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Abstract—This paper presents a thorough analysis of the
possibility of using standard logic synthesis and optimization to
speed up solving satisfiability problem (SAT) instances coming
from both the standard SAT benchmarks and different practical
EDA applications. In principle, a SAT instance can be understood
as a logic function described in a product-of-sums (POS) form.
As such, it can be preprocessed by logic optimization prior
to SAT solving. Logic optimization should reduce the instance
(POS) size, making it “smaller”. However, this does not imply
being simpler for SAT solving. The second aspect is that logic
optimization (resynthesis) could “break” some structures in the
original SAT instance that made the instance difficult to solve. We
try to investigate these two aspects and evaluate the efficiency
of employing logic synthesis and optimization in SAT solving.
We show that logic synthesis can both positively and negatively
influence the time of SAT solving, mostly depending on the
instance type. Finally, we will present some recommendations
and a simple adaptive SAT-solving strategy. To our knowledge,
this is the first study exploring the possibilities of using logic
synthesis in SAT solving in such a complex way.

Index Terms—logic synthesis, SAT, ATPG

I. INTRODUCTION

With the beginning of this century, very fast and efficient
Boolean Satisfiability Problem (SAT) solvers have been de-
veloped [1], [2], and this opened up a way of efficiently
exploiting them in many different application areas. One of
the probably most striking examples of this fact are Electronic
Design Automation (EDA) tools, where SAT or its derivatives
like pseudo-Boolean optimization (PBO) [3] or Satisfiability
Modulo Theory (SMT) [4] are widely used. Actually, SAT
has been used in model checking even before the advent of
efficient SAT-solvers, and now it is used in modern model-
checking engines [5]–[7]. The same holds for the Automated
Test Patterns Generation process (ATPG) [8]–[14]. Recently,
SAT, PBO, and SMT became a part of the state-of-the-art logic
synthesis processes [15]–[24], aspiring to be part of industrial
EDA tools [25].

Even though present SAT-solvers [1], [26]–[28] are meant
to be efficient enough, their execution still takes a long time
for some problem instances. Especially in the case of opti-
mum circuits generation [19]–[22], large and difficult-to-solve
instances occur. Next, in SAT-based ATPGs, difficult instances
occur because of undetectable or hard-to-detect faults. Thus,
one may ask whether the SAT-solvers task can be simplified
by some means in order to improve the run time.

Since these SAT instances come from EDA, they are mostly
constructed from logic circuits, i.e., netlists of gates. In partic-
ular, these problems involve determining the satisfiability of
SAT instances obtained from artificially generated hardware
(conceptual hardware, miter), and thus the problem solved is
called a circuit SAT. In principle, the SAT instance is obtained
by concatenating characteristic functions of all gates in the
netlist, i.e., the final CNF is obtained by applying the Tseitin
transformation [29]. For details, see, e.g., [8], [30]. Therefore,
a straightforward way of simplification of the SAT instances
can be offered: using logic optimization.

The most commonly used SAT instance representation is the
Conjunctive Normal Form (CNF), i.e., the CNF-SAT problem
is solved. This CNF can be understood as a logic function
described in a product-of-sums (POS) form, which can be
easily minimized by logic optimization tools [31], hoping
that the resulting SAT instance would be “easier” for the
SAT solver. Moreover, in some cases, the optimization can
be performed even before generating the CNF from the miter.
The ATPG process from [8] is such a case.

Several studies dealing with the application of logic synthe-
sis in the SAT-solving process have been published [30], [32].
However, no definite conclusion can be derived from them
since the sets of tested instances were rather limited.

In this paper, we present three case studies where logic
optimization could be leveraged to possibly speed up the SAT-
solving process. From the obtained results, we attempt to make
a recommendation for using (or not using) logic optimization
prior to the SAT-solving process. Both the logic optimization
and SAT-solving time must be taken into account. Thus, our
goal is to find a trade-off minimizing the overall run time.

Since the paper is mostly based on experimental work,
its structure follows this idea. Thus, after a brief review
of the related work in Section II, we immediately skip to
the experimental part in Section III and in Section IV, we
propose an adaptive mechanism for time-efficient SAT-solving.
From the obtained results, we attempt to derive some general
recommendations for processing SAT instances in Section V.
Section VI concludes the paper.

Summarized, the main contributions of this paper are:
• Application of different logic optimization processes to

SAT instances is thoroughly studied, for four state-of-
the-art SAT solvers and three SAT instances sources.
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• Detailed evaluation of the effects of logic optimization
is made, and general recommendations for speeding up
SAT-solving are proposed.

• An adaptive method to optimize the overall SAT-solving
time is proposed.

II. RELATED WORK AND MOTIVATION

Many simple CNF simplification techniques were already
proposed years ago [33]. These techniques apply local trans-
formations to the very SAT instances, trying to reduce the
number of variables and clauses. However, later it was found
that reducing the CNF instance size needs not reduce the SAT-
solving time – just the contrary could happen and, conversely,
increasing the SAT instance size by introducing more informa-
tion helps significantly [8], [9], [34]. Actually, some of these
SAT enhancements are contradictory to the CNF simplification
techniques – some newly introduced variables and clauses
could be eliminated by resolution, however, with a negative
impact on the SAT solving time.

In contrast to these techniques, we aim at leveraging logic
synthesis to restructure and possibly minimize the SAT in-
stances and thereby help the SAT-solver in this way. One of
the motivations was the fact that SAT instances obtained from
circuits containing many XOR gates are hard for standard SAT-
solvers [35], [20]. We hope that logic synthesis may “dissolve”
these XORs and make the instances simpler for the SAT-solver.

There are some studies very similar to our work. In [30],
the influence of running logic synthesis and optimization
on the overall SAT-solving time was examined. Several SIS
[36] scripts were applied to SAT instances coming from
solving the integer factorization problem. These instances were
constructed as conceptual hardware, i.e., logic circuits solving
the problem were constructed and then transformed to SAT
instances by the Tseitin transformation [29]. These were then
solved by ZCHAFF [2]. The observations published in that
paper were actually the main motivation for our work. This
is, (1) logic synthesis is orthogonal to SAT solving, (2) logic
synthesis does help, (3) just simple and fast synthesis scripts
suffice to achieve a great SAT-solving speed-up.

In [32], the authors study the influence of using simple ABC
[31] commands to preprocess SAT instances obtained from
bounded model checking (BMC) and problems coming from
the SAT-Race 2006 competition. The conclusions drawn were
basically the same: for large circuit-SAT instances, preprocess-
ing by logic optimization helps. However, for some SAT-Race
competition problems, they have observed a slowdown. The
SAT solver used was MINISAT [1].

Both above-mentioned papers document the same fact:
circuit-SAT instances, i.e., SAT instances constructed from
conceptual hardware by the Tseitin transformation [29], can
be easily simplified by logic optimization, and as a result, the
overall solving time can be reduced.

In this paper, we go into more depth. We explore the
applicability of different logic optimization processes to differ-
ent kinds of SAT instances and different state-of-the-art SAT
solvers. Naturally, for small and easy-to-solve SAT instances,

applying logic optimization makes no sense, and it would defi-
nitely even increase the overall run-time. Applying “powerful”
optimization has been shown to be inefficient as well, as the
time spent for optimization is not compensated by the SAT-
solving time reduction [30].

Therefore, we ask what kind of optimization pays off and
what are the SAT instances where the optimization pays
off, for the “classical” MINISAT SAT solver [1] and the
most modern SAT solvers GLUCOSE [26], KISSAT [27], and
CADICAL [28]. This will document if things have changed
since the previous analyses [30], [32] were published. From
the obtained results, we attempt to propose general recommen-
dations, ending up with an adaptive method taking advantage
of the logic optimization most efficiently.

III. EXPERIMENTS

In this section, we thoroughly evaluate three case studies:
applying logic optimization to SAT instances obtained from
(1) standard satisfiability benchmarks (SATLIB) [37], (2) in-
stances obtained from SAT-based optimum circuits generator
[20], and (3) SAT-ATPG instances generated by our in-house
ATPG based on [8]. The influence of different logic optimiza-
tion processes on the overall run time is studied.

A. Experimental Setup

The experiments were run on an Intel Xeon Gold 5218
(2.30 GHz) processor with 4 GB of memory running De-
bian 11 or Debian 12. All solvers were run using one CPU
core. For practical reasons, the solvers had a time limit of
2000 seconds (real-time). All time values are CPU time unless
specified otherwise.

We have exercised four SAT solvers: MINISAT 2.2 [1],
GLUCOSE-SYRUP 4.2.1 [26], KISSAT 4.0.0 [27], and CAD-
ICAL 2.0.0 [28]. GLUCOSE was run on four CPU cores
as well, as this solver benefits mostly from its parallelism.
However, since the results in the CPU time were almost the
same as on one core, these results are not present in the tables.

Logic synthesis was performed by ABC [31]. The following
ABC scripts were used, and they will be referred to in the
subsequent text as follows:

• Just a simple conversion to an AND-inverter-graph (AIG)
[31], without any optimization: st:
strash

• A simple technology-independent optimization, with dif-
ferent efforts: resyn2-[1, 2, 3]x; the script repeated
x times:
strash; resyn2

• A powerful optimization and mapping into 2-input gates,
with different efforts: 2-gate-[1, 5, 10, 15]x; the script
repeated x times:
&get -n; &st; &synch2; &if -m -a -K 2;
&mfs -W 10; &st; &dch; &if -m -a -K 2;
&mfs -W 10; &put

• A powerful optimization and mapping into 6-input
LUTs, with different efforts: 6-LUT-[1, 5, 10, 15]x; the
script repeated x times:



&get -n; &st; &synch2; &if -m -a -K 6;
&mfs -W 10; &st; &dch; &if -m -a -K 6;
&mfs -W 10; &put

In experiments where a SAT instance in a CNF was the
source (i.e., Sections III-B and III-C), the CNF had to be
transformed to BLIF [38] and then, after the optimization,
converted back to a CNF. An in-house conversion tool was
used for this purpose. The first conversion involved just a
simple rewriting of the CNF to a two-level network of AND
and OR gates. The latter conversion (i.e., where an optimized
multi-level network is the input) was done by the Tseitin
transformation [29]. As a result of this conversion, the number
of variables significantly increases with respect to the original
CNF since each signal in the optimized network is assigned a
variable in the resulting CNF. However, as we will show here,
the number of variables is not a crucial issue for SAT solvers.

In the case of SAT solving with synthesis, only the syn-
thesis time and subsequent SAT solving time are considered
and compared to solving without synthesis. The time of file
conversion from CNF to BLIF and back is ignored, as the tool
used for this conversion is not optimized for speed. However,
both conversions can be done in a time linear with the instance
size (the number of literals).

B. SATLIB benchmark

The SATLIB benchmark [37] offers a number of randomly
generated hard 3-SAT instances, i.e., instances with the ratio
of clauses to variables near 4.3 [39] and many other instances
from different problem domains. For the experiments, uniform
random 3-SAT instances with the numbers of variables and
clauses equal to 200/860, 225/960, and 250/1065, as well
as the pigeon-hole problem and Quasigroup (Latin square)
instances were selected. All pigeon-hole problem instances are
unsatisfiable; the uniform random 3-SAT sets and the Quasi-
group set contain both satisfiable and unsatisfiable instances.

1) SAT-solvers comparison: In order to make a preliminary
comparison of the SAT-solvers used, we have run them on the
SATLIB benchmark and measured the average run times of
solving the individual sets of instances. As the sets contain
instances of approximately the same size, presenting average
computation times is relevant enough. The only exception
was the hole10 instance of the pigeon-hole problem, which
is much larger than the others and even wasn’t solved by
GLUCOSE within the time limit. Thus, it has been removed
from this comparison. All the other instances were solved
within the time limit by all SAT solvers.

The results are shown Table I. Surprisingly, the winner is the
“old” MINISAT, followed by the newest solvers KISSAT and
CADICAL, see the “Geomean” row indicating the geometric
mean of the run times. The “count” column indicates the
numbers of instances from the respective categories.

2) Identifying unsatisfiable instances: An unsatisfiable SAT
instance means that it always evaluates to zero. Thus, when
submitted to logic synthesis, a zero constant should be pro-
duced as a result. Consequently, a SAT-solver is no longer
needed; the instance is “solved” by a mere logic synthesis.

TABLE I
COMPARISON OF SAT-SOLVERS (SATLIB)

Run time [s]
Benchmark / Solver count MINISAT GLUCOSE KISSAT CADICAL
3-SAT 200/860 - SAT 100 0.03 1.53 0.14 0.16
3-SAT 200/860 - UNSAT 100 0.21 6.83 0.49 0.47
3-SAT 225-960 - SAT 100 0.24 6.16 0.28 0.34
3-SAT 225-960 - UNSAT 100 1.41 36.71 1.74 1.70
3-SAT 250-1065 - SAT 100 0.53 26.83 0.47 0.54
3-SAT 250-1065 - UNSAT 100 4.25 88.93 4.49 4.57
Quasigroup - SAT 10 0.16 1.38 0.29 0.09
Quasigroup - UNSAT 12 0.43 5.19 0.73 0.41
Pigeon-hole - UNSAT 4 0.50 44.64 0.13 1.06
Geomean 0.38 10.68 0.50 0.55

However, the synthesis must be “strong enough” to succeed.
For this purpose, we have exercised all the tested synthesis
processes (see Subsection III-A) and unsatisfiable instances
from the above-mentioned benchmark sets. The results are
shown in Table II.

TABLE II
PERCENTAGE OF UNSATISFIABLE INSTANCES IDENTIFIED BY SYNTHESIS

(SATLIB)

Benchmark 200/860 225/960 250/1065 Quasigroup Pigeon-hole
# of instances 100 100 100 12 5
st 0.0% 0.0% 0.0% 0.0% 0.0%
resyn2-1x 0.0% 0.0% 0.0% 0.0% 0.0%
resyn2-2x 0.0% 0.0% 0.0% 0.0% 0.0%
resyn2-3x 0.0% 0.0% 0.0% 0.0% 0.0%
2-gate-1x 0.0% 0.0% 0.0% 16.7% 80.0%
2-gate-5x 0.0% 0.0% 0.0% 16.7% 100.0%
2-gate-10x 0.0% 0.0% 0.0% 16.7% 100.0%
2-gate-15x 0.0% 0.0% 0.0% 33.3% 100.0%
6-LUT-1x 98.0% 37.0% 2.0% 16.7% 100.0%
6-LUT-5x 100.0% 50.0% 8.0% 33.3% 100.0%
6-LUT-10x 100.0% 64.0% 13.0% 33.3% 100.0%
6-LUT-15x 100.0% 67.0% 18.0% 41.7% 100.0%

We can see that only the most powerful optimization scripts
were able to minimize the functions down to a constant, and
this holds for simpler instances only. Thus, attempting to solve
SAT by logic synthesis is probably not a good choice for these
benchmarks.

3) How much synthesis helps: Having hints from previous
studies showing a potential speedup when synthesis is used
for SAT instances preprocessing [30], [32], we will investi-
gate this in detail. Particularly, we have solved the SATLIB
instances by the individual SAT-solvers, once alone and then
preprocessed by synthesis. We have measured the total run
times and calculated the improvements. The results are shown
in Table III. The values indicate the average ratios of the run
times without and with synthesis, i.e., the SAT-solving time
of the original instance vs. the preprocessing time + the SAT-
solving time of the optimized instance, for all instances in the
given set. Thus, values above 1 indicate cases where using
synthesis for all the respective instances pays off. These cells
are highlighted in green. On the contrary, values approaching
0.00 indicate a large slowdown caused by synthesis.

From these preliminary results, we can see a sorry fact
that synthesis mostly does not help. The exceptions are the



unsatisfiable pigeon-hole instances identified by synthesis (see
Table II) and fast synthesis applied in combination with slower
SAT-solvers – see the “Average time” row, which just copies
the data from Table I, whereas the satisfiable and unsatisfiable
instances are not distinguished.

4) How often synthesis helps: Based on the unlucky results
from the previous experiment, we will investigate how often
logic synthesis could help. Thus, we have solved all the
instances with and without logic synthesis and calculated the
percentage of instances that were solved faster when prepro-
cessed by logic synthesis. The results are shown in Table IV.

We can see that a speedup was achieved mainly with the
simplest (and thus fastest) synthesis scripts (st and resyn2-
[1, 2, 3]) applied to the largest instances. One exception is
the unsatisfiable Pigeon-hole instances, where the synthesis
rendered them to constants, see Table II.

5) Potential time reduction: Finally, we will investigate
how much the synthesis could potentially help. For this
purpose, we solved each instance without and with synthesis
and took the better time of these two. This value was then
compared to the SAT solving without synthesis. The average
results are shown in Table V. The “0%” entries indicate that
using logic synthesis does not pay off for any of the instances
from the respective benchmark set and SAT solver.

These values just show how large improvement can be
potentially achieved, e.g., by running the two processes (syn-
thesis + SAT and SAT only) in parallel. Moreover, this gives
us a hint that if some adaptive strategy recognizing instances
that should be processed by logic synthesis were devised, how
large the achieved improvement could be.

We can observe the same phenomenon as in Table IV: only
the simplest synthesis processes help, except for the unsat-
isfiable Pigeon-hole instances. However, the improvement is
quite significant, especially for slower SAT-solvers – see the
“Average time” row.

C. MinCirc instances

For this experiment, the tested SAT instances were produced
by a SAT-based optimum circuits generator MinCirc [20].
These instances were generated when designing different
optimal four- or five-variable functions implementations com-
posed of 2-input AND and XOR gates, with a preference
for XOR gates. There were 2,195 SAT instances generated
when designing 220 four-variable functions. As for the five-
variable functions, 3,076 SAT instances were generated, for
249 functions. In total, 5,271 SAT instances were obtained.
The instances are split into three similarly sized groups based
on the clauses count.

1) SAT-solvers comparison: The run times of the four SAT-
solvers applied to the MinCirc instances will be measured here.
The results are shown Table VI. Here it seems the newer SAT-
solvers (KISSAT and CADICAL) are the fastest.

2) Identifying unsatisfiable instances: There are many un-
satisfied instances in this set, particularly 3,292 out of 5,271
(62,5%). Similarly to Sec. III-B2, we will explore how well
synthesis identifies them by rendering them to constant zeros.

The results are shown in Table VII. We can see that the
simplest processes (st, resyn2) could not optimize the instances
down to zero; more powerful optimization was needed, and
still it wasn’t sufficient enough to cope with the largest
instances.

3) How much synthesis helps: As in Subsection III-B3, we
will evaluate the average speedup achieved when synthesis is
always used, i.e., the preprocessing is made for all instances.
The results are shown in Table VIII. We can see here that
preprocessing all instances from a given class pays off only
rarely, for the simplest optimization processes and the class
of the largest instances. Thus, some mechanism selecting
instances to be preprocessed is definitely needed here.

4) How often synthesis helps: Similarly to the experiment
in Subsection III-B4, we have observed in how many cases the
synthesis helped to decrease the solving time. The results can
be found in Table IX. We can see that the results are much
more positive than those in Table IV.

5) Potential time reduction: Finally, we have calculated the
potential speedups by synthesis, as in Sec. III-B5. The results
are shown in Table X. Again, more promising results can be
seen here, compared to the SATLIB benchmarks.

We can see that the highest potential speedups were
achieved by the simplest scripts (st, resyn2-1x) or by running
the powerful scripts for one iteration only (2-gate-1x, or 6-
LUT-1x). Thus, the results suggest that incorporating even the
simplest synthesis into the solving process could lead to a
shorter solving time.

D. ATPG instances

For this set of experiments, we have used instances from
a simple in-house SAT-based ATPG based on the very orig-
inal idea of Larrabee [8]. In simple words, a conceptual
hardware (miter) is generated by XORing the fault-free and
faulty circuit. This miter is then converted to a CNF by the
Tseitin transformation [29] and a test vector is generated as a
satisfiability proof. It is possible to use synthesis to optimize
the miter before doing the Tseitin transformation to make the
CNF smaller. No CNF to BLIF conversion is needed in this
case since the miter can be dumped to BLIF and optimized
by logic synthesis (ABC). Thus, the synthesis can be directly
incorporated into the ATPG process.

The ATPG process was run on circuits from a mixture
of logic synthesis and testing benchmarks [40]. For each
circuit, one SAT instance per tested fault was generated. These
instances were mostly satisfiable; the unsatisfiable instances
correspond to undetectable faults, which are relatively rare.
These SAT instances were solved by the MINISAT solver only.

The circuits are divided into groups based on the solving
time without synthesis in seconds. The results are reported for
a circuit as a whole, i.e., solving SAT instances for all tested
faults together.

1) Potential time reduction: Similarly to the previous sub-
sections (III-B5, III-C5), we have measured the potential time
reduction when synthesis is used. The results are shown in
Table XI. Most of the ATPG instances were solved under



TABLE III
SATLIB BENCHMARKS: RUN TIME IMPROVEMENT BY SYNTHESIS

Benchmark 3-SAT 200/860 3-SAT 225/960 3-SAT 250/1065 Quasigroup Pigeon-hole
Solver MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL

Average time [s] 0.1 4.4 0.3 0.3 0.6 19.2 0.8 0.9 2.7 61.5 2.5 2.9 0.3 3.5 0.5 0.3 25.4 44.6 0.6 12.3

st 0.22 0.94 0.89 0.75 0.49 1.71 1.28 0.95 0.50 2.58 1.34 1.06 0.07 0.23 0.27 0.07 31.22 1.25 1.25 1.69

resyn2-1x 0.18 0.71 0.68 0.59 0.39 1.88 0.99 0.82 0.59 2.09 0.98 1.00 0.02 0.15 0.06 0.02 14.76 2.07 0.20 1.34

resyn2-2x 0.17 0.63 0.57 0.54 0.35 2.52 0.84 0.74 0.46 1.48 0.96 0.99 0.01 0.11 0.04 0.02 15.40 1.55 0.20 1.14

resyn2-3x 0.15 0.65 0.52 0.49 0.34 1.32 0.71 0.71 0.44 2.58 0.89 0.90 0.01 0.10 0.03 0.01 15.26 1.81 0.23 1.21

2-gate-1x 0.03 0.40 0.09 0.09 0.11 0.85 0.18 0.19 0.22 1.19 0.30 0.34 ∼0.00 0.02 ∼0.00 ∼0.00 0.58 42.35 0.19 1.11

2-gate-5x 0.01 0.23 0.03 0.03 0.04 0.57 0.06 0.07 0.11 0.78 0.13 0.15 ∼0.00 0.01 ∼0.00 ∼0.00 0.54 41.93 0.18 1.07

2-gate-10x 0.01 0.16 0.02 0.02 0.02 0.39 0.04 0.04 0.07 0.62 0.08 0.09 ∼0.00 0.01 ∼0.00 ∼0.00 0.52 40.85 0.17 1.03

2-gate-15x ∼0.00 0.12 0.01 0.01 0.02 0.33 0.02 0.03 0.05 0.56 0.06 0.07 ∼0.00 ∼0.00 ∼0.00 ∼0.00 0.53 40.78 0.17 1.04

6-LUT-1x 0.06 2.13 0.15 0.14 0.02 0.64 0.03 0.03 ∼0.00 0.04 ∼0.00 ∼0.00 0.01 0.03 0.01 ∼0.00 0.70 27.09 0.15 0.56

6-LUT-5x 0.06 2.11 0.15 0.14 0.02 0.63 0.03 0.03 ∼0.00 0.01 ∼0.00 ∼0.00 ∼0.00 0.01 ∼0.00 ∼0.00 0.69 26.53 0.14 0.55

6-LUT-10x 0.06 2.10 0.15 0.13 0.02 0.62 0.03 0.03 ∼0.00 ∼0.00 ∼0.00 ∼0.00 ∼0.00 0.01 ∼0.00 ∼0.00 0.69 26.58 0.14 0.54

6-LUT-15x 0.06 2.09 0.15 0.13 0.02 0.62 0.03 0.03 ∼0.00 ∼0.00 ∼0.00 ∼0.00 ∼0.00 0.01 ∼0.00 ∼0.00 0.68 25.72 0.12 0.52

TABLE IV
SATLIB BENCHMARKS: PERCENTAGE OF INSTANCES WHOSE SOLVING TIME DECREASED BY USING SYNTHESIS

Benchmark 3-SAT 200/860 3-SAT 225/960 3-SAT 250/1065 Quasigroup Pigeon-hole
Solver MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL

st 0.5% 26.6% 14.1% 14.1% 6.0% 39.5% 33.0% 23.5% 7.5% 55.0% 43.0% 38.0% 0.0% 0.0% 4.5% 0.0% 80.0% 60.0% 60.0% 80.0%

resyn2-1x 0.0% 26.6% 9.5% 8.5% 3.0% 45.0% 25.5% 21.0% 10.5% 49.0% 33.5% 30.5% 0.0% 0.0% 0.0% 0.0% 60.0% 80.0% 0.0% 60.0%

resyn2-2x 0.0% 24.1% 5.0% 6.5% 2.0% 42.0% 23.5% 18.5% 6.5% 45.5% 35.0% 25.0% 0.0% 0.0% 0.0% 0.0% 60.0% 60.0% 0.0% 40.0%

resyn2-3x 0.0% 27.1% 3.0% 2.5% 2.5% 40.5% 17.5% 15.0% 4.0% 50.5% 30.5% 26.5% 0.0% 0.0% 0.0% 0.0% 60.0% 40.0% 0.0% 60.0%

2-gate-1x 0.0% 10.1% 0.0% 0.0% 0.0% 28.5% 0.0% 0.0% 0.0% 40.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 80.0% 0.0% 20.0%

2-gate-5x 0.0% 0.0% 0.0% 0.0% 0.0% 13.0% 0.0% 0.0% 0.0% 20.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 80.0% 0.0% 20.0%

2-gate-10x 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 0.0% 0.0% 0.0% 11.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 80.0% 0.0% 20.0%

2-gate-15x 0.0% 0.0% 0.0% 0.0% 0.0% 1.5% 0.0% 0.0% 0.0% 7.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 80.0% 0.0% 20.0%

6-LUT-1x 0.0% 36.7% 0.0% 0.0% 0.0% 9.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 80.0% 0.0% 20.0%

6-LUT-5x 0.0% 36.7% 0.0% 0.0% 0.0% 9.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 80.0% 0.0% 20.0%

6-LUT-10x 0.0% 36.7% 0.0% 0.0% 0.0% 9.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 80.0% 0.0% 20.0%

6-LUT-15x 0.0% 36.7% 0.0% 0.0% 0.0% 9.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 80.0% 0.0% 20.0%

TABLE V
SATLIB BENCHMARKS: POTENTIAL SOLVING TIME REDUCTION

Benchmark 3-SAT 200/860 3-SAT 225/960 3-SAT 250/1065 Quasigroup Pigeon-hole
Solver MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL

Average time [s] 0.1 4.4 0.3 0.3 0.6 19.2 0.8 0.9 2.7 61.5 2.5 2.9 0.3 3.5 0.5 0.3 25.4 44.6 0.6 12.3

st 0.1% 18.4% 6.7% 6.9% 3.2% 20.9% 11.3% 7.9% 1.7% 20.3% 12.8% 9.3% 0.0% 0.0% 1.5% 0.0% 99.1% 6.6% 49.4% 4.5%

resyn2-1x 0.0% 18.8% 4.1% 3.7% 2.5% 21.9% 10.2% 7.3% 3.4% 19.3% 10.7% 9.0% 0.0% 0.0% 0.0% 0.0% 98.1% 32.9% 0.0% 39.5%

resyn2-2x 0.0% 15.5% 1.2% 3.2% 1.3% 23.9% 8.9% 4.6% 1.0% 15.7% 9.9% 9.2% 0.0% 0.0% 0.0% 0.0% 98.2% 39.3% 0.0% 41.9%

resyn2-3x 0.0% 16.1% 1.4% 2.3% 0.7% 19.1% 5.8% 5.7% 1.8% 17.6% 9.9% 7.1% 0.0% 0.0% 0.0% 0.0% 98.2% 12.7% 0.0% 43.7%

2-gate-1x 0.0% 5.0% 0.0% 0.0% 0.0% 13.8% 0.0% 0.0% 0.0% 14.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 98.9% 0.0% 4.8%

2-gate-5x 0.0% 0.0% 0.0% 0.0% 0.0% 7.1% 0.0% 0.0% 0.0% 7.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 98.9% 0.0% 4.8%

2-gate-10x 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 0.0% 3.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 98.9% 0.0% 4.7%

2-gate-15x 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 3.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 98.9% 0.0% 4.7%

6-LUT-1x 0.0% 64.3% 0.0% 0.0% 0.0% 5.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 60.8% 88.0% 0.0% 15.7%

6-LUT-5x 0.0% 64.2% 0.0% 0.0% 0.0% 5.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 60.0% 88.0% 0.0% 14.1%

6-LUT-10x 0.0% 64.1% 0.0% 0.0% 0.0% 5.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 60.8% 88.0% 0.0% 15.9%

6-LUT-15x 0.0% 64.0% 0.0% 0.0% 0.0% 5.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 60.8% 88.0% 0.0% 15.9%

5 seconds in which case there were almost no potential
improvements. With the increasing size of instances, the po-
tential improvements increased. The highest being 32.0% for
st synthesis. Furthermore, using st synthesis to preprocess all
miters created during solving would lead to a 19.7% decrease
in solving time.

IV. ADAPTIVE SAT-SOLVING PROCEDURE

Preprocessing all SAT instances using synthesis would be
beneficial only for SAT-ATPG instances with st synthesis.
However, even in this case, synthesis would decrease the

solving time of only 10.5% of circuits while increasing that
of others. Therefore, it is reasonable to assume that selecting
instances to preprocess could lead to better results.

A. Restarting

Based on the idea that instances solved fast usually do not
benefit from the synthesis, we tested an approach considering
this. We can attempt to solve an instance without synthesis for
some time t. If it is not solved within this time, the process is
ended, and the instance is preprocessed and solved again. We



TABLE VI
COMPARISON OF SAT-SOLVERS (MINCIRC)

Run time [s]
# of clauses / Solver count MINISAT GLUCOSE KISSAT CADICAL
[428, 4608) - SAT 77 0,02 0,16 0,05 0,03
[428, 4608) - UNSAT 1511 0,01 0,2 0,03 0,02
[4608, 12688) - SAT 688 1,37 3,54 0,69 0,67
[4608, 12688) - UNSAT 1197 7,08 21,75 1,58 1,61
[12688, 62392) - SAT 1124 60,99 238,65 19,02 36,4
[12688, 62392) - UNSAT 349 339,49 695,86 42,88 56,22
Geomean 1,84 8,59 1,07 1,06

TABLE VII
PERCENTAGE OF UNSATISFIABLE INSTANCES IDENTIFIED BY SYNTHESIS

(MINCIRC)

# of clauses [428, 4608) [4608, 12688) [12688, 62392)
# of instances 1,511 1,197 584
st 0.0% 0.0% 0.0%
resyn2-1x 0.0% 0.0% 0.0%
resyn2-2x 0.0% 0.0% 0.0%
resyn2-3x 0.0% 0.0% 0.0%
2-gate-1x 82.8% 24.6% 0.0%
2-gate-5x 88.3% 33.2% 0.0%
2-gate-10x 89.0% 36.8% 0.0%
2-gate-15x 89.3% 38.3% 0.0%
6-LUT-1x 89.3% 23.2% 0.0%
6-LUT-5x 89.5% 29.5% 0.0%
6-LUT-10x 89.7% 32.4% 0.0%
6-LUT-15x 90.0% 35.2% 0.0%

call this model restarting and it can be used on its own or in
combination with some machine-learning (ML) model.

A downside of this approach is that it increases the time
of solving the instances that were restarted and solved with
synthesis by the time t.

B. Selecting instances to run with synthesis

A different approach is to try to predict whether to use syn-
thesis based on some properties of an instance. There are two
possibilities that we can predict: (1) we can predict one of two
classes (binary classification), whether it is beneficial to use
synthesis or not, or (2) real value (regression) corresponding
to how sure it is that synthesis will improve the solving time.
In the first case, synthesis is beneficial if syn < nosyn. In the
second case, we take log(nosynsyn ) (both the divisor and whole
fraction needs to be increased by a small constant, e.g., 10−9,
in order to avoid undefined operations). This value is zero if
syn = nosyn, less than zero if syn > nosyn, and greater
than zero syn < nosyn. The larger the absolute value of the
logarithm is, the more sure the use or not use of synthesis is.
It can also be mapped to [0, 1] interval using sigmoid function
(σ(x) = 1

1+e−x ). In which case, the value can be interpreted
as “how high is the probability of synthesis speeding up the
SAT-solving”.

In either case, the main problem is the imbalance in data – at
best only around 10.5% of instances were sped up after using
logic synthesis. This can be problematic as models can end up
predicting the more frequent class in the case of classification
or only values less than zero in the case of regression.

TABLE VIII
MINCIRC: RUN TIME IMPROVEMENT BY SYNTHESIS

# of clauses [428, 4608) [4608, 12688) [12688, 62392)
Solver MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL

st 0.06 0.20 0.16 0.05 0.64 0.82 0.71 0.40 1.23 1.32 1.67 1.29

resyn2-1x 0.02 0.15 0.06 0.02 0.26 0.61 0.34 0.23 0.33 1.16 0.85 0.78

resyn2-2x 0.01 0.12 0.05 0.02 0.19 0.50 0.26 0.19 0.31 0.96 0.68 0.64

resyn2-3x 0.01 0.11 0.04 0.02 0.14 0.50 0.22 0.16 0.27 0.89 0.55 0.55

2-gate-1x ∼0.00 0.04 0.01 ∼0.00 0.08 0.19 0.04 0.03 0.19 0.51 0.15 0.18

2-gate-5x ∼0.00 0.02 ∼0.00 ∼0.00 0.03 0.09 0.01 0.01 0.11 0.27 0.06 0.07

2-gate-10x ∼0.00 0.02 ∼0.00 ∼0.00 0.02 0.06 0.01 0.01 0.08 0.19 0.04 0.05

2-gate-15x ∼0.00 0.02 ∼0.00 ∼0.00 0.01 0.05 0.01 ∼0.00 0.06 0.16 0.03 0.03

6-LUT-1x 0.01 0.05 0.01 0.01 0.14 0.25 0.07 0.06 0.32 0.54 0.18 0.21

6-LUT-5x ∼0.00 0.03 0.01 ∼0.00 0.05 0.13 0.03 0.02 0.18 0.33 0.09 0.11

6-LUT-10x ∼0.00 0.03 0.01 ∼0.00 0.03 0.09 0.02 0.01 0.13 0.25 0.06 0.07

6-LUT-15x ∼0.00 0.02 0.01 ∼0.00 0.02 0.07 0.01 0.01 0.10 0.20 0.04 0.05

Multiple machine learning (ML) models were tried for
selecting instances: linear regression, logistic regression, naive
Bayes, k-nearest neighbors, random forest, and gradient
boosted decision trees. If models have hyperparameters that
can be tuned, multiple different values were tried.

C. Selecting instances for restarting

This approach combines both previously described ones.
Firstly, an ML model is trained to predict whether to use
synthesis for preprocessing. Then, the restarting model’s t is
found only on instances selected to be run with synthesis.

The final model predicts whether to restart (use synthesis)
after t seconds of solving without synthesis. Instances that
should not be restarted are solved without synthesis. Those
that should be restarted are run without synthesis for time t
and then restarted and run with synthesis, in case they have
not already been solved.

The idea is that if the ML model falsely predicts to use the
preprocessing for an instance that would be solved quickly
without it, the restarting part fixes it in some cases. If the
ML model always predicts the use of synthesis, this model
transforms into the original restarting model; similarly, if the
model’s t is around 0, it transforms into the selecting model.

D. Model training and evaluation

Since the dataset is relatively small, instances sped up
by synthesis are scarce, and improvements achieved using
synthesis differ significantly; using train, dev, and test sets for
evaluating models is not ideal as the results would strongly
depend on how instances were divided. For this reason, a
cross-validation (CV) will be used. This should help with
this problem as the models are trained and evaluated multiple
times on different parts of data and results are then averaged
together.

In the case of the restarting model or if no hyperparameters
of the model are tuned, a simple 5-fold CV is used. In other
cases, nested CV is used. The outer CV is 5-fold and splits
the test part of the data from the train and dev parts, and
the inner CV is 4-fold and splits the train and dev parts. The
inner CV selects the best parameters and the outer is used
to measure the quality of the best parameters. The reported



TABLE IX
MINCIRC: PERCENTAGE OF INSTANCES WHOSE SOLVING TIME DECREASED BY USING SYNTHESIS. INSTANCES THAT WERE SOLVED NEITHER WITH NOR

WITHOUT SYNTHESIS ARE LEFT OUT.

# clauses [428, 4608) [4608, 12688) [12688, 62392) all instances
Solver MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL

st 0.0% 2.4% 0.1% 0.0% 9.9% 21.3% 18.0% 5.4% 21.8% 35.6% 44.4% 31.6% 10.4% 19.7% 21.2% 11.9%

resyn2-1x 0.0% 0.7% 0.0% 0.0% 3.3% 15.4% 4.7% 2.0% 7.5% 30.3% 32.8% 25.8% 3.6% 15.3% 12.5% 8.9%

resyn2-2x 0.0% 0.3% 0.0% 0.0% 3.0% 12.2% 2.6% 1.3% 7.6% 31.7% 26.0% 24.6% 3.5% 14.5% 9.5% 8.3%

resyn2-3x 0.0% 0.1% 0.0% 0.0% 1.9% 12.2% 1.6% 1.2% 7.5% 29.0% 21.3% 20.8% 3.0% 13.6% 7.6% 7.1%

2-gate-1x 0.0% 0.0% 0.0% 0.0% 0.4% 0.9% 0.1% 0.3% 7.1% 14.9%–15.0% 7.0%–7.1% 7.7% 2.3% 5.0%–5.0% 2.3%–2.3% 2.5%

2-gate-5x 0.0% 0.0% 0.0% 0.0% 0.4% 0.4% 0.0% 0.1% 3.9%–4.0% 8.2% 2.7%–3.4% 3.3%–3.5% 1.4%–1.4% 2.7% 0.9%–1.1% 1.1%–1.1%

2-gate-10x 0.0% 0.0% 0.0% 0.0% 0.3% 0.2% 0.0% 0.0% 2.6%–2.7% 4.8%–5.1% 1.7%–2.8% 1.9%–2.1% 0.9%–0.9% 1.6%–1.6% 0.5%–0.9% 0.6%–0.7%

2-gate-15x 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 1.9%–2.0% 3.7%–4.2% 1.3%–3.1% 1.2%–1.4% 0.6%–0.7% 1.1%–1.3% 0.4%–1.0% 0.4%–0.4%

6-LUT-1x 0.0% 0.0% 0.0% 0.0% 1.4% 2.5% 0.2% 0.5% 14.4% 17.9% 8.3%–8.5% 9.9% 4.9% 6.5% 2.8%–2.8% 3.3%

6-LUT-5x 0.0% 0.0% 0.0% 0.0% 0.6% 0.6% 0.0% 0.1% 10.2% 10.9%–11.0% 3.5%–3.7% 4.3%–4.4% 3.4% 3.6%–3.6% 1.1%–1.2% 1.4%–1.4%

6-LUT-10x 0.0% 0.0% 0.0% 0.0% 0.4% 0.4% 0.0% 0.1% 7.3% 8.4%–8.6% 3.3%–3.5% 3.1%–3.1% 2.4% 2.7%–2.8% 1.1%–1.2% 1.0%–1.0%

6-LUT-15x 0.0% 0.0% 0.0% 0.0% 0.3% 0.2% 0.0% 0.1% 5.4%–5.5% 6.0%–6.3% 2.5%–3.2% 2.1% 1.8%–1.8% 1.9%–2.0% 0.8%–1.0% 0.7%

TABLE X
MINCIRC: POTENTIAL SOLVING TIME REDUCTION. ONLY INSTANCES SOLVED BOTH WITH AND WITHOUT SYNTHESIS ARE CONSIDERED. THE AVERAGE

TIME IS CALCULATED FROM INSTANCES SOLVED WITHOUT SYNTHESIS WITHIN THE TIME LIMIT.

# clauses [428, 4608) [4608, 12688) [12688, 62392) all instances
Solver MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL MiniSat Glucose Kissat CaDiCaL

Average time [s] 0.0 0.2 0.0 0.0 5.0 15.1 1.3 1.3 141.4 340.5 92.7 55.3 45.1 109.9 30.4 17.8

st 0.0% 3.2% 0.1% 0.0% 23.7% 7.6% 9.7% 9.2% 16.9% 19.7% 25.3% 37.3% 17.3% 19.0% 24.9% 36.5%

resyn2-1x 0.0% 1.2% 0.0% 0.0% 14.2% 7.3% 4.6% 12.5% 13.3% 17.2% 22.6% 36.2% 13.4% 16.6% 22.2% 35.5%

resyn2-2x 0.0% 0.3% 0.0% 0.0% 10.4% 5.8% 3.9% 8.8% 13.1% 17.6% 22.6% 37.8% 12.9% 16.9% 22.1% 37.0%

resyn2-3x 0.0% 0.1% 0.0% 0.0% 11.6% 7.0% 2.4% 12.1% 15.4% 17.3% 20.0% 32.9% 15.2% 16.7% 19.6% 32.3%

2-gate-1x 0.0% 0.0% 0.0% 0.0% 15.7% 1.9% 0.5% 4.0% 14.1% 11.6% 14.3% 22.5% 14.2% 11.0% 14.0% 21.9%

2-gate-5x 0.0% 0.0% 0.0% 0.0% 11.4% 2.0% 0.0% 0.6% 7.9% 7.1% 9.8% 12.5% 8.1% 6.8% 9.5% 12.1%

2-gate-10x 0.0% 0.0% 0.0% 0.0% 4.7% 0.9% 0.0% 0.0% 4.5% 4.3% 5.8% 9.0% 4.5% 4.1% 5.6% 8.7%

2-gate-15x 0.0% 0.0% 0.0% 0.0% 0.9% 0.0% 0.0% 0.0% 4.2% 2.7% 3.7% 4.9% 4.0% 2.5% 3.6% 4.7%

6-LUT-1x 0.0% 0.0% 0.0% 0.0% 24.0% 3.4% 1.1% 5.0% 20.7% 14.0% 17.6% 24.2% 20.8% 13.4% 17.1% 23.6%

6-LUT-5x 0.0% 0.0% 0.0% 0.0% 15.3% 1.6% 0.0% 3.0% 16.9% 9.7% 10.6% 18.3% 16.8% 9.2% 10.3% 17.9%

6-LUT-10x 0.0% 0.0% 0.0% 0.0% 9.8% 1.2% 0.0% 0.4% 13.5% 7.7% 9.2% 11.4% 13.4% 7.3% 9.0% 11.1%

6-LUT-15x 0.0% 0.0% 0.0% 0.0% 10.1% 0.5% 0.0% 0.4% 9.3% 5.5% 7.0% 9.2% 9.3% 5.3% 6.8% 8.9%

TABLE XI
ATPG CIRCUITS: POTENTIAL SOLVING TIME REDUCTION

Original time [0, 5) [5, 50) [50, 100) [100, 200) [200, 500) [500, 1000) [1000, inf) all circuits
# circuits 788 274 60 47 27 32 20 1248
st 0.5% 3.3% 7.5% 12.2% 9.3% 20.1% 51.2% 32.0%
resyn2-1x 0.2% 2.3% 3.5% 14.7% 8.7% 7.6% 50.0% 28.4%
resyn2-2x 0.2% 1.9% 3.1% 13.0% 7.0% 6.5% 48.8% 27.2%
resyn2-3x 0.2% 1.5% 2.4% 11.8% 5.9% 5.5% 48.6% 26.6%
2-gate-1x 0.0% 0.8% 1.5% 7.3% 1.2% 1.5% 41.8% 21.5%
2-gate-5x 0.0% 0.8% 1.2% 3.1% 5.7% 0.8% 40.7% 20.9%
2-gate-10x 0.0% 0.5% 0.9% 0.1% 0.0% 0.3% 39.6% 19.5%
2-gate-15x 0.0% 0.5% 0.6% 0.0% 0.0% 0.2% 38.4% 18.9%
6-LUT-1x 0.0% 1.0% 1.4% 5.4% 3.0% 1.0% 38.7% 19.9%
6-LUT-5x 0.0% 0.8% 1.3% 1.0% 2.8% 0.8% 39.0% 19.7%
6-LUT-10x 0.0% 0.6% 1.1% 0.0% 2.8% 0.6% 38.5% 19.3%
6-LUT-15x 0.0% 0.5% 0.9% 0.0% 2.8% 0.7% 38.1% 19.1%

results are averages from test parts, while the models with the
best parameters are trained on the rest of the data.

Using simple metrics such as accuracy or F1-score to
evaluate the correctness of predictions is not enough since the
speedups or slowdowns of using synthesis differ significantly
between instances – the goal is to correctly predict instances
where using synthesis would lead to significant speedup or
slowdown. One metric that takes this into consideration is
the average change in solving time (Equation 1; the model is
represented as a function predicting the solving time of each

instance). Results below zero mean a speedup, while those
above a slowdown. This metric is used for selecting the best
model. Test parts used for model evaluation have different
total times of solving instances without synthesis. Using a
simple average to aggregate the results of this metric together
would not take this into account, thus the weighted average
and standard deviation are used with the total solving times
without synthesis as the weights.

∑
(nosyn,syn,data) model (nosyn, syn, data)∑

(nosyn,syn,data) nosyn
− 1 (1)

Another presented metric is the ratio of instances whose
solving time was the same or faster. This is complementary
to the ratio of instances that were solved in a longer time due
to the use of the model. In case solving of no instance was
slowed down, and there is a speedup in solving time as well,
using this model has no downside.

E. MinCirc instances

For selecting whether to use synthesis, properties of SAT
instances used in SATZILLA solver [41] were used. These
were extended with domain-specific properties as the MinCirc
instances are generated sequentially: the number of SAT
instance, whether the previous instance is satisfiable, and



TABLE XII
MINCIRC: BEST MODELS FOR EACH SOLVER AND SYNTHESIS WHICH

ACHIEVED SPEEDUP ABOVE 5%

Solver Synthesis Name Restarting after t Total time change
CADICAL resyn2-2x Restarting 127.9 ± 4.4% −21.6 ± 7.7%

CADICAL resyn2-1x Restarting 128.5 ± 3.0% −12.7 ± 10.2%

CADICAL resyn2-3x Restarting 205.8 ± 191.3% −11.2 ± 8.2%

CADICAL 6-LUT-5x Restarting 641.5 ± 8.4% −7.2 ± 8.5%

CADICAL 2-gate-5x Restarting 633.0 ± 1.0% −6.2 ± 5.9%

CADICAL 6-LUT-1x Restarting 633.0 ± 1.0% −5.6 ± 9.3%

MINISAT 6-LUT-5x KNN (clasif.)1 - −5.6 ± 10.0%

CADICAL 2-gate-1x Restarting 430.2 ± 277.2% −5.3 ± 16.3%

CADICAL st Gaussian NB 212.9 ± 235.1% −5.0 ± 18.4%

TABLE XIII
ATPG: BEST MODEL FOR EACH SYNTHESIS

Synthesis Name Restarting after t Total time change
st Gaussian NB1 - −26.3 ± 29.2%

resyn2-1x KNN (clasif.)2 - −14.8 ± 18.7%

resyn2-3x KNN (clasif.)2 - −14.3 ± 18.3%

resyn2-2x KNN (clasif.)2 - −13.7 ± 19.4%

6-LUT-10x Logistic Regression - −6.3 ± 12.8%

2-gate-1x KNN (clasif.)2 5.8 ± 7.9 −6.2 ± 9.8%

6-LUT-1x KNN (clasif.)2 5.8 ± 7.9 −6.2 ± 9.8%

2-gate-10x Logistic Regression - −6.1 ± 9.7%

6-LUT-15x Logistic Regression2 - −6.1 ± 12.5%

6-LUT-5x KNN (clasif.)2 - −5.8 ± 9.8%

2-gate-5x KNN (clasif.)2 5.8 ± 7.9 −5.8 ± 9.8%

2-gate-15x Logistic Regression1 - −5.5 ± 10.7%

1 Data were standardized
2 Data were scaled to [0, 1] interval

whether it is from generating an optimal implementation of
four or five variable function.

Results of the best models can be found in Table XII.

F. ATPG instances

In the case of ATPG instances, the decision to use or
not use synthesis was made based on the properties of the
circuit. These properties were: # of primary inputs, # of
primary output, # of gates, # of edges, the total number of
terms, the total number of literals, # of combinational levels,
# of connected components, # of XOR gates (xors), # of
gate equivalents, the maximum fan-in, the average fan-in, the
maximum fan-out, the average fan-out. If the decision were
to use synthesis preprocessing, each generated miter would be
preprocessed before converting to CNF.

Results of the best models can be found in Table XIII.

V. DISCUSSION

Using preprocessing by logic synthesis was beneficial for
some of the larger instances. For the small ones, their prepro-
cessing was usually not beneficial. Synthesis could potentially
significantly decrease the solving time of some instances,
however, using it to preprocess all instances would in almost
all cases increase the overall solving time.

An interesting result of using synthesis on smaller, unsat-
isfiable instances was that some syntheses transformed those
instances into trivial ones (constant zero outputs). Neverthe-
less, this mostly did not lead to faster SAT solving.

When solving the SATLIB benchmark instances, the poten-
tial speedups were usually fairly small for the fastest solvers.
The only exceptions were pigeon-hole instances where the
speedups were much larger, mostly due to the discovery of
unsatisfiable instances by logic synthesis.

Preprocessing MinCirc instances using logic synthesis was
slightly more successful. From the group of the largest in-
stances, more than one third of instances preprocessed with st
script were solved faster by GLUCOSE, KISSAT, and CADI-
CAL solvers. The individual instances that were sped up after
preprocessing differed between the solvers – most being sped
up when solved by just one solver – suggesting that there is
no “type” of an instance that would benefit from synthesis
preprocessing regardless of the solver.

When exploring the possibilities of incorporating synthesis
into SAT-solving, using the restarting approach led to better
results than selecting instances to preprocess using an ML
model.

The restarting can also be used more generally than se-
lecting as it requires data to train the ML model. So the key
takeaway is that if an instance takes too long to solve, it might
be beneficial to end the process and try to solve it preprocessed
by logic synthesis. Devising an adaptive time threshold will
be the topic of our future work.

VI. CONCLUSION

This paper presented an analysis of the possibility of using
logic synthesis to preprocess SAT instances prior to their
submission to a SAT-solver. Different ABC synthesis scripts
were exercised, in combination with four state-of-the-art SAT
solvers (MINISAT, GLUCOSE, KISSAT, CADICAL). We have
observed that logic synthesis could help to reduce the solving
time for some instances. Generally, we can conclude that the
simplest (and thus fastest) synthesis processes, in combination
with large instances and slow SAT-solvers, often help to speed
up the overall solving time. On the other hand, powerful and
time-consuming synthesis processes are often able to identify
unsatisfiable SAT instances by rendering them to constant zero.
However, some SAT solvers can often do the job faster.

Finally, adaptive mechanisms to decide whether to use
preprocessing by logic synthesis were proposed. We have
found that probably the best and simplest way to go is to
run the SAT-solver on the original instance with a small time
threshold, and when this threshold is exceeded, to preprocess
the SAT instance by a simple optimization process and re-run
the SAT-solving.
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[3] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
SAT,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 2, pp. 1–26, 11 2006.

[4] C. Barrett and C. Tinelli, Satisfiability Modulo Theories. Cham:
Springer International Publishing, 2018, pp. 305–343.

[5] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using SAT procedures instead of BDDs,” in Proceedings 1999
Design Automation Conference (Cat. No. 99CH36361), 1999, pp. 317–
320.

[6] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, pp. 1377–1394, 2002.
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