
The Influence of Implementation Technology on Dependability Parameters

Jan Schmidt, Petr Fišer, Jiřı́ Balcárek

Czech Technical University in Prague, Thákurova 9, 160 00 Prague, Czech Republic

Abstract

Circuits which are designed to be dependable are evaluated after gate-level design. To demonstrate the influence of implementation
technology on computed dependability parameters, we developed a simple method which transforms the evaluation problem into
conceptual hardware and then to SAT instances. The method can accommodate any combinational fault model. The performed
evaluation demonstrated that the dependability parameters of the implementations correlate to a significant degree.

Keywords: dependability, SAT, fault classification, generalized miter

1. Introduction

The principal way to improve the dependability of a circuit
is to introduce redundancy. One possible strategy is to detect
errors at output signals and take appropriate measures during
circuit operation. This technique is called Concurrent Error De-
tection (CED, [1]).

Redundancy must be introduced with care, as redundant
blocks are also prone to faults, and the point of diminishing
return can be reached easily. Numerous schemes were devised
to balance redundancy and dependability. To evaluate variant
designs, we need to know how much dependability we get for a
given investment into redundant circuits. Initially, dependabil-
ity meant roughly what is today called robustness. In this paper,
we adhered to the original meaning from [2], where dependabil-
ity parameters were introduced to quantify dependability.

The standard design flow is to design the circuit first, to con-
struct its redundancy afterward, and then to evaluate its depend-
ability parameters. The underlying assumption is that the actual
design, the technology used and its resulting fault models influ-
ence the dependability parameters to a large degree. In many
studies, the ubiquitous stuck-at (S@) fault models were used.

Recent Automatic Test Pattern Generation (ATPG) programs
[3] and procedures based on solving the Satisfiability Problem
(SAT) [4] permit analysis with a variety of fault models suitable
for a particular circuit implementation technology. This in turn
enables us to see the influence of technology on dependability.
In other words, we ask whether there are circuits hard to make
dependable or technologies hard to make dependable.

To study this question, we needed a simple framework. Re-
cently, two approaches to robustness analysis and other tasks
dealing with faults exist. The first one, represented by [5] and
[6], transforms the task instance to an ATPG task instance. The
ATPG program then may or may not convert it internally to

Email addresses: jan.schmidt@fit.cvut.cz (Jan Schmidt),
{petr.fiser@fit.cvut.cz (Petr Fišer), jiri.balcarek@fit.cvut.cz
(Jiřı́ Balcárek)

one or more SAT instances [7], [8]. The other approach, most
notably represented by [4] and [9], converts an instance of the
task to conceptual hardware (hardware which is not intended
for synthesis) and then constructs SAT instances from that hard-
ware.

Both approaches can be seen as special cases of a more gen-
eral method, which can be summarized as follows. Firstly,
transform the task instance into a piece of conceptual hard-
ware together with assertions about the hardware. Secondly,
use formal verification methods to prove or disprove the asser-
tions (e.g. [3], [10]). If required, transform the assertions into
conceptual hardware as well [11]. Thirdly, transform the an-
swers back to the answers to the original task instance.

This is a powerful framework, which can even produce an-
swers about sequential behavior in the presence of multiple
faults [4], [9], [12]. For our study, combinational circuits (or
full-scan circuits) were sufficient. Furthermore, only fault clas-
sification was required, without the need to analyze multiple
fault impact.

Therefore, we present a simple framework for this limited
situation, which constructs conceptual hardware representing
the circuit and the assertions directly. We borrowed the term
miter from ATPG [7], although the term monitor from [8] and
other sources has a similar meaning.

We present a method to determine the value of an arbitrary
Boolean formula over input vectors, error-free output vectors,
and error-stricken output vectors of a combinational circuit.
The formula can be quantified over all input vectors or their
subset. We demonstrate our method to be compatible with
methods used for multiple fault and sequential circuit model-
ing.

Although we cannot overcome the exponential worst case
complexity of the SAT problem, we have practical solvers for
the Boolean Satisfiability Problem, which solve both satisfiable
and unsatisfiable instances effectively. The method also benefits
from the fact that the SAT instances encountered during ATPG,
and, as it was discovered, robustness analysis, are far simpler to

Preprint submitted to MICPRO August 14, 2012

solve than the worst case [10], [13], [14].
We present the method as an extension of SAT ATPG first in

its general form. Then we review the class of dependable cir-
cuits studied and present their fault classification. We demon-
strate application of the proposed method on this problem, and
finally show and discuss classification results for two different
implementation technologies.

2. Predicate evaluation

2.1. The SAT-Based ATPG
Let the circuit in question realize a Boolean function F(x)

over input x. The circuit has n primary inputs and m primary
outputs.

Figure 1: A circuit F with n inputs and m outputs

Denote F f lt(x) the Boolean function characterizing the cir-
cuit with a given fault. The question whether the fault can be
detected is answered by the predicate

∃x, F(x) , F f lt(x) (1)

In SAT-based ATPGs, this is understood as a circuit, see Figure
2. The fault-free and faulty circuits provide F(x) and F f lt(x),
respectively. The predicate itself is also expressed as a circuit
called the miter [7]. The characteristic function of the entire
circuit is then constructed in Conjunctive Normal Form (CNF)
using the Tseitin’s transformation [15] and its satisfiability is
solved. If the instance is unsatisfiable, the fault cannot be tested.
If it is satisfiable, all solutions are input vectors testing the fault.

Figure 2: Circuit description of the ATPG SAT instance

For details on the SAT-based ATPGs, see [7], [11], [8].

2.2. General Predicates
Let x, F(x) and F f lt(x) have the same meaning as above. Let

∃x,G(x, F(x), F f lt(x))

be any Boolean predicate over x, F(x) and F f lt(x). Then G can
also be understood as a circuit, see Figure 3. As it has the same
role as in ATPG or model checking, we call it the generalized
miter. Its characteristic function can be constructed as in the
ATPG case, and the SAT instance is solved.

Figure 3: The generalized miter for predicate G

A universally quantified predicate

∀x,H(x, F(x), F f lt(x))

can simply be converted to

¬∃x,¬H(x, F(x), F f lt(x)))

The construction of ¬H might seem difficult. When seen as a
circuit, however, it suffices to add an inverter. This causes one
more variable and two clauses in the SAT instance [15], which
is tolerable. The predicate can be transformed to CNF by other
methods as well; the above case illustrates the advantage of see-
ing it as a circuit. The dependency of the general predicate on
x is useful in situations where not every input vector is admis-
sible. Let A be the set of admissible input vectors and a(x) the
predicate characterizing the set. Then

∃x ∈ A,G(F(x), F f lt(x))

becomes

∃x, a(x) ∧G(F(x), F f lt(x))

This feature achieves the same effect as the input encoder in
[5]. In the case solved there, code generator and detector for
the codes in question are comparable in complexity. For other
problems, however, to produce a vector may be more difficult
than to check that vector.

The technique of generalized miters has a wider utilization
than just single fault classification. For the sake of complete-
ness, we demonstrate that it is compatible with procedures used
for multiple fault reasoning and analysis of sequential circuits.

2.3. Extension to multiple faults

In [16] and [4], a technique to model multiple faults in a cir-
cuit is presented. The presence or absence of each fault is mod-
eled by an associated fault predicate. The actual value of sig-
nals in question is modeled by additional primary inputs, which
in turn are expressed by free variables in the SAT instance.

The structure of the conceptual hardware including the gen-
eralized miter remains the same as in Figure 3, except the
faulted copy of F is controlled by the fault predicates and addi-
tional inputs.

2

2.4. Extension to sequential circuits

[4] uses time-frame unrolling to reason about sequential cir-
cuits. The circuit is divided a into state register and combina-
tional logic. For each time step, a stage is created comprising
a copy of the fault-free and faulty logic. The outputs of both
copies in each stage are compared by a miter. The value of
state variables passes from stage to stage.

The miter can be replaced by an generalized miter, as in Fig-
ure 4. The construction of the generalized miter depends on
the way it is specified. If the miter is combinational, then each
stage contains one copy of the miter, and all outputs of those
stage miters are combined by e.g. an AND gate. If the miter is
described as a state machine, then it is unrolled similarly to F
and the state of the miter is passed from state to state.

Figure 4: The generalized miter for predicate G in unrolled sequential circuit;
xi, si and fi are inputs, states, and fault predicates, respectively, in time ti

3. The Analyzed Architecture

3.1. The Structure of the Dependable Block

The CED strategy proposed in [1], [17] is used in this pa-
per to illustrate principles of the proposed SAT-based predicate
evaluation and for the experimental evaluation.

The digital circuit D to be secured by a CED code is supple-
mented with a predictor P and a checker E, see Figure 5. The
predictor can be understood as a copy of the functional circuit
together with an encoder. The encoder transforms the vector at
the primary outputs of the circuit into the redundancy bits of a
selected error detection code. The primary outputs (POs) of the
circuit to be secured and the predictor outputs form the code-
word whose validity is verified by the checker. The original
primary outputs D(x) together with the checker output form the
global output F(x), which is m + 1 bits wide.

Any fault in the functional logic D either does not alter the
output for a given input vector, or should be detected by the
checker. Faults in the predictor and checker either do not af-
fect the operation, or cause false alarms. This architecture can
be apprehended as a kind of modification of the well-known
duplex scheme [17], [18].

For the purpose of this paper, single parity is used as the er-
ror detection code[18]. Thus, the predictor is constructed as a

copy of the original circuit supplemented with a XOR tree at its
outputs, k = 1 in Figure 5.

The single parity code offers a low area overhead, however
its error detection capabilities are limited. Therefore, the fault
coverage can also be lower than in the case of the duplex sys-
tem, and must be analyzed.

Figure 5: Basic concurrent error detection (CED) scheme

3.2. Fault Classification and Dependability Parameters

There are three basic dependability parameters in the field of
CED (Concurrent Error Detection) [1], [2]:

Fault security (FS) - probability that the erroneous outputs
produced for a modeled fault do not belong to the output
code-words.

Self-testing property (ST) - probability that an input vector
occurring during normal operation produces an output vec-
tor which does not belong to the code when a modeled
fault occurs.

Totally self-checking (TSC) - The FS and ST parameters of
the circuit are equal to 100%. Totally Self-Checking prop-
erty offers the highest level of protection.

The faults in the secured block cannot be classified only as de-
tectable or undetectable, as for a common circuit. Their de-
tectability by the checker must also be evaluated [4]. To com-
pute these parameters, an approach based on a fault classifi-
cation was presented in [4], [19], [18]. The faults are classified
into four groups (A, B, C and D) based on their observability on
primary outputs of the circuit and detectability by the checker.

Class A These faults do not affect the circuit POs for any al-
lowed input vector. This is the class of redundant (unde-
tectable) faults. They have no impact to the FS property,
but circuits with these faults cannot be ST.

Class B These faults are detectable by at least one input vector
and do not produce an incorrect code word (a valid code
word, but incorrect) for other input vectors. They have no
negative impact on the FS and ST properties, since if such
a fault occurs, it is detected by the checker.

Class C The faults that produce an incorrect codeword for at
least one input vector and cannot be detected by any input
vector. This is the class of faults, that can never be detected
by the checker and that produce an erroneous output. The
circuit with these faults is neither FS nor ST.

3

Class D these faults cause at least one detectable and one un-
detectable error on the POs. They are detectable, but also
may produce an incorrect output, which is not detected by
the checker. The circuit with these faults does not satisfy
the FS property.

The FS property can be computed from the number of faults
in these classes as:

FS =
A + B

A + B + C + D
.100[%] (2)

The ST property is computed in similar way as:

S T =
B + D

A + B + C + D
.100[%], (3)

where A, B, C, and D are the numbers of faults in the respective
classes.

4. SAT-Based Fault Classification Technique

To apply the SAT-based classification on the above outlined
architecture, we must characterize the classes by binary predi-
cates and apply the general scheme form Figure 3.

4.1. Predicates

To compute the dependability parameters of the given archi-
tecture, each fault must be classified into one of the classes A,
B, C, and D. Four classes need at least two binary predicates to
distinguish. In this case, they are easy to derive from the spec-
ifications. In principle, the classes are defined by the ability of
the fault to cause a detected or an undetected error, which can
be formalized as follows:

• J(x) is true iff the input vector x gives an erroneous output
D(x) of the faulty circuit and the error is detected (E(x) is
true.)

• K(x) is true iff the input vector x gives an erroneous output
D(x) of the faulty circuit and the error is not detected (E(x)
is false.)

Then the given fault belongs to

• the class A, iff ¬∃x, J(x) ∧ ¬∃x,K(x)

• the class B, iff ∃x, J(x) ∧ ¬∃x,K(x)

• the class C, iff ¬∃x, J(x) ∧ ∃x,K(x)

• the class D, iff ∃x, J(x) ∧ ∃x,K(x)

Hence, two SAT instances must be solved to classify a fault.

Figure 6: The general circuit for J and K evaluation

4.2. Generalized Miters

To construct a miter for the J and K predicates, we have to
apply the general process leading from the circuit in Figure 1. to
the circuit in Figure 3. on the discussed architecture. The output
F(x) is in our case decomposed into D(x) and E(x), giving the
circuit in Figure 6.

Bringing in the internal structure of F and F f lt from Figure
5., we obtain the circuit in Figure 7. The actual predicates apply
to all input vectors x, therefore x does not enter into the miter
circuits. Furthermore, we are interested in faults in the secured
circuit D only, not in the predictor or checker, since possible
faults there cause just false alarms. These faults do not affect the
dependability parameters considered in this paper. Therefore,
we can omit E f lt(x) from the miters and, therefore, P f lt and E f lt

from the circuit. The final optimized circuit is in Figure 8.

Figure 7: The unoptimized circuit for J and K

Figure 8: The optimized circuit for J and K

Using D(x), D f lt(x) and E(x), we can implement the miters

4

Table 2: Total fault counts by category
Faults A B NS T D NFS

= C
gates 33251 329 24933 765 7224 7989
LUTs 61806 9835 45222 1143 5606 6749

as

J(x) ≡ D(x) ⊕ D f lt(x) ∧ E(x) (4)

K(x) ≡ D(x) ⊕ D f lt(x) ∧ ¬E(x) (5)

5. Experimental Technology Comparison

Using the above described framework, we compared robust-
ness of a set of benchmarks, implemented either structurally
(as a network of gates) with S@ faults, or implemented as a
set of Look Up Tables (LUTs), considering Single Event Upset
(SEU) in the LUT configuration memory as the primary fault
mechanism.

The experiments have been performed on 67 ISCAS85 [20],
ISCAS89 [21], ITC99 [22] and LGSynth [23] benchmark cir-
cuits.

For the S@ faults, the original structural description was
used. The fault lists were generated by Atalanta [24] and were
free from dominated faults.

The LUT implementations were synthesized by ABC [25]
using the command sequence strash; dch; if; lutpack as rec-
ommended by the authors. Note that this procedure builds the
implementation out of LUTS with 4 inputs or less.

The gate implementation was also produced by ABC with the
command sequence strash; dch; map. The target gate library
was the MCNC library [26].

Both implementations of a circuit have obviously different
numbers of possible faults. To compare them in a practically
relevant manner, we decided to count points of vulnerability,
that is, the number of faults which can cause dysfunction of
the circuit. The coefficients FS and S T , which indicate the dis-
tance to the Totally Self Checking goal, are of minor importance
here. The metrics used were Not Fail Safe

NFS = C + D

and Not Self-Testing

NS T = C.

Table 1 shows the number of faults classified by the above de-
scribed method.

6. Discussion

The aggregate number of faults by category is given in Table
2, and the statistical properties are summarized in Table 3, using
standard correlation and least square linear regression.

Table 3: Statistical properties of fault numbers
Quantity Correlation Lin. regression
Total faults 0.894 2.0
A 0.180 2.2
B 0.892 1.8
NS T = C 0.934 1.77
D 0.947 1.15
NFS 0.949 0.73

6.1. Total number of faults

The total numbers of faults in both technologies are tightly
correlated. The circuit itself has the strongest influence. The
technology contributes only a constant coefficient, as the re-
gression figure in Table 3 tells us that the LUT implementations
has—almost uniformly—twice the number of total faults. The
trend is most apparent in large circuits with more faults, as can
be seen in Figure 9.

This comparison, however, is influenced by the construction
of the fault list for gates. A single S@ fault there can represent
more than one dominated fault and hence more than one point
of vulnerability, whereas dominance of SEU faults has not been
considered.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

L
U

T
s
/S

E
U

 t
o

ta
l
fa

u
lt
s

gates/S@ total faults

Figure 9: Total faults; x = y provided for reference

6.2. A-class faults

The A-class faults are caused by redundancy introduced dur-
ing synthesis. From the dependability point of view, this is a
kind of noise in the implementation. From Figure 10 it can be
seen that the values are indeed uncorrelated. 4.5% of the cir-
cuits have A-faults only in gate implementation, 57% only in
LUT implementation, and 21% in both.

Note that A-class faults might also be introduced by not fully
exploiting the 4-LUTs; there are many LUTs having less than 4
actual inputs in the synthesized designs. However, these faults
are not considered in our computations, since they are not A-
class faults, indeed. If any number of SEUs in the unused parts
of LUTs occurs, the dependability is not affected at all.

5

Table 1: Detailed fault counts in two implementations
Circuit Gates, S@ LUTs, SEU

Faults A B NS T D NFS Faults A B NS T D NFS
= C = C

5xp1 422 0 353 7 62 69 538 83 431 4 20 24
9symml 446 0 446 0 0 0 1036 275 761 0 0 0
9sym 713 0 713 0 0 0 1440 409 1031 0 0 0
al2 400 0 338 8 54 62 736 0 692 0 44 44
alcom 319 0 291 16 12 28 560 0 556 0 4 4
alu1 109 0 91 0 18 18 120 0 120 0 0 0
alu2 1132 117 383 9 623 632 1864 680 555 9 620 629
amd 842 0 632 23 187 210 2084 371 1546 16 151 167
b1 37 6 25 0 6 6 16 0 16 0 0 0
b9 366 2 205 45 114 159 560 6 412 64 78 142
br1 341 0 230 17 94 111 792 120 558 57 57 114
br2 296 0 185 20 91 111 564 58 406 18 82 100
c1355 882 0 704 0 178 178 1088 2 944 14 128 142
c17 22 0 12 0 10 10 32 0 32 0 0 0
c1908 971 5 437 0 529 529 1252 118 614 6 514 520
c432 553 8 82 0 463 463 1088 128 222 17 721 738
c499 882 0 704 0 178 178 1088 2 944 14 128 142
c8 636 56 489 0 91 91 454 21 401 0 32 32
cc 219 13 172 4 30 34 328 24 296 0 8 8
chkn 918 0 806 0 112 112 1924 269 1607 0 48 48
cht 669 39 604 0 26 26 588 0 584 0 4 4
clip 1108 27 964 3 114 117 1068 205 793 8 62 70
clpl 38 0 14 0 24 24 84 0 52 0 32 32
cm138a 74 0 68 6 0 6 96 0 96 0 0 0
cm150a 245 23 222 0 0 0 160 8 152 0 0 0
cm152a 56 0 56 0 0 0 72 4 68 0 0 0
cm162a 166 6 113 0 47 47 172 18 130 0 24 24
cm163a 159 4 115 0 40 40 160 4 156 0 0 0
cm42a 76 0 68 2 6 8 160 0 160 0 0 0
cm82a 60 0 17 0 43 43 32 0 24 0 8 8
cm85a 131 0 107 0 24 24 148 0 148 0 0 0
cmb 141 6 92 0 43 43 228 22 182 0 24 24
con1 51 0 43 0 8 8 68 2 66 0 0 0
count 379 0 265 4 110 114 520 24 432 0 64 64
cu 164 6 100 27 31 58 208 11 159 28 10 38
dc1 120 0 85 7 28 35 112 0 112 0 0 0
dc2 255 0 201 3 51 54 422 49 361 4 8 12
decod 130 0 122 8 0 8 192 0 192 0 0 0
dist 796 0 712 4 80 84 2240 552 1686 0 2 2
duke2 1303 1 609 132 561 693 2476 482 914 264 816 1080
ex5 940 0 697 29 214 243 2768 917 1662 18 171 189
ex7 297 0 229 0 68 68 412 26 362 0 24 24
f51m 459 0 402 0 57 57 570 100 466 0 4 4
frg1 1049 0 1041 0 8 8 1248 118 1130 0 0 0
gary 1059 0 850 17 192 209 2508 445 1936 43 84 127
i1 129 1 89 2 37 39 162 0 138 0 24 24
ibm 492 0 354 0 138 138 1080 36 933 0 111 111
in0 1059 0 850 17 192 209 2416 415 1813 59 129 188
in2 1002 0 757 56 189 245 2060 289 1512 109 150 259
in4 1013 0 696 22 295 317 1928 230 1431 20 247 267
in5 802 0 549 16 237 253 1972 221 1539 17 195 212
in6 767 0 548 26 193 219 1384 159 1077 20 128 148
in7 311 0 167 12 132 144 668 75 441 57 95 152
jbp 1132 0 833 55 244 299 2222 168 1826 74 154 228
lal 414 0 295 11 108 119 374 15 279 0 80 80
ldd 278 9 164 45 60 105 404 71 238 42 53 95
luc 621 0 430 55 136 191 1192 182 819 108 83 191
m1 195 0 144 8 43 51 302 23 274 2 3 5
m2 543 0 442 7 94 101 956 170 729 16 41 57
m3 630 0 534 9 87 96 1546 340 1176 4 26 30
m4 973 0 844 8 121 129 2752 647 2044 14 47 61
majority 39 0 39 0 0 0 20 0 20 0 0 0
max46 380 0 380 0 0 0 744 110 634 0 0 0
max512 891 0 792 0 99 99 2788 716 2042 4 26 30
misex1 161 0 105 13 43 56 248 21 205 13 9 22
misex2 294 0 237 0 57 57 496 28 448 0 20 20
mlp4 694 0 590 12 92 104 1816 366 1437 0 13 13

6

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

L
U

T
s
/S

E
U

 A
-c

la
s
s
 f

a
u

lt
s

gates/S@ A-class faults

Figure 10: A faults

6.3. Points of vulnerability

The values NFS , NS T , which give the number of points of
vulnerability, are correlated very tightly between the two im-
plementations. Figure 12 compares the numbers of Not Self-
Testing faults, and Figure 14 compares the final vulnerability
indicator, the Not Fault Secure faults. Tables 2 and 3 together

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

L
U

T
s
/S

E
U

 B
-c

la
s
s
 f

a
u

lt
s

gates/S@ B-class faults

Figure 11: B faults

with Figures 11 to 14 indicate that while the LUT technology
has bigger numbers of faults, most of them are in the B cate-
gory, and that the number of faults in the C and D categories
move in opposite directions, so that the number of vulnerable
points—the NFS faults—remains almost constant.

It follows that the dependability, or, more precisely, the abil-
ity to become dependable using the MDS architecture, does not
depend on architecture and fault model. Rather, it is a property
of the circuit itself.

7. Conclusions

A method for proving arbitrary predicates quantified over an
input vector of a combinational circuit has been presented. The

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

L
U

T
s
/S

E
U

 N
S

T
 f

a
u

lt
s

gates/S@ NST faults

Figure 12: NS T = C faults

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

L
U

T
s
/S

E
U

 D
-c

la
s
s
 f

a
u

lt
s

gates/S@ D-class faults

Figure 13: D faults

method combines elements from SAT ATPG and SAT based
property checking. The Modified Duplex System architecture,
which requires classification into four classes, has been selected
for demonstration of the method.

A set of benchmark circuits was constructed using the MDS
redundancy architecture. The circuits were implemented both
in gates and LUTs. Their self-checking characteristics were
evaluated by the described method under the stuck-at and sin-
gle event upset fault models, respectively. The characteristics
were found to be correlated, which suggests that the ability to
become dependable under the MDS scheme is an intrinsic prop-
erty of the circuit itself.

Acknowledgement

This research has been supported by grant no.
SGS12/094/OHK3/1T/18 from Ministry of Education,
Youth and Physical Culture, Czech Republic.

7

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

L
U

T
s
/S

E
U

 f
a

u
lt
s

gates/S@ faults

Figure 14: NFS faults; x = y provided for reference

References

[1] S. Mitra, E. J. Mccluskey, Which concurrent error detection scheme to
choose?, in: Proc. International Test Conf, 2000, pp. 985–994.

[2] D. K. Pradhan, Fault-Tolerant Computer System Design, Prentice-Hall,
Inc., New Jersey, 1996.

[3] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. Reddy, B. Becker,
TIGUAN: Thread-parallel integrated test pattern generator utilizing satis-
fiability analysis, in: VLSI Design, 2009 22nd International Conference
on, 2009, pp. 227–232. doi:10.1109/VLSI.Design.2009.20.

[4] G. Fey, R. Drechsler, A basis for formal robustness checking, in: Proc. 9th
Int. Symp. Quality Electronic Design (ISQED09), 2008, pp. 784–789.

[5] M. Hunger, S. Hellebrand, Verification and analysis of self-checking
properties through ATPG, in: IEEE International On-Line Testing Sym-
posium 2008 (IOLTS’2008), Rhodos, Greece, 2008, pp. 25–30.

[6] M. Hunger, S. Hellebrand, A. Czutro, I. Polian, B. Becker, ATPG-based
grading of strong fault-secureness, in: On-Line Testing Symposium,
2009. IOLTS 2009. 15th IEEE International, Sesimbra-Lisbon, 2009, pp.
269–274. doi:10.1109/IOLTS.2009.5196027.

[7] T. Larrabee, Test pattern generation using boolean satisfiability, in: IEEE
Transactions on Computer-Aided Design, 1992, pp. 4–15.

[8] P. Sawhney, G. Ganesh, A. K. Bhattacharjee, Automatic construction
of runtime monitors for FPGA based designs, in: Proceedings of the
2011 International Symposium on Electronic System Design, ISED ’11,
IEEE Computer Society, Washington, DC, USA, 2011, pp. 164–169.
doi:10.1109/ISED.2011.70.
URL http://dx.doi.org/10.1109/ISED.2011.70

[9] G. Fey, A. Sulflow, S. Frehse, R. Drechsler, Effective robustness analysis
using bounded model checking techniques, IEEE Trans. on CAD 30 (8)
(2011) 1239–1252.

[10] A. Biere, W. Kun, SAT and ATPG: Boolean engines for formal hardware
verification, in: International Conference on Computer Aided Design (IC-
CAD 02), 2002, p. 782785.

[11] R. Drechsler, S. Eggersgl, G. Fey, D. Tille, Test Pattern Generation using
Boolean Proof Engines, Springer Netherlands, 2009, Ch. XII, p. 192.

[12] S. Frehse, G. Fey, A. Suflow, R. Drechsler, Robustness check for multi-
ple faults using formal techniques, in: Digital System Design, Architec-
tures, Methods and Tools, 2009. DSD ’09. 12th Euromicro Conference
on, 2009, pp. 85–90. doi:10.1109/DSD.2009.218.

[13] M. R. Prasad, P. Chong, K. Keutzer, Why is ATPG easy?, in: Proc. of the
36th Annual ACM/IEEE Design Automation Conference, New Orleans,
USA, 1999, pp. 22–28.

[14] P. Chong, M. Prasad, Satisfiability for ATPG: Is it easy? (1998).
[15] G. S. Tseitin, On the complexity of derivation in propositional calculus,

in: A. Slisenko (Ed.), Studies in Constructive Mathematics and Mathe-
matical Logic, Steklov Mathematical Institute, 1968, pp. 115–125.

[16] A. Smith, A. Veneris, M. F. Ali, A. Viglas, Fault diagnosis and logic de-
bugging using boolean satisfiability, IEEE Trans. on CAD 24 (10) (2005)
1606–1620.

[17] S. Mitra, E. J. McCluskey, Diversity techniques for concurrent error de-
tection, in: Proc. of IEEE 2nd International Symposium on Quality Elec-
tronic Design, 2001, pp. 249–250.

[18] P. Kubalı́k, H. Kubátová, Dependable design technique for system-on-
chip, Journal of Systems Architecture (54) (2008) 452–464.

[19] R. Dobiáš, P. Kubalı́k, H. Kubátová, Dependability computations for
fault-tolerant system based on FPGA, in: Proc. of 12th IEEE International
Conference on Electronics, Circuits and Systems, 2005, pp. 1–4.

[20] F. Brglez, H. Fujiwara, A neutral netlist of 10 combinational benchmark
circuits and a target translator in fortran, in: Proc. of International Sym-
posium on Circuits and Systems, 1985, pp. 663–698.

[21] F. Brglez, D. Bryan, K. Kozminski, Combinational profiles of
sequential benchmark circuits, in: Circuits and Systems, 1989.,
IEEE International Symposium on, 1989, pp. 1929–1934 vol.3.
doi:10.1109/ISCAS.1989.100747.

[22] F. Corno, M. Reorda, G. Squillero, RT-level itc’99 benchmarks and first
ATPG results, Design Test of Computers, IEEE 17 (3) (2000) 44–53.
doi:10.1109/54.867894.

[23] K. McElvain, LGSynth93 benchmark set: Version 4.0 (May 1993).
[24] H. K. Lee, D. S. Ha, Atalanta: an efficient ATPG for combinational cir-

cuits, Technical Report 93-12, Dept of Electrical Eng., Virginia Polytech-
nic Institute and State University, Blacksburg, Virginia (1993).

[25] Berkeley Logic Synthesis and Verification Group, ABC: A system for
sequential synthesis and verification.
URL http://www.eecs.berkeley.edu/ alanmi/abc/

[26] S. Yang, Logic synthesis and optimization benchmarks user guide, Tech-
nical Report 1991-IWLS-UG-Saeyang, MCNC, Research Triangle Park,
NC (January 1991).

8

