 4
terms, while ESPRESSO could not find the minimum solution. BOOM found the minimum
solution in the shortest time.

Tab. 9.6 Solutions of the 4-color problem

Method terms time [s]

ESPRESSO-EXACT 4 0.22

ESPRESSO 5 0.17

BOOM 4 non-measurable

9.6. Minimization of a Symmetr ic Function

Symmetric functions are notoriously difficult to minimize. The S9
3456 function was used in

[Hon74] to test the minimization procedure. This function has 420 minterms and 1680 prime
implicants. The minimum two-level solution consists of 84 implicants. This result was also
obtained by application of BOOM in about 9 seconds, whereas ESPRESSO found a non-
minimal solution with 86 implicants in 0.5 second. ESPRESSO-EXACT found the minimum
solution in 5 seconds.

10. Time Complexity Evaluation

As for most heuristic and iterative algorithms, it is difficult to evaluate the time complexity
of the proposed algorithm exactly. We have observed the average time needed to complete
one pass of the algorithm for various sizes of input truth table. The truth tables were generated
randomly, following the same rules as in the previous case. Fig. 10.1 shows the growth of an
average runtime as a function of the number of care minterms (20-300) where the number of
input variables is changed as a parameter (20-300). The curves in Fig. 10.1 can be
approximated with the square of the number of care minterms. Fig. 10.2 shows the runtime
growth depending on the number of input variables (20-300) for various numbers of defined
minterms (20-300). Although there are some fluctuations due to the low number of samples,
the time complexity is almost linear. Fig. 10.3 shows a three-dimensional representation of
the above curves.
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11. The BOOM Program

The BOOM minimizer has been placed on a web page [6], from where it can be
downloaded by anybody who wants to use it.

11.1. Program Descr iption

The BOOM program is a tool for minimizing two-valued Boolean functions. The output is
a near-minimal or minimal two-level disjunctive form. The input and output formats are
compatible with Berkeley standard PLA format that is described in Section 11.2.

BOOM runs as a Win32 console application with the following command line syntax:

BOOM [ opt i ons]  [ sour ce]  [ dest i nat i on]
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Tab. 11.1 BOOM options

-CMn Define CD-search mutations ratio n (0-100)
-RMn Define implicant reduction mutations ratio n (0-100)
-Ex Select implicant expansion type:

0: Sequential search
1: Distributed multiple IE
2: Distributed exhaustive IE
3: Multiple IE (default)
4: Exhaustive IE

-CPx Select the CP solution algorithm:
0: LCMC
1: Contribution-based selection (default)
2: Contribution-based removal
3: Exact

-Sxn Define stopping criterion x of value n:
t: stop after n seconds (floating point number is expected)
i: stop after n iterations (default is Si1)
n: stopping interval equal to n

the minimization is stopped when there is no improvement of the
solution for n-times more iterations than it was needed for the last
improvement

q: stop when the quality of solution meets n
more criteria can be specified at the same time

-Qx Define quality criterion x:
t: number of terms
l: number of literals
o: output cost
b: number of literals+output cost (default)

-endcov Solve CP only at the end of minimization

-c
Checks the input function for consistence, i.e., checks if the off-set doesn't intersect
the on-set.

11.2. PLA Format

Input to the BOOM system, as well as its output, has the format of a two-level SOP
expression. This is described as a character matrix (truth table) with keywords embedded in
the input to specify the size of the matrix and the logical format of the input function.

The following keywords are recognized by BOOM. The list shows the probable order of
the keywords in a PLA description. The symbol d denotes a decimal number and s denotes a
text string. The minimum required set of keywords is .i, .o and .e. Both keywords .i and .o
must precede the truth table.
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Tab. 11.2 Keywords in PLA format

.i d Specifies the number of input variables (necessary)

.o d Specifies the number of output functions (necessary)

.ilb s1 s2 . . . sn Gives the names of the binary valued variables. This must come after .i.
There must be as many tokens following the keyword as there are input
variables

.ob s1 s2 . . . sn Gives the names of the output functions. This must come after .o. There
must be as many tokens following the keyword as there are output variables

.type s Sets the logical interpretation of the character matrix. This keyword (if
present) must come before any product terms. s is either fr or fd (which is
default)

.p d Specifies the number of product terms

.e (.end) Marks the end of the PLA description

11.3. Logical Descr iption of a PLA

When we speak of the ON-set of a Boolean function, we mean those minterms, which
imply the function value is a 1. Likewise, the OFF-set are those terms which imply the
function is a 0, and the DC-set (don't care set) are those terms for which the function is
unspecified. A function is completely described by providing its ON-set, OFF-set and DC-set.
Note that all minterms lie in the union of the ON-set, OFF-set and DC-set, and that the ON-
set, OFF-set and DC-set share no minterms.

A Boolean function can be described in one of the following ways:

• By providing the ON-set. In this case the OFF-set can be computed as the complement
of the ON-set and the DC-set is empty.

• By providing the ON-set and DC-set. The OFF-set can be computed as the complement
of the union of the ON-set and the DC-set. This is indicated with the keyword .type fd
in the PLA file. This Boolean function specification is used by BOOM as the output of
the minimization algorithm.

• By providing the ON-set and OFF-set. In this case the DC-set can be computed as the
complement of the union of the ON-set and the OFF-set. It is an error for any minterm
to belong to both the ON-set and OFF-set. This error may not be detected during the
minimization, but it can be checked with the "consistency check" option. This type is
indicated with the keyword .type fr  in the input file. This is the only possible Boolean
function specification for the input to BOOM.

 
12.4. Symbols in the PLA Matr ix and Their  Interpretation

Each position in the input plane corresponds to an input variable where a 0 implies that the
corresponding input literal appears complemented in the product term, a 1 implies that the
input literal appears uncomplemented in the product term, and - implies the input literal does
not appear in the product term.

With .type fd (default option), for each output, a 1 means this product term belongs to the
ON-set, a 0 means this product term has no meaning for the value of this function.
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With .type fr , for each output, a 1 means this product term belongs to the ON-set, a 0
means this product term belongs to the OFF-set, and a - means this product term has no
meaning for the value of this function.

Regardless of the type of PLA, a ~ implies the product term has no meaning for the value
of this function.

Example

A two-bit adder, which takes in two 2-bit operands and produces a 3-bit result, can be
completely described with minterms as:

Tab. 11.3

. i  4

. o 3

. p 16
0000 000
0001 001
0010 010
0011 011
0100 001
0101 010
0110 011
0111 100
1000 010
1001 011
1010 100
1011 101
1100 011
1101 100
1110 101
1111 110
. e

Note that BOOM does not accept all features of the current Berkeley PLA format. When
any features of this format not described here are used, they are ignored or an error is
returned.

12 Conclusions

An original Boolean minimization method has been presented. Its most important features
are its applicability to functions with several hundreds of input variables and very short
minimization times for sparse functions. The function to be minimized is defined by its on-set
and off-set, whereas the don't care set need not be specified explicitly. The entries in the truth
table may be minterms or terms of higher dimensions. The implicants of the function are
constructed by reduction of n-dimensional cubes; hence the terms contained in the original
truth table are not used as a basis for the final solution.

The properties of the BOOM minimization tool were demonstrated on examples. Its
application is advantageous above all for problems with large dimensions and a large number
of don't care states where it beats other methods, like ESPRESSO, both in minimality of the
result and in runtime. The PI generation method is very fast, hence it can easily be used in an
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iterative manner. However, for sparse functions it mostly finds the minimum solution in a
single iteration. Thus, e.g., for more than one fifth of the MCNC standard benchmark
problems the runtime needed to find the minimum solution on an ordinary PC was less than
0.01 sec., and in more than a half of the cases the solution was found faster than by
ESPRESSO. Among the hard benchmarks, BOOM found the minimum for only one half of
the problems. Random problems with more than 100 input variables were in all cases solved
faster and mostly with better results than by ESPRESSO. The dimension of the problems
solved by BOOM can easily be increased over 1000, because the runtime grows linearly with
the number of input variables. For problems of very high dimension, success largely depends
on the size of the care set. This is due to the fact that the runtime grows roughly with the
square of the size of the care set.
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