
New Stories on the Structural Bias in Logic
Synthesis

Petr Fišer, Jan Schmidt
Department of Digital Design, Faculty of Information Technology

Czech Technical University in Prague
Thákurova 9, Prague, Czech Republic
fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract—Two-level logic optimization is a well-established
process that efficiently minimizes a Sum-of-Products (SOP) form.
Espresso is the most known two-level minimizer since its release
in 1984. And indeed, it produces optimum or near-optimum
results regarding the SOP size. However, there could be an
issue with multi-level circuit implementation. When a two-level
minimizer processes a completely specified function before multi-
level synthesis, it helps since no information is lost. However,
as for incompletely specified functions, this needs not be the
case since the two-level minimization could introduce a heavy
structural bias by assigning the don’t cares particular values.

In this paper, we show that a two-level minimization con-
ducted in the standard way significantly worsens the result of
the subsequent multi-level optimization for heavily incompletely
specified multiple-output functions, regardless of the optimization
process and tool used. In particular, the more incompletely
specified the input function is, the more harm the multiple-
output minimization does. In conclusion, we propose using a
single-output minimization instead. Using this procedure, the
obtained circuits are sometimes more than 2-times smaller, while
no significant deterioration has been observed for any other
functions.

Index Terms—logic synthesis, two-level minimization, incom-
pletely specified functions, Espresso

I. INTRODUCTION

When the source to logic synthesis is a tabular description
of a function (truth table, set of terms, the Berkeley PLA
format), the well-established synthesis process is to run two-
level minimization, e.g., Espresso [1] and then proceed with
multi-level optimization and technology mapping. In the case
of completely specified functions, running the two-level min-
imization explicitly is typically not even needed since multi-
level synthesis tools, like SIS [2] and ABC [3], can do the job
themselves. However, in the case of incompletely specified
functions (e.g., where values of only some minterms are
specified), preprocessing the function by a two-level minimizer
is often necessary. For example, when reading an incompletely
specified PLA, ABC substitutes the don’t care values with ze-
roes, which loses many opportunities for efficient optimization.
In general, ABC cannot deal with external don’t cares [4].

On the other hand, SIS [2] is able to read incompletely
specified PLAs and the don’t cares are recognized. In particu-
lar, these external don’t cares are added to observability don’t
cares [4] in the full_simplify command. However, this
procedure is rather time-consuming and hardly applicable to
functions with many input variables.

Thus, when one wants to efficiently utilize don’t cares in
multi-level synthesis by, e.g., ABC, the two-level minimiza-
tion should be run first, to produce a minimized completely
specified function from an incompletely specified one, hoping
that the don’t cares would be assigned a value efficiently. A
multi-level optimization and technology mapping is then run
on this completely specified function.

This procedure is believed to yield “reasonable” results.
Well, it does, for almost completely specified functions. How-
ever, we have found a big issue with heavily incompletely
specified functions. We have observed that the multiple-output
two-level minimization of incompletely specified functions
introduces an unwanted structural bias [5], significantly af-
fecting the subsequent two-level synthesis and optimization.
In particular, we think that generated shared terms are not
suitable for multi-level optimization. The observed affection
is not negligible – results almost three times as big as those
generated by an “unconventional” way are produced. In partic-
ular, even though the multiple-output two-level minimization
produces results having much fewer terms than the single-
output one, the effect of the subsequent multi-level synthesis
is the opposite.

In this paper, we document that for incompletely specified
multi-output functions, running the Espresso [1] multiple-
output two-level minimization prior to the multi-level syn-
thesis is not a good option. Running the single-output min-
imization instead helps significantly. This observation holds
for all subsequent multi-level synthesis processes we have
experimented with. We have experimented with the Boom
minimizer [6] as well. No such deterioration has been observed
here, but this can be attributed to its inability to perform the
multi-output minimization efficiently.

The paper is structured as follows: Section II presents the
motivation behind the research. In fact, this paper mostly
presents experimental results but with observations important
to practice. These are presented in Section III. An attempt to
explain the observations is given in Section IV. Finally, the
conclusions are drawn in Section V.

The contributions of this paper can be summarized as
follows. We show that:

• Doing multi-output minimization of incompletely speci-
fied random functions by Espresso is not a good choice



if a multi-level circuit synthesis is supposed to be run
afterward.

• There is even no difference in the multi-level synthesis
tool and algorithm used when used after the two-level
minimization.

• Finally, for incompletely specified functions, we propose
conducting a single-output minimization prior to the
multi-level synthesis instead of the standard multiple-
output one.

II. THE STORY BEHIND

When designing direct implementations of neural networks,
i.e., where the network is implemented as a purely com-
binational circuit [7], we have run into serious problems.
In particular, the neural network we wanted to synthesize into
hardware was described as an incompletely specified function
having relatively many (100) inputs, relatively many (100)
outputs, and tenths of thousands of specified minterms. This
function was described in a PLA format [8]. Note that despite
the large size of this description, this function is still heavily
incompletely specified. In order to efficiently exploit the don’t
cares, we tried to run Espresso [1] to optimize the PLA.
However, it took an extremely long time to run, and after all,
it crashed. Thus, we have decided to sacrifice the optimality
to some extent and split the function by outputs into two
PLAs having 100 inputs and 50 outputs. Thus, the power
of the multi-output two-level minimization cannot be fully
exploited in this case. This still did not suffice, so we continued
with such splitting. After all, when arriving at 25 outputs,
the minimization successfully completed. But still, the run
times were very high (several days). Thus, we have decided to
continue with the splitting, ending up with the single-output
minimization. The run times were obviously smaller.

To evaluate how much harm the splitting did, we have com-
pared the results obtained by the application of splittings by
different numbers of outputs. One observation was expected:
the more splitting was performed, the more terms and literals
the resulting PLAs had, since the multi-output minimization
cannot be fully exploited in the case of splitting. However,
the second observation was rather surprising: the effects of
the splitting on the multi-level optimization were exactly the
opposite – the more output variables the functions submitted
to Espresso had, the more gates had the final networks.
Moreover, this behavior was systematic for all the examples
we have tried. After all, we have concluded that when the
target technology is not a PLA, a single-output minimization
is the best option in the case of heavily incompletely specified
functions.

To illustrate the aforementioned observations, we have syn-
thesized a neural network from the MNIST benchmark [9].
The neural network had three layers, each having 100 binary
inputs and 100 binary outputs, with 60,000 specified minterms.
Functions of different layers (L2, L3, and their concatenation
L2.L3) were synthesized by Espresso and then by ABC, using
a script mapping the circuit into arbitrary 2-level gates:

Fig. 1. The influence of group minimization on the number of PLA terms
and the resulting number of 2-input gates after synthesis by ABC

&st; &synch2; &if -m -a -K 2;
&mfs -W 10; &st; &dch; &if -m -a -K 2;
&mfs -W 10.

The script was repeated 20-times.
The results are shown in Table I. The columns represent

the number of variables in the minimized functions. I.e., “1”
represents a single-output minimization, while “100” repre-
sents group minimization of the original, non-split function.
The rows indicate the respective functions. In each cell, the
first value represents the number of distinct terms of the SOP
obtained by Espresso, and the second value represents the
number of 2-input gates after ABC synthesis.

For better illustration, we show the results for the most
complex functions (the L2.L3) in a graph, see Fig. 1.

It can be clearly seen that when the number of outputs
minimized together increases, the number of PLA terms
decreases (up to some minor exceptions, which can be at-
tributed to random fluctuations). However, the number of gates
after multi-level synthesis consistently increases. Therefore,
these preliminary results indicate that running a single-output
minimization prior to the multi-level optimization is the best
option. This phenomenon will be further explored in the next
section.

Note that the exercised functions mostly exhibit a random
nature, and so they heavily differ from standard benchmarks.
However, such functions are becoming ever more important
in practice, especially because of the advent of the direct
implementation of neural networks [7].

III. WHEN SINGLE-OUTPUT MINIMIZATION PAYS OFF

Having the clue that a single-output two-level minimization
could yield better results for some “random” incompletely
specified functions, we have performed exhaustive experi-
mental work in order to find out when does it yield better
results, i.e., what properties the function must have. We will
restrict ourselves to exploring functions (PLAs) where there is
a given number (ratio) of minterms specified, as this scenario
most closely resembles functions obtained from the direct
implementation of neural networks [7].

In particular, we have generated random functions (PLAs,
the fr type [1]) with a given number of inputs, outputs, and
specified minterms. The output values of the minterms were



TABLE I
SPLITTING RESULTS

Outputs
Layers 1 2 4 5 10 20 25 100

L2 PLA terms
2-input gates

11,097
33,810

11,003
36,394

10,960
41,635

10,929
43,606

10,802
53,974

10,460
71,531

10,321
73,371 N/A

L3 PLA terms
2-input gates

6,409
18,647

6,326
20,121

6,202
22,861

6,165
24,496

5,884
29,847

4,317
29,181

5,635
41,757 N/A

L2.L3 PLA terms
2-input gates

17,309
57,708

17,142
61,564

17,005
70,450

16,932
75,290

16,270
92,895

15,511
131,518

15,129
140,360 N/A

also completely specified. Thus, the don’t cares were given by
the minterms missing in the PLA description. The distribution
of ones and zeroes in both the AND plane and the OR plane
was uniform, i.e., 50:50. These functions were then processed
in two ways:

1) Multi-output minimization by Espresso + synthesis into
2-input gates by ABC, as described in Section II,

2) Single-output minimization by Espresso (using the
-Dso option) + synthesis into 2-input gates by ABC,
as described in Section II,

The results will be shown in the following subsections,
particularly Sec. III-A through III-D.

A. The Nice Cases

One would expect that the multi-output two-level minimiza-
tion will yield better results than the single-output minimiza-
tion, even after the multi-level synthesis. Actually, we haven’t
observed such cases for the scenario outlined above. Even for
very small numbers of both input and output variables, the
single-output minimization produced better or equal results
on average.

B. The Expected Cases

As the “expected cases”, we denote the behavior observed
in Section II. For the first illustration, we will present results
obtained from the smallest functions we have tried out, func-
tions with five inputs and five outputs, where we have varied
the number of specified minterms from 10 to 32, i.e., up to a
completely specified function. We have generated 80 random
functions for each number of specified minterms. We have
measured the ratio of the numbers of the resulting 2-input gates
for the two above-mentioned scenarios. In particular, the ratio
was obtained by dividing the number of gates obtained when
a multi-output Espresso minimization is run by the number
of gates obtained when a single-output Espresso minimization
is run. Therefore, values higher than one favor single-output
minimization.

The results in the form of a scatter plot are shown in
Fig. 2. We can see that the single-output minimization wins
on average, regardless of the number of specified minterms.
But still, a slight tendency to approach the “1” value with the
increase of the specified terms can be observed.

C. The Usual Cases

With the increasing number of variables (both input and
output ones), things are becoming “worse”. Not only does

Fig. 2. Comparison of multi-output and single-output minimization
by Espresso run prior to the synthesis by ABC, functions with 5 inputs and
5 outputs

Fig. 3. Comparison of multi-output and single-output minimization
by Espresso run prior to the synthesis by ABC, functions with 9 inputs and
9 outputs, 10 random samples for each number of specified minterms

the single-output synthesis almost always produce better re-
sults, but there emerges a region at some ratio of specified
minterms, where the multi-output minimization performs ex-
tremely worse. This is illustrated in Fig. 3, for a function
with 9 inputs and 9 outputs. This phenomenon starts to
appear at functions with 7 inputs and 7 outputs already and
is emphasized when the numbers of variables grow. This is
illustrated in Fig. 4.

D. The Strange Cases

After careful exploration, we can see an appearance of some
strange behavior in Fig. 4 – there are some outlying cases
where the multi-output synthesis fails more than on average.
When the number of variables (both the input and output ones)
increases even more, strange things start to happen – there
emerges a “gap” separating, say, bad and very bad results. This
behavior starts even when the number of outputs is increased
by one, with respect to the 10x10 example, see Fig. 5.



Fig. 4. Comparison of multi-output and single-output minimization
by Espresso run prior to the synthesis by ABC, functions with 10 inputs
and 10 outputs, 40 random samples for each number of specified minterms

Fig. 5. Comparison of multi-output and single-output minimization
by Espresso run prior to the synthesis by ABC, functions with 10 inputs
and 11 outputs, 10 random samples for each number of specified minterms

When we increase the number of variables, the gap further
increases, see Fig. 6. This happens consistently, see the sum-
mary in Sec. III-F. Honestly, we do not have any explanation
for this phenomenon.

E. When Things Go Really Bad

When we increase the number of variables further, the
above-mentioned phenomenon (the “gap”) starts to disappear,
and we return to the cases similar as shown in III-C. However,
the deterioration is just bigger. This is illustrated in Fig. 7, for
10 inputs and 15 outputs. As a result, one may think that
the relatively good cases have disappeared and the bad cases
remained – in simple words, the rightmost curve from Fig. 6

Fig. 6. Comparison of multi-output and single-output minimization
by Espresso run prior to the synthesis by ABC, functions with 11 inputs
and 11 outputs, 10 random samples for each number of specified minterms

Fig. 7. Comparison of multi-output and single-output minimization
by Espresso run prior to the synthesis by ABC, functions with 10 inputs
and 15 outputs, 10 random samples for each number of specified minterms

starts to span over the whole range of defined minterms. And
most probably, it is so.

F. Summary of the Espresso Results

We have done extensive experimental work to prove that the
observed kinds of behavior are not just random outliers. The
behavior is consistent over randomly generated functions with
different numbers of input and output variables. The summary
of all the observations is shown in Table II. We can classify
the results obtained from processing functions of different
numbers of input (rows) and output variables (columns) by the
cases described above. The missing values were not calculated
because of excessive computation power demands, but we
think the results are representative enough.

IV. WHO IS THE GUILTY?

At this point, we have come to the conclusion that the
multi-output minimization of heavily incompletely specified
functions done by Espresso introduces an unwanted structural
bias, and, as a consequence, the multi-level optimization fails.
Now we should ask who is guilty of that. In particular, is
it an insufficiency of the two-level minimization or of the
subsequent multi-level optimization? We will try to answer
this question here.

A. The Espresso vs. Boom Case

In an attempt to find out if the multi-output two-level
minimization by Espresso is the reason behind all the above-
mentioned phenomena, we have tried out an alternative two-
level minimizer, Boom [6]. First, we have run Boom with and
without the multi-output minimization (i.e., where the impli-
cants reduction phase has been switched off) and compared the
results obtained after ABC synthesis. An illustrative example
is shown in Fig. 8. As we can observe, there is no significant
dependency.

One may attribute this behavior to a smaller efficiency
of Boom for such functions, as Boom has been designed
to minimize functions with hundreds or thousands of input
variables, i.e., to different problem instances. Indeed, this is
true, as shown in Fig. 9, where the same functions as above
have been processed. As we can see, most of the ratio values
are below one, indicating the insufficiency of Boom.



TABLE II
SUMMARY OF THE ESPRESSO RESULTS. B = EXPECTED CASES, C = USUAL CASES, D = THE STRANGE CASES, E = WHEN THINGS GO REALLY BAD

Inputs/Outputs 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 B
6 B
7 C
8 C
9 C

10 B B C C C C C C C D D D D E E E E E E
11 B C C D D D D D D D
12 B D D D D D D D D D D

Fig. 8. Comparison of multi-output and single-output minimization by Boom
run prior to the synthesis by ABC, functions with 10 inputs and 10 outputs,
40 random samples for each number of specified minterms

Fig. 9. Comparison of multi-output minimization by Boom and Espresso run
prior to the synthesis by ABC, functions with 10 inputs and 10 outputs, 40
random samples for each number of specified minterms

Fig. 10. Comparison of multi-output minimization by Boom and single-output
minimization by Espresso run prior to the synthesis by ABC, functions with
10 inputs and 10 outputs, 40 random samples for each number of specified
minterms

B. The Espresso vs. Boom Case - The Second Round

In the previous subsection, we have concluded that BOOM
is inferior to Espresso in terms of multi-output optimization of
the functions targeted in this paper. But still, the results were
relatively consistent and unsurprising. Now, we may ask if the
single-output Espresso minimization followed by multi-level
optimization outperforms the multi-output minimization done
by Espresso as well. The ultimate answer is seen in Fig. 10,
for the same set of random functions of 10 inputs and 10
outputs. Here we can see the “bump” again. This draws us
to a preliminary conclusion: The single-output minimization
done by Espresso, when run prior to the multi-level synthesis,
yields the best results.

C. The Effect of Multi-level Synthesis

To verify that the two-level minimization is responsible for
the behavior described above, we have also studied different
multi-level synthesis processes that followed the two-level
minimization. In particular, we believe that the strongest multi-
level synthesis tool able to mitigate the structural bias is
BDS [10], which is able to perform a Boolean decomposition
efficiently and partially mitigate the effects of structural bias
by converting the source file to a ROBDD [11]. Thus, we have
run BDS after the Espresso minimization, prior to the ABC
synthesis. The comparison of the results obtained by running
the Espresso minimization (multiple-output and single-output)
followed by processing the result by BDS and then by ABC is
shown in Figs. 11 and Figs. 12. We can see from these figures
that the deterioration is really caused by the inefficient usage
of don’t cares in the two-level optimization – the more don’t
cares there are in the source function, the worse results are
obtained.

D. Espresso with Commercial Tools

Finally, one may ask whether Espresso is really the guilty
one and whether the poor results are not because of some flaws
in ABC. Thus, we have performed similar experiments with
commercial tools. The initial incompletely specified PLAs
were minimized by Espresso (using both single- and multiple-
output minimization), the resulting PLAs were converted to
VHDL in a straightforward way (by our in-house tool) and
then synthesized by Xilinx Vivado 2023.1 (synthesis into the
Artix-7 chip) and Intel Quartus Prime 22.1 (synthesis into the
Cyclone V chip).



Fig. 11. Comparison of multi-output and single-output minimization by
Espresso run prior to the synthesis with BDS followed by ABC, functions with
10 inputs and 10 outputs, 40 random samples for each number of specified
minterms

Fig. 12. Comparison of multi-output and single-output minimization by
Espresso run prior to the synthesis with BDS followed by ABC, functions with
10 inputs and 14 outputs, 10 random samples for each number of specified
minterms

The results are similar to ABC: when multi-output mini-
mization is used, the outcome is almost always worse. This
is illustrated by four representatives: two for Quartus (Fig.
13 and 14) and two for Vivado (Fig. 15 and 16). Again, the
values higher than one indicate the inferiority of multiple-
output synthesis. Therefore, we may conclude that ABC is
innocent in this regard, as similar effects can be observed even
when using commercial tools.

E. Is Espresso the Guilty?

Until now, we have concluded that the Espresso multi-
output two-level minimization, when run prior to any multi-

Fig. 13. Comparison of multi-output and single-output minimization by
Espresso run prior to the synthesis with Quartus, functions with 7 inputs
and 7 outputs, 20 random samples for each number of specified minterms

Fig. 14. Comparison of multi-output and single-output minimization by
Espresso run prior to the synthesis with Quartus, functions with 8 inputs
and 8 outputs, 20 random samples for each number of specified minterms

Fig. 15. Comparison of multi-output and single-output minimization by
Espresso run prior to the synthesis with Vivado, functions with 7 inputs and
7 outputs, 20 random samples for each number of specified minterms

level synthesis, is responsible for the lack of quality. Let
us now try one last means to take advantage of dont’t
cares in the function specification – SIS [2]. In particular,
the script_rugged performing the Boolean optimization.
Here, the full_simplify command takes don’t cares
present in the source PLA as external don’t cares and appends
them to observability don’t cares in the node simplification. In
this experiment, we have taken the best optimization strategy
(single-output two-level minimization by Espresso + ABC)
and compared it with running the script_rugged (20-
times) followed by the ABC optimization and mapping (the
same process as in the previous experiments). Example results
are shown in Fig. 17. As we can see, no conclusive results can

Fig. 16. Comparison of multi-output and single-output minimization by
Espresso run prior to the synthesis with Vivado, functions with 8 inputs and
8 outputs, 20 random samples for each number of specified minterms



Fig. 17. Comparison of SIS synthesis and a single-output minimization by
Espresso run prior to the synthesis with ABC, functions with 7 inputs and 7
outputs, 20 random samples for each number of specified minterms

Fig. 18. Comparison of SIS synthesis and a multi-output minimization by
Espresso run prior to the synthesis with ABC, functions with 7 inputs and 7
outputs, 20 random samples for each number of specified minterms

be seen – all ratios are close to 1, with some slight fluctuations.
Finally, let’s see what will happen if we substitute the

single-output Espresso minimization with a multi-level one.
The results are shown in Fig. 18. Again, it can be clearly seen
that the multi-output minimization causes harm.

Unfortunately, the experiments are presented on small func-
tions only (7 inputs and 7 outputs since the script_rugged
took too much time to solve bigger instances. However, the
results seem to be representative enough – we have tried
to synthesize some larger circuits, and the behavior was
consistent with the results shown here.

F. The Case of Standard Benchmarks

Randomly generated functions were studied until now. Thus,
one may ask if those are the reasons for the reported failure
of multi-output minimization, or if this holds in general,
i.e., for standard benchmarks. However, we are not aware of
any benchmarks with circuits of the required property: being
heavily incompletely specified functions.

But anyway, we have conducted experiments with the
Espresso suite benchmarks [8]. The experiment scenario was
the same as in the initial cases: single-output and multiple-
output minimization was run first, and then the result was
mapped to 2-input gates by ABC. The result was expected: no
conclusive result. The average improvement when the single-
output minimization was used was 1.7%. There were some
outliers where the single-output minimization helped (e.g.,
s1269 with 2.4x improvement), but in many cases there was

a big deterioration. Note that all these PLAs were completely
specified or with a few don’t cares only. Thus, these standard
benchmark cases fall into the rightmost regions of all the
figures above.

V. CONCLUSION

We have shown experimentally that the structural bias
introduced by the multiple-output two-level minimization of
incompletely specified functions is the cause of the inefficiency
of the subsequent multi-level synthesis, not the two-level min-
imization itself. In the case of heavily incompletely specified
functions, the two-level minimization done by Espresso is just
not able to exploit the don’t cares efficiently when the target
implementation is a multi-level network, no matter what multi-
level optimization process follows. We have shown that the
best option is to use a single-output two-level minimization
since the multiple-output two-level minimization only spoils
the result. This observation can be generalized for all randomly
generated incompletely generated functions, which actually re-
semble the state-of-the-art applications of logic synthesis – the
synthesis of neural networks implemented as combinational
circuits.

ACKNOWLEDGMENT

Computational resources were provided by the e-INFRA CZ
project (ID:90254), supported by the Ministry of Education,
Youth and Sports of the Czech Republic.

REFERENCES

[1] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and
G. D. Hachtel, Logic Minimization Algorithms for VLSI Synthesis.
Norwell, MA, USA: Kluwer Academic Publishers, 1984.

[2] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“SIS: a system for sequential circuit synthesis,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/ERL M92/41, 1992.

[3] A. Mishchenko et al., “ABC: A system for sequen-
tial synthesis and verification,” 2012. [Online]. Available:
http://www.eecs.berkeley.edu/˜alanmi/abc

[4] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algo-
rithms. Norwell, MA, USA: Kluwer Academic Publishers, 1996.

[5] P. Fiser, J. Schmidt, and J. Balcarek, “Sources of bias in EDA tools
and its influence,” in IEEE Symposium on Design and Diagnostics of
Electronic Circuits and Systems, April 2014, pp. 258–261.

[6] J. Hlavicka and P. Fiser, “BOOM – a heuristic boolean mini-
mizer,” in IEEE/ACM International Conference on Computer Aided
Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat.
No.01CH37281), 2001, pp. 439–442.

[7] M. Nazemi, G. Pasandi, and M. Pedram, “Energy-efficient, low-latency
realization of neural networks through boolean logic minimization,” in
24th Asia and South Pacific Design Automation Conference, Jan 2019,
pp. 274–279.

[8] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimiza-
tion for PLA optimization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 6, no. 5, pp. 727–750,
September 1987.

[9] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[10] C. Yang and M. Ciesielski, “BDS: a BDD-based logic optimization
system,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, no. 7, pp. 866–876, Aug. 2002.

[11] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
Aug. 1986.


