A new test-per-clock BIST method for combinational or full-scan circuits

Main Idea
If we reorder the \(C \) matrix and \(T \) matrix rows so that some \(C \) matrix and \(T \) matrix columns are equal, the outputs of the output decoder described by these columns will be implemented as mere wires.

Remaining outputs must be synthesized by some Boolean miniimzer (EESpresso: BOOM)

THE COLUMN MATCHING ALGORITHM

- Select one \(C \) matrix and one \(T \) matrix column randomly
- Try to match the columns

DONE

- Substitute don't cares
- Make test compaction
- Extract matched columns
- Minimize the remaining logic

BLOCKING MATRIX

- Binary matrix \(B \)
- \# of columns = \# of \(T \) matrix rows
- \# of rows = \# of \(C \) matrix rows
- \(B[i,j] = 1 \) when \(j \)-th \(C \) matrix row can be assigned to the \(j \)-th \(T \) matrix row
- \(B[i,j] = 0 \) otherwise
- After matching \(p \)-th \(C \) matrix column with \(q \)-th \(T \) matrix column \(B \) is modified:
 - \(B[i,j] \) is set to \(0 \)

Checking the correctness of a column match

- For every \(B \) matrix column \(j \) find one different \(i \) so that \(B[i,j] = 1 \)
- Trivial task for test without don't cares
- \(NP \)-hard problem for a test with don't cares - similar to a CP solution

EXAMPLE EXPERIMENTAL RESULTS

-ISCAS BENCHMARKS
 - Test sets (with / without DCs) generated by ATOM tool
 - LFSR width = \# of benchmark inputs, 5000 code words
 - Quality of the result measured in gate equivalents

CONCLUSIONS

- New test-per-clock BIST method based on a design of a combinational block transforming LFSR code words into deterministic test patterns pre-generated by some ATPG tool was proposed

ACKNOWLEDGEMENT

This research was in part supported by grant No. 102/01/0566 of the Czech Grant Agency (GACR) and MSM 212300014, 1999 – 2003