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Abstract 
In this paper we propose several methods of generating large benchmark circuits for testing 

logic synthesis tools. The benchmarks are derived from real circuits, so that they are functionally 
equivalent to their origins. We introduce misleading and/or redundant structures into them, making 
the benchmark size blow up significantly, with respect to the original circuit. Such benchmarks 
can be advantageously used for testing logic synthesis tools; the aim is to discover whether 
particular synthesis processes are sensitive or immune to particular circuit transformations. 

1 Introduction 
Despite of all the late and recent developments in logic synthesis, current tools are not able to cope 
with newly emerging designs. Not only their ever-increasing size becomes a problem; there have been 
discovered small circuits, for which synthesis tools produce extremely bad results [1], with the size 
orders of magnitude higher than the optimum. Lately we have found a huge class of practical circuits 
for which synthesis severely fails as well [2], in both academic (SIS [3], ABC [4]) and commercial 
tools. 

For these reasons, benchmarking becomes ever more important. Studying the behavior of synthesis 
tools on realistic benchmarks with a known and properly defined origin could disclose the nature of the 
problems. 

The failure of synthesis tools is most apparent for originally small circuits, whose description was 
altered to make them large, or to introduce features the synthesis has problems with. In this paper we 
propose several methods of artificially “enlarging” circuits while preserving their function. Such 
benchmarks give us the benefit of knowing the upper bound of their complexity, as it is the original 
circuit size. Some of the methods are adjustable (in terms of specifying the resulting circuit size) 
to some extent, some are not. In general, any circuit may be processed by any of the proposed 
“enlarging” methods, sometimes without a guarantee of a circuit enlargement. 

After synthesis, the resulting circuit size should not exceed the upper bound, regardless of the 
circuit alteration. However, in this paper we show that many synthesis tools, even commercial ones, 
fail to rediscover the original circuit structure. The size of the result is proportional to the size of the 
source circuit. Thorough evaluation and analysis of the behavior of the synthesis tools is out of the 
scope of the paper; here we just present methods of generating benchmark circuits. 

2 Previous Work 
Since there always has been a lack of publicly available practical (industrial) benchmark circuits, there 
have been many attempts for artificial benchmark generation. These benchmarks are targeted either 
to test logic synthesis processes in general (e.g., [5], [6], [7]), or to test partitioning and place&route 
algorithms in particular [8], [9]. In [7], the circuit functionality is considered as well, apart from the 
Rent’s rule only, as in [8], [9]. However, the generated circuits are apparently much more redundant 
than their industrial origins. A way of generating realistic clones of real circuits is proposed in [6]. 
Here detailed characteristic (signature) is extracted from the seed circuit, i.e., a real circuit that serves 
as a base, from which the clone is created. A circuit with a structure very similar to the seed circuit is 
produced this way. Again, the function of the generated circuit is not known and not predictable; the 
generated circuit is random and may degrade to a simple constant in an extreme case. 



A generic method of generating “difficult” benchmarks is proposed in [1]. Even though the 
benchmarks are artificially constructed and their function makes no sense, their optimum or upper 
bound sizes are known. For details see Subsection 2.1.  

The first attempt to generate benchmark circuits functionally equivalent to real circuits was 
proposed in [5]. Here a set of 12 simple network transformation rules was determined. New benchmark 
circuits are generated by randomly applying these rules to the seed circuit. The authors have proven 
that any (functionally equivalent) network may be obtained from any network by a sequence of these 
rules. Perhaps due to chaotic application of the transformation rules, synthesis tools (like SIS [3]) did 
not have too big problems with the generated circuits presented in experimental results in [5]. 

2.1 LEKO and LEKU Benchmarks 
Up to the knowledge of the authors, circuits substantially difficult for current synthesis processes were 
introduced in [1] for the first time, originally to test the performance of LUT (look-up table) mappers. 
These circuits were called LEKO (Logic Examples with Known Optimum) and LEKU (Logic 
Examples with Known Upper Bound) benchmarks. The LEKO benchmarks are constructed 
by replicating a relatively small circuit having n inputs and n outputs (n=5, 6), given as a Boolean 
network of two-input nodes. Optimum mapping into look-up tables with 4 inputs (4-LUTs) is known.  

The LEKU benchmarks are constructed by collapsing the LEKO circuits into two-level 
sum-of-product (SOP) descriptions, followed by technology mapping. The circuit’s original structure 
is thus completely obscured. Consequently, the circuit description (network) size grows up 
significantly, since the obtained SOP is very large. Technology mapping run upon the SOP just 
decomposes the huge AND and OR gates, producing a network of numerous 2-input NAND gates. 

Since the LEKU circuits are functionally equivalent to the LEKO ones, their expected size is 
known. However, even better designs could be theoretically obtained by good synthesis and mapping. 
Therefore, the LEKO size is the upper bound imposed on the size of the LEKU circuits. 

The process of the LEKU benchmarks construction is depicted in Figure 1. The 5-input G5 core 
circuit is used to construct the multiplied circuit G25. Two different decomposition procedures are 
used: the ABC  balance command to obtain the LEKU-CB circuit and the SIS tech_decomp command 
to obtain LEKU-CD. For details see [1]. 
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Figure 1: LEKU benchmarks construction 

3 The Proposed New Benchmark Generation Methods 
3.1 Realistic LEKU Benchmarks 
The Cong & Minkovich’s LEKU circuits [1] are basically constructed by intentionally introducing a 
bad structure into an artificially constructed circuit, resulting in a large circuit description. Other, real 
circuits can be processed in the same way (Figure 2). Collapsing a multi-level network into a two-level 
circuit completely destroys the circuit original structure, which is then very difficult to be recreated. 
Processing the circuit by a global BDD [10] does the same job. The size of the circuit usually 
significantly grows up, as in the LEKU case, although collapsing of some circuits may yield smaller 
representations. This is documented by Figure 3. Here 250 ISCAS’85 [14], ISCAS’89 [15] and 
IWLS’93 [16] benchmarks were first mapped into 2-input gates, then collapsed and mapped again 
(everything was performed by ABC [4]). The ratio between the original circuit size (in terms of 2-input 
gates) and the size after collapsing is indicated in the y-axis. In summary, 153 of the circuits were 
enlarged by collapsing. 

In our experiments, collapsing of multi-level networks was done by SIS [3] or ABC [4]. The source 
circuit described in BLIF [11] is converted to a single multiple-output PLA description. Therefore, 
some logic may be shared between the outputs, in form of group terms. However, even though it may 
seem to be beneficial for the further synthesis, we have observed that sometimes the term sharing just 
introduces new misleading structures [12]. 
 



Original
circuit

Collapse SIS tech_decomp

Global BDD SIS tech_decomp

Possibly
large circuit

Possibly
large SOP

Possibly
large circuit

Possibly
large SOP  

Figure 2: Realistic LEKU benchmarks construction 
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Figure 3: Size increase by collapsing 

3.2 Parity Benchmark Circuits 
Recently we have encountered a new class of hard-to-synthesize realistic circuits. These circuits are 
constructed by appending a XOR tree to the circuit’s outputs, to obtain one parity bit [2] (Figure 4). 
Such circuits can be used as parity predictors [13]. The original circuit output values are not important 
here; only the resulting parity bit is of concern. I.e., single-output functions are produced as a result. 

The upper bound of the area is the sum of the original circuit size and the size of the XOR tree. We 
have found that conventional synthesis tools are not able to minimize the circuit size efficiently, when 
the circuit is collapsed into a two-level SOP network (in a way described in Subsection 3.1) and 
resynthesized [12]. This process fully resembles the construction of the artificial LEKU benchmarks. 
The results of the resynthesis are spun between two extreme cases: at the “good” end, the circuit size is 
significantly reduced with respect to the upper bound, at the other end the size explodes [2]. The 
reason for the size explosion is the same as for the LEKU benchmarks – the obtained SOP is too large 
and the subsequent synthesis is not able to rediscover the original circuit structure. The need for XOR 
decomposition has been emphasized even more in these experiments.  Tools not able to perform the 
XOR decomposition sometimes produced results 50-times larger than the upper bound. 
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Figure 4: Parity benchmark circuits construction 

3.3 Tautology and Near-Tautology Benchmarks 
A different kind of artificially complex benchmarks can be created by generating large random SOPs. 
If the number of product terms (terms of higher dimensions, not only minterms) in the SOP exceeds a 
particular threshold, the function likely turns into tautology. Functions described by SOPs with the 
number of terms near this tautology threshold are usually very simple – they are “near-tautologies”. 
Two-level minimization must be run in order to discover the true nature of functions described 
by these “big” SOPs. However, ABC and commercial tools do not do so for scalability and other 
reasons. If such a SOP (in form of a PLA or mapped into technology) is submitted to the synthesis, 
huge circuits are produced. 



3.4 Partial Collapsing 
The collapsing process in the above-mentioned methods produces results depending solely on the 
source circuit; the gate count of the result cannot be adjusted. Different collapsing tools e.g., ABC [4] 
and SIS [3], however, usually produce slightly different results. Results from BDDs processing can be 
influenced by different variable orderings [10]. Unfortunately, experiments show that the resulting 
decomposed network is either “too small” (the collapsing process is beneficial for the source circuit), 
or “too large” (the source circuit is difficult to be collapsed). The same holds for the parity circuits, 
since collapsing is involved here as well. 

A straightforward way to adjust the size of any network is partial collapsing. Only a part of the 
circuit is extracted (subcircuit), collapsed, decomposed into 2-input gates, and returned back into the 
network. The basic algorithm is shown in pseudo-code in Figure 5. The parameters are the required 
boundaries of the resulting circuit size. First, the initial size of the subcircuit to be extracted is set (say 
4 gates). After the circuit part extraction and collapsing the resulting network is checked for validity, 
in terms of the required size. If its size is too small, the process is repeated with increased size of the 
circuit part. For details on the part selection process (Extract_Part) see [17]. 

 
Partial_Collapse( Network N, int min, int max ) { 
 size = initial_size; 
 do { 
  (P, NR)  = Extract_Part(N, size); 
  P’ = Collapse&Decompose(W); 
  N’ = NR ∪ W’; 
  if ( |N’| ≥ min && |N’| ≤ max ) { N = N’; break; } 
  else if ( |N’| < min ) size++; 
 } while (true); 
 return N; 
} 

Figure 5: The benchmark generation algorithm 

Partial collapsing of the circuit is meant to produce circuits larger than the originals and smaller 
than the completely collapsed circuits. However, circuits even larger than completely collapsed circuits 
have been sometimes generated, possibly for several reasons. The number of inputs of the extracted 
circuit part may be higher than the number of inputs of the entire circuit. Thus, the collapsing 
procedure could be sometimes more demanding. Next, even though the source circuit function is 
“simple” and can be described by a few product terms, the extracted part function may be more 
complex. As an example, the circuit size obtained by running the partial collapsing on the c432 [14] 
circuit, as a function the collapsed subcircuit size is shown in Figure 6. No size control was applied 
here (minima and maxima in Figure 5). It can be seen that even though the completely collapsed circuit 
has approx. 2,000 gates, there is a circuit having more than 10,000 gates. Note that the original c432 
has 145 gates, which corresponds to the 0-sized collapsed part in the graph. 
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Figure 6: Partially collapsed circuit sizes (c432) 

A more striking example is the behavior of the tautology benchmarks (Subsection 3.3) processed 
by the partial collapsing. Even though the fully collapsed circuit is a constant, partially collapsed 
circuits can be much larger than the original. This is illustrated by Figure 7a, b (the y-axis is trimmed 
in latter one, to show the details). When increasing the collapsed subcircuit size up to some limit, the 
resulting circuit size slowly increases. When enlarging the subcircuit size, a slow decrease of the size is 



observed. In the area where the collapsed subcircuit size nears the original circuit size, two extreme 
cases occur: either the tautology is discovered (hence the resulting circuit size shrinks to 0), or 
extremely large circuits are produced. 
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Figure 7a, b: Partially collapsed tautology 

3.5 Replicating Shared Logic 
Another way to enlarge a network is to duplicate a part of the logic that is originally shared. 
A branching signal is identified and the transitive fan-in of this signal is duplicated, to a given depth 
(or up to primary inputs). The branching is then split and each branch is connected to one of the two 
replicas. An example is shown in Figure 8, for the c17 ISCAS’85 [14] circuit. The net G16, together 
with its transitive fan-in (gates G16 and G11), is duplicated here. Two parameters drive the generation: 
the number of duplicated branches and the duplication depth. 
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Figure 8: Duplicating shared logic example 

4 Experimental Results 
In this section we present some representative benchmarks generated by methods described 
in Section 3, with results obtained by ABC and two commercial synthesis tools. 

All the data are summarized in Table 1 (at the end of this document). First, the original (seed) 
circuit name is shown, with numbers of its inputs (“i”) and outputs (“o”). Then the process by which 
the circuit was modified is described and the number of 2-input gates obtained after mapping by ABC 
“map” command is given. 

The original circuits are indicated by the shadowed rows. Their synthesis results serve us as upper 
bounds of the complexity; benchmarks with equal names are functionally equivalent. Each circuit was 
processed by a global BDD and by SIS and ABC collapsing (Subsection 3.1). Next, partial collapsing 
was applied (Subsection 3.4), and finally duplicities were introduced according to Subsection 3.5. The 
latter two processes demonstrate possibilities of adjusting the resulting gate counts. In case of the 
partial collapsing, the “size” parameter indicates the size of the collapsed subcircuit, in gates. The 
“depth” value corresponds to the replication depth parameter (Subsection 3.5). 

We present results of five representative circuits: the c432 [14] (whose size significantly increases 
by collapsing), c880 [14] (whose size significantly increases by processing by a global BDD and by 
collapsing as well), s1238 [15] and b4 [16] with parity and one randomly generated big tautologic PLA. 

The right-hand part of the table contains the results of four different synthesis processes. In all 
cases, synthesis and mapping into 4-input LUTs has been performed. First, the circuits were 
synthesized by ABC [4], by using a sequence of commands suggested by ABC authors: “choice; fpga; 
lutpack”. The “choice” script performs several different steps of resynthesis, hence a “good” synthesis 
effort is ensured. Next, results of two commercial tools are presented (“#1”, “#2”). For some circuits 
commercial tools failed to produce any result at all (the “N/A” entries). 



For these examples we can observe how well the partial collapsing and introduction of duplicities 
adjusts the circuit size. We have processed numerous different circuits and the behavior of these 
adjustable benchmark generation methods mostly fully resembles the presented representatives. 
However, there are limitations based on the seed circuit function and structure. For example, the c880 
circuit size cannot be much increased by introducing duplicities, because of its low depth (only 14 
levels). Partial collapsing also needs not be working universally for any circuit; there needs not exist a 
subcircuit increasing the network size, when collapsed. 

Next, a sorry fact may be observed: the synthesized LUT numbers grow with growing source 
circuit sizes, for all studied synthesis tools. Only ABC is completely immune to the introduction 
of duplicities, commercial tools are immune only partially. No tool is able to cope up with sizes of the 
collapsed circuits. This is illustrated by the two graphs shown in Figure 9. The x-axis describes gate 
counts of the original circuits (c432, s1238 with parity), the y-axis gives the resulting LUT counts. 
Data from all the processes Table 1. are present in the graph. Two different behaviors may be 
observed: the bottom data points represent benchmarks generated by introducing duplicities, while the 
almost linearly growing dependencies depict the collapsing (and global BDD) processes.  
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Figure 9: Synthesis results for c432 and s1238_p circuits 

We have also tried to map these circuits into 6-LUTs, hoping for better performance of commercial 
tools when applied to modern FPGAs designs. However, no different behavior was observed. As an 
example, we show the data and graph for the c432 circuit in Table 2 and Figure 10. 

 
Process Gates ABC #1 #2 

original 145 73 58 82 
global BDD 2,017 559 545 589 
ABC collapse 2,658 873 1,138 1,104 
SIS collapse 7,075 2,354 2,869 3,289 
Partial collapse, size 98 1,247 582 583 615 
Partial collapse, size 109 3,077 1,086 1,264 1,682 
Partial collapse, size 138 5,026 1,909 2,116 2,514 
Partial collapse, size 140 11,531 4,703 5,013 6,205 
10k duplicities, depth 1 1,428 73 199 249 
10k duplicities, depth 2 4,905 73 378 424 
10k duplicities, depth 3 8,389 73 327 468 
10k duplicities, depth 4 11,349 73 362 525 
10k duplicities, depth 5 16,040 73 397 565 
10k duplicities, inf. depth 17,749 73 212 488 
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 Table 2: c432 mapped to 6-LUTs Figure 10: c432 mapped to 6-LUTs 

5 Conclusions 
We have presented several novel methods of generating artificially large benchmark circuits, which are 
functionally equivalent to their origins. An upper bound of their complexity is known and it is 
relatively small. Different adjustable processes of increasing the circuit size have been proposed. This 
enables us to test efficiency, scalability and capabilities of synthesis tools. Even though the benchmark 
circuits are generated by artificial and intentional modifications of networks, it cannot be guaranteed 
that such “bad” networks cannot be produced by, e.g., HDL synthesis. 



All the proposed benchmark generation methods may be applied to any seed circuit, however the 
size increase is not always guaranteed. Two of the methods are adjustable to some extent, in terms 
of the required number of the produced benchmark circuit gates. 

Experiments have shown that both academic and commercial tools are not able to perform 
satisfactorily. The obtained synthesis result sizes increase with increasing size of the source circuits, 
even though equal results should be produced. This indicates that gate-level logic synthesis crucially 
lacks in many aspects and there is still an open field for improvements.  
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Table 1: Detailed experimental results 

Benchmark circuit Synthesis into 4-LUTs 
Bench i o Process Gates ABC #1 #2 

c432 [14] 36 7 original 145 84 77 118 
c432 [14] 36 7 global BDD 2,017 1,031 1,023 1,333 
c432 [14] 36 7 ABC collapse 2,658 1,246 1,548 1,648 
c432 [14] 36 7 SIS collapse 7,075 3,361 3,872 4,738 
c432 [14] 36 7 Partial collapse, size 98 1,247 626 782 916 
c432 [14] 36 7 Partial collapse, size 109 3,077 1,445 1,699 2,422 
c432 [14] 36 7 Partial collapse, size 138 5,026 2,598 2,761 3,727 
c432 [14] 36 7 Partial collapse, size 140 11,531 6,647 6,844 9,255 
c432 [14] 36 7 10k duplicities, depth 1 1,428 84 244 333 
c432 [14] 36 7 10k duplicities, depth 2 4,905 84 447 586 
c432 [14] 36 7 10k duplicities, depth 3 8,389 84 396 637 
c432 [14] 36 7 10k duplicities, depth 4 11,349 84 452 739 
c432 [14] 36 7 10k duplicities, depth 5 16,040 84 472 771 
c432 [14] 36 7 10k duplicities, inf. depth 17,749 84 249 684 
c880 [14] 60 26 original 208 113 110 122 
c880 [14] 60 26 global BDD 407,098 93,190 174,983 N/A 
c880 [14] 60 26 ABC collapse 13,727 7,437 8,109 9,460 
c880 [14] 60 26 SIS collapse 30,015 19,787 20,487 28,017 
c880 [14] 60 26 Partial collapse, size 129 1,008 485 601 597 
c880 [14] 60 26 Partial collapse, size 171 5,034 2950 2,394 3,769 
c880 [14] 60 26 Partial collapse, size 201 10,423 6224 5,010 7,887 
c880 [14] 60 26 10k duplicities, depth 1 1,258 113 97 262 
c880 [14] 60 26 10k duplicities, depth 3 1,828 113 109 317 
c880 [14] 60 26 10k duplicities, inf. depth 2,962 113 99 140 
s1238_p [15] 32 1 original 493 229 241 263 
s1238_p [15] 32 1 global BDD 6,282 3,849 4,055 3,839 
s1238_p [15] 32 1 ABC collapse 31,839 19,741 21,875 25,793 
s1238_p [15] 32 1 SIS collapse 39,636 26,313 28,254 N/A 
s1238_p [15] 32 1 Partial collapse, size 150 1,365 750 792 895 
s1238_p [15] 32 1 Partial collapse, size 219 4,876 2,263 2,298 3,586 
s1238_p [15] 32 1 Partial collapse, size 309 12,001 6,504 7,120 8,991 
s1238_p [15] 32 1 Partial collapse, size 376 25,756 14,288 16,425 20,029 
s1238_p [15] 32 1 Partial collapse, size 454 40,845 24,913 25,906 34,180 
s1238_p [15] 32 1 Partial collapse, size 477 59,330 39,595 42,756 57,306 
s1238_p [15] 32 1 5k duplicities, depth 1 13,171 229 1,125 2,218 
s1238_p [15] 32 1 5k duplicities, depth 2 27,480 229 1,828 3,640 
s1238_p [15] 32 1 5k duplicities, depth 3 47,898 229 2,356 4,760 
s1238_p [15] 32 1 5k duplicities, depth 4 91,889 229 3,582 N/A 
s1238_p [15] 32 1 5k duplicities, depth 5 131,173 229 4,014 8,760 
s1238_p [15] 32 1 5k duplicities, inf. depth 494,891 229 4,417 N/A 
b4_p [16] 33 1 original 267 110 108 116 
b4_p [16] 33 1 BDD 16,963 6,347 6,099 4,285 
b4_p [16] 33 1 ABC collapse 1,405 730 841 884 
b4_p [16] 33 1 SIS collapse 4,087 2,036 2,422 1,627 
b4_p [16] 33 1 Partial collapse, size 108 1,097 450 566 677 
b4_p [16] 33 1 Partial collapse, size 219 4,664 2,328 2,439 3,543 
b4_p [16] 33 1 Partial collapse, size 167 7,960 2,953 3,041 5,550 
b4_p [16] 33 1 10k duplicities, depth 1 2,085 110 169 126 
b4_p [16] 33 1 10k duplicities, depth 2 9,259 110 195 229 
b4_p [16] 33 1 10k duplicities, depth 3 21,029 110 212 170 
b4_p [16] 33 1 10k duplicities, depth 4 26,019 110 411 134 
b4_p [16] 33 1 10k duplicities, depth 5 39,842 110 635 136 
b4_p [16] 33 1 10k duplicities, inf. depth 81,078 110 575 246 
tautology 25 1 tautology 9,130 6,798 8,425 8,528 
tautology 25 1 Partial collapse, size 7521 14,082 10,542 12,371 14,945 
tautology 25 1 Partial collapse, size 7932 19,028 13,839 15,952 20,398 
tautology 25 1 Partial collapse, size 9121 24,249 17,364 19,775 27,113 
tautology 25 1 500 duplicities, inf. depth 10,397 6,798 8,362 8,521 
tautology 25 1 10k duplicities, inf. depth 13,986 6,813 8,441 8,600 


