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Abstract. Two-level logic minimization is a well-established process
that efficiently minimizes functions described in the Sum-of-Products
(SOP) form. Current two-level minimizes, like Espresso and Boom, pro-
duce optimum or near-optimum results regarding the SOP size. How-
ever, there could be an issue when multi-level logic synthesis follows the
two-level optimization. In this paper, we show that a two-level mini-
mization conducted in the standard way significantly worsens the result
of the subsequent multi-level synthesis, especially for sparsely-specified
multiple-output functions, regardless of the optimization process and the
tool used. In conclusion, we propose using a single-output two-level min-
imization for incompletely specified functions. In this way, the obtained
circuits are sometimes multiple times smaller, while no significant dete-
rioration has been observed for any other functions.

Keywords: logic synthesis · two-level minimization · structural bias ·
incompletely specified functions

1 Introduction

When the source to logic synthesis is a tabular description of a function (truth
table, set of terms, the Berkeley PLA format), the well-established synthesis pro-
cess is to run two-level minimization, e.g., Espresso [1] and then proceed with
multi-level optimization and technology mapping. In the case of completely spec-
ified functions, running the two-level minimization explicitly is typically not even
needed since multi-level synthesis tools, like SIS [12], ABC [7], and commercial
tools, can do the job themselves. However, in the case of incompletely specified
functions (e.g., where values of only some minterms are specified), preprocess-
ing the function by a two-level minimizer is often necessary. For example, when
reading an incompletely specified PLA, ABC substitutes the don’t care values
with zeroes, which loses many opportunities for efficient optimization. In general,
ABC cannot deal with external don’t cares [5].

On the other hand, SIS [12] is able to read incompletely specified PLAs
and the don’t cares are recognized. In particular, these external don’t cares are
added to observability don’t cares [5] in the full_simplify command. However,
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this procedure is rather time-consuming and hardly applicable to functions with
many input variables.

Thus, when one wants to efficiently utilize don’t cares in multi-level synthe-
sis by, e.g., ABC, the two-level minimization should be run first, to produce
a minimized completely specified function from an incompletely specified one,
hoping that the don’t cares would be assigned a value efficiently. A multi-level
optimization and technology mapping is then run on this completely specified
function.

This procedure is believed to yield “reasonable” results. Well, it does, for
almost completely specified functions. However, we have found a big issue with
sparsely-specified functions, i.e. functions where only few minterms have the val-
ues specified and the majority of minterms are don’t cares. We have observed
that the multiple-output two-level minimization of such functions introduces an
unwanted structural bias [4], significantly affecting the subsequent multi-level
synthesis and optimization.

The observed affection is not negligible – results almost three times as big as
those generated by an “unconventional” way are produced. In particular, even
though the multiple-output two-level minimization produces results having much
fewer terms than the single-output one, the effect of the subsequent multi-level
synthesis is the opposite.

In this paper, we document that for incompletely specified multi-output func-
tions, running any multiple-output two-level minimization prior to the multi-
level synthesis is not a good option. Running the single-output minimization
instead helps significantly. This observation holds for all subsequent multi-level
synthesis processes we have experimented with.

Moreover, we will show a very strange phenomenon appearing when synthe-
sizing “larger” random sparsely-specified functions. It appears that there are two
classes of such functions – the “easy” and “difficult” ones to synthesize, while
being of the same size and nature.

The contributions of this paper can be summarized as follows. We show that:

– Doing multi-output minimization of incompletely specified random functions
is not a good choice if a multi-level circuit synthesis is supposed to be run
afterward.

– We show that there is even no difference in the multi-level synthesis tool and
algorithm used when used after the two-level minimization – multi-output
two-level minimization always does harm

– We illustrate a strange behavior for some classes of functions – easy and
hard-to-synthesize functions of the same size and nature are identified.

The paper is structured as follows: Section 2 presents the motivation behind
the research. Some of the related works are presented in Section 3. The experi-
mental observations are presented in Section 4. A discussion of the most striking
results is presented in Section 5. Finally, the conclusions are drawn in Section 6.
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2 The Story Behind

When designing direct implementations of neural networks, i.e., where the net-
work is implemented as a purely combinational circuit [8], we have run into
serious problems. In particular, the neural network we wanted to synthesize into
hardware was described as an incompletely specified function having relatively
many (100) inputs, relatively many (100) outputs, and tenths of thousands of
specified minterms. This function was described in a PLA format [9]. Note that
despite the large size of the description, this function is still sparsely specified.
In order to efficiently exploit the don’t cares, we tried to run Espresso [1] to
optimize the PLA. However, it took an extremely long time to run, and finally
crashed. Thus, we have decided to sacrifice the optimality to some extent and
split the function by outputs into two PLAs having 100 inputs and 50 outputs.
Thus, the power of the multi-output two-level minimization cannot be fully ex-
ploited in this case. The split still did not suffice, so we continued. After all, when
arriving at 25 outputs, the minimization has successfully finished. But still, the
run times were very high (several days). Thus, we have decided to continue with
the splitting, ending up with single-output minimization. The run times were
obviously smaller.

To evaluate how much harm the splitting did, we have compared the results
obtained by the application of splittings by different numbers of outputs. One
observation was expected: the more splitting was performed, the more terms
and literals the resulting PLAs had, since the multi-output minimization can-
not be fully exploited in the case of splitting. However, the second observation
was rather surprising: the effects of the splitting on the multi-level optimization
were exactly the opposite – the more output variables the functions submitted to
Espresso had, the more gates had the final networks. Moreover, this behavior
was systematic for all the examples we have tried. After all, we have concluded
that when the target technology is not a PLA, a single-output minimization is
the best option in the case of sparsely-specified functions.

To illustrate the aforementioned observations, we have synthesized a neural
network from the MNIST benchmark [3]. The neural network had three layers,
each having 100 binary inputs and 100 binary outputs, with 60,000 specified
minterms. Functions of different layers (L2, L3, and their concatenation L2.L3)
were synthesized by Espresso and then by ABC, using a script mapping the
circuit into arbitrary 2-level gates:
&st; &synch2; &if -m -a -K 2; &mfs -W 10;
&st; &dch; &if -m -a -K 2; &mfs -W 10.

The script was repeated 20-times.
The results are shown in Table 1. The columns represent the number of

variables in the minimized functions. I.e., “1” represents a single-output mini-
mization, while “100” represents group minimization of the original, non-split
function. The rows indicate the respective functions. In each cell, the first value
represents the number of distinct terms of the SOP obtained by Espresso, and
the second value represents the number of 2-input gates after ABC synthesis.
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Table 1. Splitting results

Outputs
Layers 1 2 4 5 10 20 25 100

L2 PLA terms
2-input gates

11,097
33,810

11,003
36,394

10,960
41,635

10,929
43,606

10,802
53,974

10,460
71,531

10,321
73,371 N/A

L3 PLA terms
2-input gates

6,409
18,647

6,326
20,121

6,202
22,861

6,165
24,496

5,884
29,847

4,317
29,181

5,635
41,757 N/A

L2.L3 PLA terms
2-input gates

17,309
57,708

17,142
61,564

17,005
70,450

16,932
75,290

16,270
92,895

15,511
131,518

15,129
140,360 N/A

For better illustration, we show the results for the most complex function
(the L2.L3) in a graph, see Fig. 1.

Fig. 1. The influence of group minimization on the number of PLA terms and the
resulting number of 2-input gates after synthesis by ABC

It can be clearly seen that when the number of outputs minimized together
increases, the number of PLA terms decreases (up to some minor exceptions,
which can be attributed to random fluctuations). However, the number of gates
after multi-level synthesis consistently increases. Therefore, these preliminary
results indicate that running a single-output minimization prior to the multi-
level optimization is the best option. This phenomenon will be further explored
in this paper.

Note that the exercised functions mostly exhibit a random nature, so they
substantially differ from standard benchmarks. However, such functions are be-
coming ever more important in practice, especially because of the advent of the
direct implementation of neural networks [8].
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3 Related Work

Needless to say, there are many means of handling incompletely specified func-
tions. Available two-level minimizes [1], [6] indeed do take advantage of don’t
cares present (implicitly or explicitly) in the input PLA and use them to mini-
mize (typically) the number of resulting product terms, as well as for generating
group implicants, i.e. implicants of multiple output functions.

In multi-level synthesis, there are algorithms exploiting external don’t cares
– typically, they are appended to observability don’t cares and used in Boolean
optimization [11]. Other ways of handling incompletely specified functions in
multi-level synthesis are described in [2]. Unfortunately, these algorithms are
implemented in SIS [12] only (in the time-expensive full_simplify command)
or are not available at all. The most state-of-the-art optimization tool, ABC [7],
does not support external don’t cares at all.

Sassao addressed the problem of “hard to optimize” functions in [10]. How-
ever, this concerned two-level minimization only, without any relation to multi-
level synthesis.

As a result, we are not aware of any novel study on using don’t cares in
multi-level synthesis, when an incompletely specified function is described by
a two-level (SOP) form. Therefore, we are bound to use a two-level minimizer
prior to the multi-level optimization. In this paper, we show the issues caused
by this.

4 Experimental Results

Having a clue that a single-output two-level minimization could yield better
results for some “random” incompletely specified functions, we have performed
exhaustive experimental work in order to find out when does it yield better
results. We will restrict ourselves to exploring randomly generated functions
(PLAs) where there is a given number (ratio) of minterms specified, as this sce-
nario most closely resembles functions obtained from the direct implementation
of neural networks [8].

In particular, we have generated random functions (PLAs, the fr type [1])
with a given number of inputs, outputs, and specified minterms. The output
values of the minterms were also completely specified. Thus, the don’t cares
were given by the minterms missing in the PLA description. The distribution
of ones and zeroes in both the AND plane and the OR plane was uniform, i.e.,
50:50.

4.1 Multi-output vs. Single-output Minimization by Espresso

In the first experiment, these functions were processed in two ways:

1. Multi-output minimization by Espresso + synthesis into 2-input gates by
ABC, as described in Section 2,
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2. Single-output minimization by Espresso (using the -Dso option) + synthesis
into 2-input gates by ABC, as described in Section 2.

In Figure 2, there are results for functions having 10 input and 2 output
variables, with varying numbers of specified minterms, from 50 to 1024 (i.e.,
completely specified functions are at the rightmost side of the graph). For each
number of minterms, 20 random functions were generated.

The graph shows the ratios of resulting 2-input gates, between the two pro-
cesses. Thus, the values above 1 (the red line) are in favor of the second process.
We can see that most of the values in the graph are above 1. Thus, the single-
output minimization wins on average here, even with two output variables only.

Fig. 2. Comparison of multi-output and single-output minimization by Espresso run
prior to the synthesis by ABC, functions with 10 inputs and 2 outputs, 20 random
functions for each number of specified minterms

Now, let’s proceed with increasing the number of outputs. The results are
shown in Figure 3. The number of outputs was varied from 3 to 15. We see
an interesting trend here – when increasing the number of outputs, there starts
to appear a “bump” at 20-30% of specified minterms, where the multi-output
minimization results are the worst. Next, for more outputs, all the values are
above one, thus the single-output minimization generally wins.

Moreover, we can observe a strange “dynamic” behavior. When the number
of outputs becomes 10, we can see a see that there starts to appear a “gap”
between the points in the graphs. This gap increases with increasing the number
of outputs. This indicates that there seems to be a class of functions that are
“hard” and “very hard” for this synthesis scenario. The strange thing is that there
are no functions in between. When increasing the number of outputs further, the
gap disappears, in favor of those “very hard” functions. This phenomenon is even
emphasized when we increase the number of inputs, as shown in Figure 4, for 11
inputs.
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Fig. 3. Comparison of multi-output and single-output minimization by Espresso run
prior to the synthesis by ABC, functions with 10 inputs and 3-17 outputs, 20 random
functions for each number of specified minterms
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Fig. 4. Comparison of multi-output and single-output minimization by Espresso run
prior to the synthesis by ABC, functions with 11 inputs and 9-11 outputs, 20 random
functions for each number of specified minterms

4.2 Multi-output vs. Single-output Minimization by Boom

Now we may ask whether the phenomenon observed above is caused by Espresso
or whether it is a general problem of multi-output two-level minimization. Thus,
we have used Boom [6] instead of Espresso. Again, we have compared multi-
output and single-output minimization processes followed by ABC synthesis.

An example of the obtained results can be seen in Fig. 5, for a function
having 10 inputs and 10 outputs. We can see a very similar figure here - there
is that “bump” at ca. 25% specified terms. The difference from Espresso is that
there are no such “gaps” that can be observed in Figs. 3 and 4 – even when the
number of input variables increases, the behavior looks the same.

Fig. 5. Comparison of multiple- and single-output minimization by Boom run prior to
the synthesis by ABC, functions with 10 inputs and 10 outputs, 40 random functions
for each number of specified minterms

4.3 Boom vs. Espresso

Now let us compare the results obtained by Boom and Espresso, for both multiple-
output and single-output minimization followed by ABC optimization and syn-
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thesis into 2-input gates. The results are shown in Figure 6. All four combinations
are shown there.

It can be seen that in the case of a multi-output minimization run for both
Boom and Espresso, Boom outperforms Espresso in almost all cases (the upper-
left figure). The same holds for the multi-output minimization by Espresso com-
pared to a single-output minimization by Boom (the bottom-left figure). On the
other hand, the upper-right figure shows that the single-output minimization
done by Espresso wins over the multi-output minimization done by Boom.

The most important figure is the bottom-right one, where both Espresso
and Boom were run in the single-output mode. Here we can see no difference
between these two processes – there is no winner. The minor differences can be
attributed to random fluctuations. Thus, this indicates that the single-output
two-level minimization is better than the multi-output one, no matter what two-
level minimizer is used. Note that Espresso and Boom conduct the minimization
in very different ways, actually in opposite ones (Espresso goes in a bottom-up
way, while Boom goes in a top-down way and by completely different means).

Fig. 6. Comparison of multi-output minimization by Espresso with Boom (multiple-
output and single-output minimization) run prior to the synthesis by ABC, functions
with 10 inputs and 10 outputs, 40 random functions for each number of specified
minterms

4.4 Espresso vs. SIS

The other way of exploiting external don’t cares is using SIS and processing
them in the multi-level synthesis directly, without the two-level minimization.
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Thus, we have compared the results of running Espresso (both single- and multi-
output minimization) with SIS script script_rugged iterated 20-times. Both
were followed by the ABC mapping script shown in Sec. 2. The results are shown
in Figure 7, for a function of 6 inputs and 15 outputs. For larger functions, the
SIS script took too much time to finish for all the numbers of minterms.

We can see that in the case of multi-output Espresso minimization, the same
behavior (the “bump”) can be observed, and the results are overall inferior to
those of SIS. In the case of single-output minimization, the results are comparable
but still in favor of SIS. However, this might be expected because of the strength
of the Boolean optimization in SIS.

Fig. 7. Comparison with the SIS script script_rugged and the multi-output and
single-output minimization by Espresso run prior to the synthesis by ABC, func-
tions with 6 inputs and 15 outputs, 40 random functions for each number of specified
minterms

4.5 Commercial Tools

The final question we may ask is whether ABC is not responsible for the defi-
ciency, as it was run in all experiments. Thus, we have tried to use commercial
tools, particularly Vivado 2023.1 (Artix-7 chip) and Quartus 22.1 (Cyclone V
chip). In particular, the functions were processed by Espresso (both the single-
and multiple-output minimization), the resulting PLA was converted to VHDL
and submitted to Vivado and Quartus synthesis. The numbers of resulting 6-
LUTs (for Vivado) and ALMs (for Quartus) were counted. The results are shown
in Figures 8 and 9.

We can see that the behavior is rather similar to ABC. As for Vivado, we can
observe that “bump” again, even though it is in the region with more (ca. 90%)
don’t cares. When the functions become more specified, the effect of two-level
minimization completely disappears. In the case of Quartus, the results are sim-
ilar or worse – multi-output minimization always causes harm. The behavior for
functions with 8 input and output variables is ... just strange.
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Fig. 8. Comparison of multi-output and single-output minimization by Espresso run
prior to the synthesis by Vivado, functions with 7-9 inputs and outputs, 20 random
functions for each number of specified minterms

Fig. 9. Comparison of multi-output and single-output minimization by Espresso run
prior to the synthesis by Quartus, functions with 7-8 inputs and outputs, 20 random
functions for each number of specified minterms
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5 Discussion on the Espresso Results

We have done extensive experimental work to prove that the observed kinds of
behavior are not just random outliers. The behavior is consistent over randomly
generated functions with different numbers of input and output variables. The
summary of some observations is shown in Table 2, just for the multiple- and
single-output minimization by Espresso, followed by the ABC synthesis. We can
classify the results obtained from processing functions of different numbers of
input (rows) and output variables (columns) by the cases described above. This
is:

– Class A - no difference between the multiple- and single-output minimization
is observed

– Class B - the expected cases – single-output minimization is generally better
– Class C - the usual cases – we can see that “bump” there
– Class D - the strange cases – for some function sizes, there is the “gap”,

indicating there are some hard and very hard to synthesize functions
– Class E - the bad cases – the multi-output minimization badly fails in all

cases

The missing values were not calculated because of excessive computation
power demands, but we think the results are representative enough.

Table 2. Summary of the Espresso results. A = no difference, B = expected cases,
C = usual cases, D = The strange cases, E = when things go really bad

Inputs/Outputs 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 A A B B B B B B B B B C C C C C C C C
6 A A B B B B C C C C C C C C C C C C C
7 A B B B C C C C C C C C C C C C C C C
8 A B C C C C C C C C C C C C C C C C C
9 A B C C C C C D D D D E E E E E E E E
10 B C C C C C C C D D D D D E E E E E E
11 B C C D D D D D D D
12 B D D D D D D D D D D

6 Conclusion

We have shown experimentally that the structural bias introduced by the multiple-
output two-level minimization of incompletely specified functions is the cause of
the inefficiency of the subsequent multi-level synthesis. In the case of sparsely-
specified functions, the two-level minimization (done either by Espresso or Boom)
is just not able to exploit the don’t cares efficiently when the target implemen-
tation is a multi-level network, no matter what multi-level optimization process
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follows. We have shown that the best option is to use a single-output two-level
minimization since the multiple-output two-level minimization only spoils the re-
sult. This observation can be generalized for all randomly generated incompletely
generated functions, which actually resemble the state-of-the-art applications of
logic synthesis – the synthesis of neural networks implemented as combinational
circuits.
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