
Weighted Don’t Cares

Anna Bernasconi
Università di Pisa, Italy

annab@di.unipi.it

Valentina Ciriani
Università degli Studi di Milano, Italy

valentina.ciriani@unimi.it

Petr Fiser
Czech Technical University in Prague, Czech Republic

fiserp@fit.cvut.cz

Gabriella Trucco
Università degli Studi di Milano, Italy

gabriella.trucco@unimi.it

Abstract

In this paper we introduce and discuss the new concept of weighted don’t cares, i.e., we
propose to enrich the notion of don’t cares, by assigning them a weight. These weights
might be used to guide and refine the choices operated by the minimization algorithms
in handling the don’t care conditions. We then propose, and experimentally validate, the
first synthesis tool for functions with weighted don’t cares, called wBOOM. Experimental
results show that wBOOM covers, on average, 66% more weighted don’t cares than the
classical synthesis tool BOOM.

1 Introduction

Logic optimization of digital circuits often benefits from the use of don’t care conditions [10].
A don’t care of a Boolean function f : {0, 1}n → {0, 1}, is a point v of the Boolean space {0, 1}n
where the value of the function is not specified, i.e., it could be either 1 or 0. The final value
assigned to these points is usually decided by the minimization algorithm used to synthesize the
function. For instance, if we want to represent f as a minimal sum of products, we will set to 1
all don’t cares that allow to enlarge the dimension of the implicants and to get a more compact
algebraic form. On the contrary, we will set to 0 all don’t cares that would require the insertion
of new products in the final form.

In this paper we propose to enrich the notion of don’t cares, by assigning them a weight.
Thus, we define and study the new concept of weighted don’t cares. These weights might be used
to guide and refine the choices operated by the minimization algorithms in handling the don’t
care conditions. Our idea comes from the observation that, in some synthesis scenarios, possibly
different from the classical sum-of-products (SOP) minimization, some don’t care points might
help to reduce the area of the final circuit more than others. In other words, instead of treating
all don’t cares in the same way, we propose to enforce the minimization algorithms giving them
some criteria to choose which don’t cares should be preferentially covered. Weighted don’t cares
could also be applied in scenarios where there are don’t cares that, for some reason, should be
chosen before others. Observe that the weights can be decided before the synthesis phase, or
can be assigned dynamically by the minimization algorithms during logic synthesis.

Weighted don’t cares can be applied to different scenarios. In particular, in this paper we
analyze a concrete application of the concept of weighted don’t cares in the special synthesis
framework of decomposition of Boolean functions onto overlapping subspaces [3, 1, 2, 4, 9, 10].

We then deal with another important issue, which is the development of the first synthesis
tool for functions with weighted don’t cares. We have considered the two-level Boolean minimizer
called BOOM [8, 5, 6], and we have derived a new version, called wBOOM, that handles weighted
don’t cares, and uses the weights for choosing the don’t cares that will be covered in the final

circuit implementation of the function. We have experimentally evaluated this new tool, with
interesting results.

The paper is organized as follows. In Section 2 we discuss the concept of weighted don’t
cares, and discuss some possible applications. In Section 3 we describe a minimization tool,
wBOOM, that is sensitive to the presence of weighted don’t cares. Experiments are reported
in Section 4, in Section 5 we discuss the efficiency of wBOOM theoretically. Section 6 concludes
the paper.

2 Weighted Don’t Cares

A completely specified Boolean function f : {0, 1}n → {0, 1} can be simply represented by the
subset of {0, 1}n containing the points v such that f(v) = 1, i.e., the so-called ON-set of f . The
set of all other points, i.e., the points v such that f(v) = 0, is called the OFF-set of f . Hereafter
we will often denote the ON-set of the function f with the function f itself.

Let us now consider an incompletely specified function f , i.e., a Boolean function such that
f : {0, 1}n → {0, 1,−}. A point v of the Boolean space {0, 1}n such that f(v) = − is called
don’t care. Thus, the don’t care set (or DC-set) of f contains all the don’t cares for f . When
we synthesize an incompletely specified function f , the algebraic form for f must fulfill these
requirements:

• it must cover all points of the ON-set;

• it must not cover any point of the OFF-set;

• it might cover some points from the DC-set, in order to ease the minimization and to get
a more compact form.

In other words, the ON-set is the set of points that must be covered, the OFF-set represents the
points that must NOT be covered, while we do not have precise requirements for the points in
the DC-set, and we can choose whether covering or not covering them.

In this paper we want to enrich the notion of don’t cares, by assigning them a weight and
by using these weights to treat the don’t care points differently. Our idea comes from the
observation that some don’t care points could be more important than other in the sense that,
when covered, they might help, for example, in reducing the area of the final circuit more than
other don’t cares. So, instead of treating all don’t cares in the same way, we propose to enforce
the minimization algorithms, giving them some criteria to choose which don’t cares should be
preferentially covered. We introduce the following definition.

Definition 1 Let f be an incompletely specified function, and let min,max (min < max) be
two positive integers. The weight of a don’t care point v of f is an integer weight(v), min ≤
weight(v) ≤ max, that reflects the degree of preference of the don’t care v, i.e., the convenience
of covering v in the final circuit.

Thus, don’t cares with a bigger weight should be preferred to the other don’t cares, and should
be covered by the algebraic form for f .

2.1 Application

Weighted don’t cares can be applied to different scenarios. For instance, one could decide
to minimize a given function in steps. That is, instead of minimizing the whole function, that
could be too big to handle, one could decide to minimize subsets of its ON-set, and then take the
sum (i.e., the OR) of the resulting algebraic forms. Observe that these subsets are not necessarily
disjoint, as it happens for instance when the function to be minimized is given in a PLA form,
and we decide to minimize subsets of its products, in cascade. This “cascade minimization”
of the function immediately suggests the use of weighted don’t cares. Indeed, points already
covered during the first minimization steps do not need to be covered, if encountered again
in the next minimization phases. Thus, these points naturally become don’t cares during the
minimization process. It is also evident that, in order to avoid redundancies in the final circuit
that would compromise its testability, the minterms of a function should not be covered by
too many products. Therefore, we could assign a weight to the don’t cares generated during

00

10

11

01

00

10
11
01

1
0

1
1

0

1

1

0

1
0
1
1

1
0
 0

x

1

x

2

x

3

x

4

(a) Function f

00

1

0

10
11
01

1
0
1
1

1
0
 0

x
2

x

3

x

4

(b)Projection f|
0

1

1

00

1

0

10
11
01

1
1
1
0

1
0
 0

x

2

x

3

x

4

1

(c) Projection f|

1

00

1

0

10
11
01

1
0
1
0

1
0
 0

x
3
x
4

(d) I = f|
0
 f|
1

x
2

1

00

1

0

10
11
01

-
0
-
1

-
0
 0

x
2

x

3

x

4

(e) f|
0

-

00

1

0

10
11
01

-
1
-
0

-
0
 0

x

2

x

3

x

4

-

(f) f|

1

00

1

0

10
11
01

-
0
1
0

1
0
 0

x
3
x
4

(g) I

x
2

1

Figure 1: The Boolean function f of the running example.

the minimization steps, reflecting the number of times that a product has already covered that
minterm: minterms covered only a few times should get a higher weight, while minterms already
covered by many products should be assigned a low degree of preference, in order to condition
the choices of the minimization algorithm.

We now describe a concrete application of the concept of weighted don’t cares. This applica-
tion arises in a very natural way from the framework of decomposition of Boolean functions onto
overlapping subspaces [3, 1, 2, 4, 9, 10]. Suppose that we want to minimize a completely specified
Boolean function f depending on n binary variables x1, x2, . . . , xn. Consider a variable xi and
the two subspaces of {0, 1}n where xi = 1 and where xi = 0, whose characteristic functions are
xi and xi, respectively. If we project the given function f onto the two subspaces, we obtain the
two Shannon cofactors f |1 and f |0, that represent the projections of f onto the spaces xi and
xi. Consider now the intersection of the two sets, i.e., consider the set I = f |0 ∩ f |1. Observe
that I, f |1 and f |0 do not depend on xi. Thus, the original function f can be represented by
the following algebraic form:

f = xif |1 + xif |0 + I .

Consider for example the Boolean function f in Figure 1(a) depending on the four variables
x1, . . . , x4, whose ON-set is given by f = {0000, 0010, 0100, 0101, 0110, 1000, 1010, 1101, 1110, 1111},
and let xi = x1. We have f |0 = {000, 010, 100, 101, 110} (Figure 1(b)), f |1 = {000, 010, 101, 110, 111}
(Figure 1(c)), and I = {000, 010, 101, 110} (Figure 1(d)).

Note that the points in I are points that are also in the ON-sets of f |0 and f |1. For this
reason we set such points as don’t cares in f |0 and f |1, in facts they can be used for minimization
of f |0 and f |1, but are not necessary since are already covered by I.

Therefore, in our example we have (Figures 1(e), 1(f), and , 1(d)):

ON-set (f |0) = {100} DC-set (f |0) = {000, 010, 101, 110}
ON-set (f |1) = {111} DC-set (f |1) = {000, 010, 101, 110}

ON-set (I) = {000, 010, 101, 110} .

Now, we note that each minterm of f |1 corresponds to one minterm of f where xi = 1, each
minterm of f |0 corresponds to one minterm of f where xi = 0, while each minterm in I corre-
sponds to two minterms in f (one with xi = 0 and the other with xi = 1). If we minimize f |1
and f |0 as SOP forms, obtaining for instance SOP1 and SOP0, respectively, we can note that
if a point P of I is covered by both SOP1 and SOP0, then P can be set as a don’t care in I.
Thus, we propose to minimize the functions f |0, f |1 and I in this order: f |0, f |1 and finally I.

Consider again our running example, and suppose to minimize f |0 in SOP form. We obtain
SOP |0 = x4; thus we have covered the only minterm, 100, in the ON-set, and the three points
000, 010, 110 from the DC-set.

Let us now minimize f |1. Our main observation is that now we can set a weight in the DC-set
of f |1, introducing two subsets of don’t cares: DC-set with high preference = {000, 010, 110} and
DC-set with low preference = {101}. Indeed, if SOP1 covers one of the points in {000, 010, 110}
(already covered by SOP0) this point will be then set as a don’t care for the intersection set I.

According to our idea, a weighed minimizer would prefer the cover given by the product x2x3

to the cover given by x2x4. Therefore, we have SOP1 = x2x3.
We can now compute the don’t care set for I as I ∩ (SOP0 ∩ SOP1) (Figure 1(g)):

ON-set (I) = {000, 010, 101} DC-set (I) = {110} .

Thus we derive the SOP form SOPI = x2x4 +x2x3x4, instead of SOPI = x2x4 +x2x3x4 +x3x4,
that we would have computed from the alternative choice SOP1 = x2x4. Finally, with the right
choice of don’t cares for f |1, we obtain f = x1SOP0 + x1SOP1 + SOPI = x1(x4) + x1(x2x3) +
(x2x4+x2x3x4) containing 10 literals, instead of f = x1(x4)+x1(x2x4)+(x2x4+x2x3x4+x3x4)
containing 12 literals.

Observe that in the two particular decomposition techniques we have discussed, the weights
of the don’t cares are assigned dynamically during the synthesis phase.

3 Weighted BOOM: a Synthesis Tool for Functions with
Weighted Don’t Cares

The heuristic two-level (SOP) minimizer BOOM was proposed in [8, 5]. Later it was extended
to handle multi-output functions more efficiently [6]. Basically, the algorithm consists of two
steps: generation of implicants and covering problem solution. The major contribution of BOOM
lies in the implicant generation phase. First of all, it is randomized. Thus, different results may
be obtained from different runs on the same source data. This is exploited in the iterative min-
imization process, where the implicant generation phase is run repeatedly. Different implicants
are collected in an implicant pool. The covering problem is solved at the end, using all the
implicants, to obtain the final solution. This offers a possibility of trade-off between the result
quality and runtime – better results may be obtained for a cost of runtime. This is visualized
by Figure 2. A typical growth of the number of implicants (thin line) and decrease of the number
of terms in the solution (bold line) in time are shown. Notice the different scales for these two
curves.

The covering problem (CP) may be either solved exactly or approximately, using some heuris-
tic to select implicants into the solution. As for the exact method, AURA-II [7] was implemented.
This algorithm allows for choosing any implicant cost function and generates optimum solutions
minimizing this cost. The implicant cost in the original BOOM is set to the number of literals.
Note that there can also be more optimum solutions. Then AURA-II returns the first one found.

The approximate heuristic employed in BOOM is purely greedy, it constructs the solution by
gradually adding implicants to it. The heuristic has several decision stages, where the candidate
implicants are gradually filtered out:

1. Select implicants covering most of yet uncovered on-set terms.

2. From these, select implicants covering on-set terms that are difficult to be covered (they
are covered by the minimum of implicants).

3. From these, select the ones with the least cost (the number of literals).

4. If there are still more possibilities, choose one randomly.

The Weighted BOOM (wBOOM) benefits from the excess of implicants entering the CP
phase. Only few terms from the implicant pool form the solution, see Figure 2. Here, e.g., the
solution consists of less than 100 terms out of 7,000 generated ones after 5,000 iterations. It is
also very likely that many different solutions of equal quality exist.

The number of produced implicants may be further increased by introducing mutations into
the implicant generation phase. Implicants that are valid, but normally unlikely to be selected
into the solution, are produced in this way. For details see [5].

We can easily favour weighted DCs by influencing the CP cost function. We have decided
for keeping the number of solution terms and literals as the primary criterion for our purpose.

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

Solution term
sIm

pl
ic

an
ts

Iteration

0

20

40

60

80

100

120

140

160

Figure 2: The implicant generation progress in BOOM

But next, if there are more equally valued solutions, the solution covering most of the wDCs will
be preferred. This can be achieved by a very simple modification of the cost function: instead
of being the number of literals, it will be defined as follows:

cost(term) = literals(term) ∗ big number − covered wDCs(term),

where big number is any number higher than the number of possibly covered wDCs. This
ensures that the number of literals will be minimized preferably, while the number of covered
DCs will be the secondary criterion. But definitely the cost function may be modified in other
ways, depending on the actual designer’s demands.

Note that this approach can easily be generalized to support multiple DC weights, too. We
can just compute the summary weight of covered DCs, instead of counting the number of covered
wDCs. This is the way actually implemented in wBOOM.

4 Experimental Results

The synthesis tool that takes the weighted don’t cares into account, wBOOM, has been applied
to the Espresso benchmark suite [11], running on a Pentium 1.6 GHz processor with 1 GB
RAM. We used the weights {0, 1} for don’t cares derived by the overlapping synthesis problem
described in [2], and briefly recalled in Section 2. Weight 1 means that the don’t care has a
higher priority than don’t cares with the weight 0. We have tested the practical performance
of wBOOM, by comparing its results to the classical BOOM minimizer [6]. Both tools have been
run with the choices of 200 iterations and 20% of CD-search mutations [5].

wBOOM first optimizes the number of products and literals, and then it tries to maximize the
covered don’t care weighs, that is, in the considered scenario, wBOOM maximizes the number
of covered don’t cares with weight equal to 1 (shortly denoted as 1-wDCs). Therefore, the
discussion is based on the comparison between the number of 1-wDCs covered by wBOOM
compared to the ones covered by BOOM.

We report in Table 1 a significant subset of the results. The first column reports the name
of the instance considered. The following three columns refer to the experiments with wBOOM
and report the number of products, the number of covered 1-wDCs, and the computational
time (in seconds). The next three columns report the number of products, the number of
covered 1-wDCs, and the computational time (in seconds) obtained with the BOOM minimizer.
The last two columns compare the results showing the Absolute gain (i.e., the difference
between number of 1-wDCs covered by wBOOM and BOOM) and the Gain rate (i.e., the
difference between the number of 1-wDCs covered by wBOOM and BOOM, divided by the
number of 1-wDCs covered by wBOOM).

wBOOM BOOM Comparison
Products 1-wDCs Time Products 1-wDCs Time Absolute gain Gain rate

add6 93 30 16.94 93 11 17.16 19 0.63
alu2 14 28 0.66 14 6 0.66 22 0.79
amd 1 0 0.30 1 0 0.28 0 0.00
b12 11 7 0.22 11 5 0.20 2 0.29
b9 12 0 3.19 12 0 3.17 0 0.00

bench 3 3 0.05 3 1 0.03 2 0.67
co14 13 117 1.06 13 0 1.06 117 1.00
dc2 18 162 0.30 18 0 0.34 162 0.00

ex1010 52 49 72.61 50 29 92.25 20 0.41
exep 50 148 13.77 50 1 13.78 147 0.99
f51m 14 78 0.22 14 6 0.22 72 0.92
ibm 12 0 3.73 12 0 3.77 0 0.00
in0 34 126 4.95 34 3 4.94 123 0.98
in5 25 161 9.45 26 7 9.47 154 0.96
life 35 315 2.61 35 0 2.59 315 1.00
m1 12 12 0.09 12 12 0.09 0 0.00
m2 44 148 1.06 44 1 1.08 147 0.99

max1024 86 312 5.55 87 6 5.53 306 0.98
max512 40 122 1.47 40 15 1.45 107 0.88
newcwp 5 21 0.02 5 3 0.01 18 0.86

newtpla2 3 19 0.09 3 0 0.11 19 1.00
p3 10 7 0.25 10 5 0.25 2 0.29

prom2 225 751 57.63 227 49 62.89 702 0.93
rckl 31 279 13.53 31 0 13.52 279 1.00
rd73 32 240 1.55 32 6 1.55 234 0.98
shift 50 18 0.92 50 18 0.84 0 0.00
sqn 12 49 0.25 12 4 0.16 45 0.92
t1 2 18 0.17 2 0 0.16 18 1.00

test1 36 51 2.52 36 6 2.63 45 0.88
tial 170 202 180.09 171 89 163.03 113 0.56

x1dn 15 15 36.09 15 10 36.36 5 0.33
z4 14 126 0.33 14 0 0.25 126 1.00

AVERAGE 104.38 0.66
STD DEV 189.77 0.39

Table 1: Comparison between wBOOM and BOOM.

Comparing the number of covered 1-wDCs, we can notice that even if the main synthesis
objective is the minimization of the number of products, wBOOM succeeds in maximizing the
number of covered weighted don’t cares without loosing in minimization time. Indeed, the
wBOOM covers, on average, 66% more weighted don’t cares that BOOM.

We have also tested wBOOM in the particular decomposition problem described in Sec-
tion 2.1. wBOOM improved the final form in about 10% of the considered benchmarks, but the
gain was quite low (about 1% less products), probably because the SOPIs were already very
near to the optimum.

5 Solutions Count Analysis

Assuming the cost function from Section 3, the necessary condition for success of wBOOM is
the existence of different solutions with the same number of literals. Then, wBOOM will return
the one maximizing the number of covered DCs. One may wonder if this happens in practice –
do there exist more solutions of equal size for practical examples? We may also ask how many
different optimum solutions exist.

We have performed the following experiment to answer these questions: we have run BOOM
(not wBOOM this time) in the same configuration as in Section 4 (200 iterations, 20% CD-Search
mutations) 100-times and recorded all different solutions ever obtained (even in course of the
iteration). Note that all the results were prime and irredundant covers. Results for some of the
benchmarks coming from the decomposition process (see Subsection 2.1) are shown in Table 2.
The total number of different solutions is shown in the second column, after the benchmark
name. Then the number of obtained different “best” solutions is given. Then, numbers and
percentages of solutions, whose quality is less than 5% (10%, 20%, respectively) worse than the
best solution are shown.

We can observe that for most of the circuits only one “best” solution was obtained, which
was probably the optimum one. Of course, symmetric circuits, like max512, sym10, Z9sym [11]
have adequate numbers of different P-equivalent solutions. However, a plentiful of different near-
optimum solutions can be observed. This is illustrated in Figure 3 for the ex1010 [11] circuit.
Such a behavior can be observed for most of the tested circuits.

benchmark solutions best solutions ≤ 5% ≤ 10% ≤ 20%
add6 2598 1 19 (1%) 218 (8%) 2580 (99%)
alu2 114 1 38 (33%) 73 (64%) 105 (92%)
alu3 1444 1 204 (14%) 495 (34%) 1133 (78%)
amd 2 1 1 (50%) 1 (50%) 1 (50%)
b12 212 1 26 (12%) 88 (42%) 212 (100%)
b9 929 1 52 (6%) 154 (17%) 319 (34%)
bench 4283 50 2599 (61%) 3803 (89%) 4213 (98%)
co14 1 1 1 (100%) 1 (100%) 1 (100%)
dc1 1 1 1 (100%) 1 (100%) 1 (100%)
dc2 16 1 1 (6%) 7 (44%) 16 (100%)
ex1010 17020 1 293 (2%) 6144 (36%) 16172 (95%)
ex7 909 2 47 (5%) 143 (16%) 315 (35%)
exep 2343 2 2139 (91%) 2334 (100%) 2343 (100%)
f51m 315 1 19 (6%) 70 (22%) 296 (94%)
ibm 1242 1 45 (4%) 169 (14%) 700 (56%)
in7 43 4 4 (9%) 18 (42%) 34 (79%)
inc 24 2 8 (33%) 11 (46%) 24 (100%)
jbp 1166 1 97 (8%) 429 (37%) 829 (71%)
life 1 1 1 (100%) 1 (100%) 1 (100%)
log8mod 37 2 19 (51%) 30 (81%) 37 (100%)
luc 4 2 4 (100%) 4 (100%) 4 (100%)
m1 9 1 2 (22%) 2 (22%) 9 (100%)
m2 141 1 87 (62%) 135 (96%) 141 (100%)
max512 1131 122 682 (60%) 947 (84%) 1129 (100%)
misj 15 1 1 (7%) 1 (7%) 1 (7%)
mlp4 338 2 25 (7%) 138 (41%) 328 (97%)
newcwp 2 1 1 (50%) 1 (50%) 2 (100%)
newtpla2 25 1 4 (16%) 7 (28%) 9 (36%)
p3 20 2 2 (10%) 2 (10%) 18 (90%)
p82 12 1 6 (50%) 9 (75%) 12 (100%)
radd 344 1 3 (1%) 11 (3%) 80 (23%)
rckl 214 1 214 (100%) 214 (100%) 214 (100%)
rd73 1 1 1 (100%) 1 (100%) 1 (100%)
risc 1 1 1 (100%) 1 (100%) 1 (100%)
root 1163 3 249 (21%) 902 (78%) 1163 (100%)
ryy6 8499 1 566 (7%) 2649 (31%) 7406 (87%)
shift 414 1 230 (56%) 313 (76%) 414 (100%)
soar 1043 1 9 (1%) 59 (6%) 506 (49%)
sqn 113 1 23 (20%) 93 (82%) 113 (100%)
sym10 875 100 147 (17%) 242 (28%) 483 (55%)
t1 8 1 1 (13%) 1 (13%) 7 (88%)
test1 2937 1 1463 (50%) 2449 (83%) 2864 (98%)
test4 9702 4 58 (1%) 1116 (12%) 9666 (100%)
vg2 2 1 1 (50%) 1 (50%) 2 (100%)
vtx1 1149 4 929 (81%) 1009 (88%) 1103 (96%)
x1dn 8 1 1 (13%) 1 (13%) 1 (13%)
x2dn 5 1 1 (20%) 4 (80%) 5 (100%)
x9dn 741 1 634 (86%) 675 (91%) 731 (99%)
z4 395 1 37 (9%) 202 (51%) 381 (96%)
Z5xp1 153 1 61 (40%) 137 (90%) 153 (100%)
Z9sym 3178 99 751 (24%) 1329 (42%) 2541 (80%)

Table 2: Numbers of solutions

We can conclude that wBOOM becomes efficient especially for symmetric functions, provided
that don’t cares are not symmetrical as well. Next, if the optimum solution is not required, many
solution choices are available, thus don’t cares can be exploited very efficiently, too.

6 Conclusion

We have introduced a new concept of weighted don’t cares, and proposed a minimizer wBOOM,
for a two-level (SOP) synthesis of Boolean functions with weighted don’t cares.

Future work includes a more complete exploration of different synthesis scenarios that could
benefit from the notion of weighted don’t cares. Moreover, as the present version of wBOOM
optimizes the number of products before trying to maximize the covered DC weighs, we would
like to design a new version of wBOOM even more sensitive to the weights of the don’t care points,
by considering DC weights in the very implicant generation phase. It would be also interesting
to find other applications of the concept of weighted don’t cares showing more interesting gains
in the size of the final circuit implementations.

3 0 0 4 0 0 5 0 0 6 0 0
0

2 0 0

4 0 0

6 0 0

Fre
qu

en
cy

L i t e r a l s

Figure 3: Distribution of different implicants

References

[1] A. Bernasconi, V. Ciriani, and R. Cordone. On Projecting Sums of Products. In 11th
Euromicro Conference on Digital Systems Design: Architectures, Methods and Tools, pages
787–794, 2008.

[2] A. Bernasconi, V. Ciriani, G. Trucco, and T. Villa. On Decomposing Boolean Functions
via Extended Cofactoring. In Design Automation and Test in Europe (DATE), pages 1464–
1469, 2009.

[3] T. Czajkowski and S. Brown. Functionally Linear Decomposition and Synthesis of Logic
Circuits for FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(12):2236–2249, 2008.

[4] E. Dubrova. A polynomial time algorithm for non-disjoint decomposition of multi-valued
functions. In International Symposium on Multi-Valued Logic, pages 309–314, 2004.

[5] P. Fiser and J. Hlavicka. BOOM, A Heuristic Boolean Minimizer. Computers and Infor-
matics, 22(1):19–51, 2003.

[6] P. Fiser and H. Kubatova. Flexible two-level boolean minimizer BOOM-II and its applica-
tions. In Euromicro Conference on Digital Systems Design (DSD), pages 369–376, 2006.

[7] E. Goldberg, L. Carloni, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Negative
thinking by incremental problem solving: application to unate covering. In Proceedings
of the 1997 IEEE/ACM international conference on Computer-aided design, pages 91–98,
Washington, DC, USA, 1997.

[8] J. Hlavicka and P. Fiser. BOOM, a heuristic boolean minimizer. In Proc. of International
Conference on Computer-Aided Design,, pages 493–442, 2001.

[9] B. Rytsar. A new approach to the decomposition of Boolean functions. 4. non-disjoint
decomposition: the method of p, q-partitions. Cybernetics and Sys. Anal., 45(3):340–364,
2009.

[10] T. Sasao. Switching Theory for Logic Synthesis. Kluwer Academic Publishers, 1999.

[11] S. Yang. Logic synthesis and optimization benchmarks user guide version 3.0. User guide,
Microelectronic Center, 1991.

