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Jaroslav Borecký, Robert Hülle, Petr Fišer
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Abstract—Testing of FPGA-based designs persists to be a
challenging task because of the complex FPGA architecture
with heterogeneous components, and therefore a complicated
fault model. The standard stuck-at fault model has been found
insufficient. On the other hand, very precise FPGA fault models
have been recently devised. However, these models are often
excessively complex and require a lot of resources (run-time,
memory) to manipulate with. In this paper, we propose a simple
yet efficient combined fault model comprising bit-flips in look-up
tables and stuck-at faults in the rest of logic. On top of this
model, a dedicated SAT-based application-oriented ATPG has
been designed. The main contribution of this paper is the
evaluation of efficiency of the fault model with the respective
ATPG by exhaustive hardware emulation of all possible SEUs in
the configuration memory that may influence the functionality of
the circuit implemented in the FPGA. We show that the obtained
fault coverage reaches up to more than 99%, which makes
the method applicable in practice. Even though combinational
circuits are assumed only, the method can be used to quickly
test safety-critical combinational cores.

Index Terms—FPGA, SEU, fault model, application-oriented
testing, ATPG, SAT

I. INTRODUCTION

Field-Programmable Gate Array (FPGA) chips are
becoming increasingly popular even in one-purpose
applications where reconfiguration is not required, due
to their low cost, high availability, and simplicity of the
design process. Unfortunately, FPGAs are more susceptible to
radiation than ASICs. The main reason for this susceptibility
is a large amount of SRAM cells in the FPGA configuration
memory, which are highly prone to Single-Event Upsets
(SEUs) [1]–[4]. A SEU in the configuration memory may
alter the design structure and thus the functionality of
the implemented circuit. Hence, testing of applications
implemented in FPGAs is increasingly important. This is
emphasized by the fact that FPGAs are being increasingly
deployed in safety-critical space applications, where the SEU
rate is increased, while the test/repair capabilities are limited
[5], [6].

Generally, there are two approaches to test FPGA-based
designs. One is the manufacture-oriented testing, where the
FPGA fabric is tested, without considering any application
implemented in it. In this approach, the FPGA interconnect
and logic (CLBs, ALMs, BRAMS) are tested separately,
taking advantage of the regular structure of FPGAs [7]–[13].
This always involves multiple reconfigurations of the FPGA.

The whole FPGA chip is tested in this way, even though
some FPGA resources cannot affect the functionality of
the implemented design (unused FPGA resources, redundant
logic, etc.). This makes such an approach impractical for
in-field testing, as the FPGA must be reconfigured for the test
purposes, and the implemented design must be reloaded into
the FPGA after the test is executed. Also, false fault positives
may be indicated by the test, since the above-mentioned
unused FPGA resources are covered by the test.

In the second approach, the application-oriented testing,
the implemented design is tested only, without considering
the unoccupied FPGA resources [14]–[22]. Many of these
approaches also require reconfiguration for the test purposes
[17], [19], [21], involve complicated fault models [15], [20],
or a complex testing infrastructure that must be embedded in
the FPGA [16], [22].

Recently we have published an application-oriented testing
approach not needing any FPGA reconfiguration [23]. It
can be advantageously used in in-field testing, where
reconfiguration is not practical, or is even impossible in case
of flash-based [24], or antifuse-based [25] FPGAs. For the
sake of completeness, basic principles of this method will be
shortly reviewed. Then its thorough experimental evaluation
will be presented. The main novel principles of [23] are:

• In contrast to most of previously mentioned approaches,
this method does not take advantage of the regular FPGA
structure. Instead, a dedicated Automated Test Patterns
Generator (ATPG) is used to produce test patterns for a
given circuit implemented in the FPGA.

• The method is applicable to any FPGA
type/family/vendor, provided the gate-level description
(e.g, EDIF netlist) of the implemented design is available.
This fortunately holds for all leading FPGA vendors.

• As the standard stuck-at fault model has been found
insufficient for FPGA testing [14], [15], [26] and precise
fault models are often excessively complex and require a
lot of resources (run-time, memory) to process [27]–[29],
a simplified fault model was been offered. It consists of
SEUs in Look-Up Tables (LUTs) and stuck-at faults in the
rest of logic, including the interconnect. The combination
of SEU faults in LUTs and stuck-at faults allows to test
the vast majority of faults affecting the occupied logic.
The stuck-at fault model allows to efficiently test routing
faults, independently of the interconnect implementation.



• A SAT-based ATPG able to easily accommodate both
fault models is provided.

The work [23] presents just a fault model and an ATPG
tailored to it. No implementation platform has been given. It
is assumed that the test is generated off-line and then applied
to the on-line tested FPGA by any means, e.g., using a simple
built-in self-test (BIST) structure. One of the drawbacks of the
method is the need to suspend the application during the test.
However, the test is typically short enough, thus this needs not
cause serious problems.

Building on top of this previous work, the main contribution
of this paper is the experimental evaluation of the fault model
and the proposed ATPG. By exhaustive hardware emulation of
all SEUs that may affect the functionality of the implemented
circuit, we show that more than 99% of SEUs are detected by
our approach. The undetected faults are typically caused by
unpredictable behavior, due to, e.g., antennas or a sequential
behavior induced by a SEU in the FPGA switching matrices.
We have also validated the fault model by constraining it
either to the stuck-at faults at circuit signals or bit-flips in
LUTs only. We show that these simplest fault models are not
sufficient enough, whereas the combined model is acceptable.
As a result, the simple fault model can be judged as efficient
enough to be applied in practice.

The rest of the paper is organized as follows: after
this Introduction, a review of the related work is given in
Section II. The fault model used is discussed in Section III.
Basic principles of the SAT-based ATPG used are briefly
described in Section IV. The main contributions of this paper –
the fault emulation platform and the fault coverage evaluation
method – are described in Sections V and VI, respectively.
Experimental results are shown in Section VII. Section VIII
concludes the paper.

II. RELATED WORK

Application-oriented FPGA testing has been tackled for
two decades already [14]. It brings some benefits over the
manufacture-oriented (application-independent) testing, like
the testing speed and no need to test unused resources.

The first hints of insufficiency of a standard stuck-at fault
model were presented in [14]. The fact that faults in the unused
logic should not be accounted has been pointed out. Still, the
interconnection faults were neglected.

A fault model for application-oriented FPGA testing was
proposed in [15]. The authors have correctly observed that
a special fault model must be used for LUTs: even though
stuck-at faults in LUTs are considered too, they are assumed
to be also in LUT parts that are seemingly redundant.
Particularly, stuck-at faults in LUTs corresponding to an
inversion of a configuration memory bit are included in the
fault model. These are, indeed, bit-flips assumed in [23] and
in this paper. Apart from these LUT faults, also stuck-at faults
in the rest of logic are considered. This is exactly what is
covered by our fault model too. However, their transformation
of bit-flips to stuck-at faults is rather cumbersome. The

SAT-based ATPG used in this paper enables a native support
of bit-flip faults.

A genetic algorithm (GA) was used to generate test patterns
for SEUs in [20]. The same fault model as in [15] was
used there. Since fault simulation is used for the GA fitness
computation, there is no need to transform bit-flips to stuck-at
faults. Actually, the GA does not need to know details of the
FPGA structure.

A different testing strategy was used in [17], [19]. Specific
fault models for interconnection and LUTs are used as well.
However, this approach needs multiple reconfigurations of the
FPGA in order to test all types of resources.

A SAT-based approach to application oriented testing
primarily targeting feedback bridging faults was presented
in [21]. Again, multiple test configurations were needed.

Another conceptually different approach to fault modeling
was used in [27], [28]. A logic-level model of all SEU-induced
faults in the FPGA application logic was constructed for
simulation purposes. The emphasis was put on interconnect
faults. Particularly, faults affecting routing resources were
interpreted as equivalent logic effects in the application netlist.
The model is accurate, and this accuracy is paid by the model
complexity and therefore long processing run-times.

The paper [29] presents an application-oriented ATPG
detecting untestable faults in FPGA. It is based on formal
methods (model-checking). Test patterns for detectable
faults are generated as model-checking counterexamples. An
accurate fault model for both logic components and routing
structures is used. Despite of the accuracy, no detailed
knowledge of the FPGA architecture is needed. The approach
can be used on-line, using dynamic reconfiguration. All
the accuracy and flexibility is however paid by very long
processing run-times; even small circuits having tenths of
LUTs need tenths of minutes to compute the test.

A recent paper [22] presents an on-line and on-demand
FPGA testing approach, where unused parts of the FPGA
are selectively tested before they are possibly used after
reconfiguration. Only routing resources are tested, as they
represent the vast majority of configuration bits. The fault
model we use assumes faults in LUTs and other resources
(carry chains, multiplexers, etc.) as well.

In contrast to all approaches to application-oriented testing,
a similar task can be performed by the memory read-back
instead. Unfortunately, this feature is supported in the recent
FPGA devices only. However, old and robust devices are
preferred in mission-critical space applications. The method
[23] is general and can be used for any FPGA device.
Next, the memory read-back checks the whole content of the
configuration memory, regardless of its usage. Therefore, false
positives may be reported, when a SEU occurs in an unused
part of the FPGA. One remedy can be the scrubbing technique
[30]. Here the configuration memory content is periodically
refreshed by data stored in a permanent (or more robust)
memory. But again, support for this technique needs not be
present in older FPGA families.



III. THE FAULT MODEL USED

The fault model used in [23] and in this paper will be shortly
summarized, for completeness.

The main resources present in contemporary FPGA devices
are typically:

1) look-up tables (LUTs) of different sizes, typically
contained in Configurable Logic Blocks (CLBs) or
Adaptive Logic Modules (ALMs), together with flip-flops
and multiplexers,

2) device specific primitives, such as fast carry chains
(dedicated XOR gates),

3) interconnect and switch-boxes,
4) I/O and other communication blocks, and
5) special complex features, such as block-RAMs, DSP

blocks, CPUs, etc.

The last two categories of resources will not be considered
in this paper, since their testing involves dedicated approaches,
as shown, e.g., in [31], [8], [32], [33].

Moreover, combinational circuits only will be assumed in
this paper for simplicity. Sequential circuits testing would
involve using a sequential ATPG (which could be feasible for
smaller designs) or using special design-for-testability (DFT)
approaches [34].

In order to test the first three types of resources, the fault
model comprises of stuck-at and bit-flip faults. The motivation
for this choice was the fact, that neither the stand-alone
simple stuck-at fault model nor the bit-flip fault model is
sufficient enough [15], [26]. The secondary motivation was
the simplicity of the model.

In this combined model, all bit-flips in LUTs will be covered
(from its principle) and we assume that faults in the other parts
of the combinational logic (MUXes, XORs, and also most
of faults in the interconnect) will be covered by the stuck-at
model.

In order to apply this fault model and submit the
implemented design to the ATPG, a primitive-level description
of the design is needed. Fortunately, this is completely
possible; most commercial FPGA design tools support this
feature, e.g., in the form of an EDIF file describing the mapped
netlist. It is expected that only minor changes will be made in
the place&route step.

Note that our approach is much different from standard
application-oriented FPGA testing techniques. The
interconnect is tested as a logical part of the implemented
circuit, not the physical one. Particularly, the switch-boxes
are not tested at the transistor level [12] or just by verification
of the point-to-point connection without considering the
connected logic [7], [10], [17]. We even do not resort to
modeling the interconnect resources at logic level, as in [27],
[28]. For our purposes, it is not required.

The drawback of our approach is that some SEU faults may
escape by unpredictable behavior caused by, e.g., antennas
(disconnections) and possible SEU-induced combinational
(or even sequential) feedbacks. However, testing these SEU

consequences is a difficult problem in any scenario, as it
requires a deep analysis of the FPGA behavior.

Most importantly, combinational elements, like MUXes and
XORs, are tested explicitly, not in the FPGA family dependent
manner [11]. This makes the proposed approach universal and
flexible. Provided a gate-level description of the mapped design
can be obtained, the method can be used for any FPGA family
from any vendor.

IV. SAT-BASED ATPG ALGORITHM USED

The widely used structural ATPG algorithms [35]–[37] are
typically based on the stuck-at fault model and are difficult
to modify to accept other (or more complex) fault models.
For this reason, the proposed ATPG is based on the Boolean
Satisfiability solving problem (SAT) [38]–[42], making it
flexible enough to accommodate the combined fault model
efficiently [23].

A. The Basic Algorithm

Basic concepts of SAT-based ATPG have been introduced
already in 1990’s [38]. Many significant enhancements have
been proposed since then [39]–[42]. However, the original
principal concept is sufficient for our experiment, as we do
not target the minimality of the test and the ATPG run-time;
the aim of this paper is to make the proof-of-concept of the
simple combined fault model.

The basic principle of SAT-based ATPG algorithms is as
follows: a miter, i.e., conceptual hardware, is constructed from
the tested circuit. The miter consists of the fault-free circuit
and its copy with the targeted fault. Respective outputs of these
circuits are then XOR-ed and the outputs of these XOR gates
are OR-ed, to produce the miter output. The output of this
conceptual circuit will equal to one for such input vectors,
that detect the fault (i.e., at least one of the outputs of the
fault-free and faulty circuits differ). For simplicity, only the
logic affected by the tested fault is copied.

A SAT formula in a conjunctive normal form (CNF) is then
constructed from this miter by the Tseitin transformation [43]
and this CNF is submitted to a SAT solver. The satisfiability
proof then equals to the test vector detecting the targeted fault.
If the formula is unsatisfiable, the fault is proven redundant
(undetectable).

The overall algorithm, in its most basic form, executes a
loop, where some yet undetected fault is picked, a test vector is
generated for it, and faults covered by this vector are dropped
from the fault list. This loop is repeated until all faults are
covered or marked as undetectable. For details see [38].

When the combined fault model is used (see Section III
and Subsection IV-B), the fault list comprises of both types of
faults – bit-blips (BF) in LUTs and stuck-at faults (S@) at the
netlist signals. As seen from the experiments, the ordering
of these fault sets does make a difference. For details see
Section VII.
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Fig. 1. Example of a conceptual model of a bit-flip fault in a LUT. The
output of the circuit must be 1 to detect the fault. The bit-flip is indicated by
italics

B. Fault Modeling

Generally, a fault of any kind is modeled as a modification
of the faulty region of the miter. A stuck-at fault is modeled
by a constant value of the affected signal, which is then
represented as a unit clause in the CNF [38].

Modeling a LUT bit-flip is more complicated, but similarly
straightforward: the fault is modeled by flipping the output
value for a particular LUT input vector that excites the fault.
For example, let us have a LUT described by 1-minterms
{000, 011, 100} and a bit-flip at address 110 which can be
described by a minterm {110}. An illustrative example is
shown in Figure 1. Let us note that the LUT content is modeled
in the miter as a sum-of-minterms (SOM). Therefore, injecting
a bit-flip involves just a modification of this SOM. For more
details see [23].

V. HARDWARE FAULT EMULATION PLATFORM

The main contribution of this paper is the experimental
evaluation and consequently a validation of the proposed fault
model. For this purpose, we have designed an FPGA-based
emulation platform, where SEU faults can be injected into the
bitstream and their real effects, i.e., their manifestation can be
evaluated. Both the fault injection and response evaluation are
performed in the FPGA.

The emulation platform was developed for the Zybo board
with the Zynq-7010 device. The Zynq device contains the
Processing System (PS) and Programmable Logic (PL) with
the same architecture as an Artix-7 FPGA. The Processing
System is equipped with a dual-core ARM CPU and several
peripherals. In our emulation platform, the PL part is used for
SEU emulation (configuration, fault injection) and executing
all proposed tests. Both parts and their interaction are shown
in Figure 2.

The platform has been designed in such a way, so that
multiple tested circuits with multiple test vectors sets can be
stored in external memory (SD card) and then processed in a
batch mode.

A. Processing System

Processor Configuration Access Port (PCAP): is used
for configuration of the whole Programmable Logic by a
bitstream with the circuit under test and also serves for the
fault injection.

Fig. 2. Block scheme of the Hardware Emulator embedded in Zynq

SD card: contains test vector files and bitstreams for all
tested circuits.

B. Programmable Logic

Original: is the original circuit, which is used as a reference,
to produce fault-free responses.

Circuit Under Test (CUT): is the original circuit placed at
a specific location in the PL, in order to inject SEU faults
into it.

Circuit Tester: contains a Gray code counter generating a
trivial test, i.e., all possible values at the primary inputs of the
tested circuit, an AXI-stream control unit for inserting test
vectors from a FIFO (which is fed by the axi4lite interface),
and a comparator unit which detects a possible mismatch of
the Original and the CUT logic.

Similar fault injection methods based on the same principles
have been proposed in the literature. They use the internal
or processor configuration access port and change the
configuration memory to simulate the occurrence of a SEU
in an FPGA. In [44], a fault injection platform that uses a
Linear Feedback Shift Register (LSFR) to inject a fault into a
random location is described. Approaches presented in [45],
[46] use embedded processors to control the fault injection
process.

All the above approaches serve the same purpose and
could have been used for the experimental evaluation as well.
However, we have opted for our previously developed solution
[47], since significant architectural changes would have to be
involved.

VI. EMULATION-BASED FAULT COVERAGE EVALUATION
METHOD

The input to the process is the BLIF format [48], mainly
due to the ATPG tool used [23]. Figure 3 shows the flow of
the whole evaluation process.

The process starts with creating a VHDL file. A source
BLIF file is converted to VHDL by our in-house tool, in a
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Fig. 3. The process flow diagram

straightforward way (the netlist of SOPs is converted to logic
expressions). Then the process flow is split into two branches.
The left branch shows the process of test vectors generation
and the right branch shows the test design creation for an
FPGA.

Test vectors generation: The next step is the synthesis using
the Vivado tool that generates an EDIF file. This file is
then converted by our in-house tool to BLIF with specific
comments, so that the ATPG will be able to distinguish LUTs
from the other logic. This converted file is used for the test
vectors generation by the ATPG described in Section IV.

Test design creation: The whole test design is composed
of the circuit wrapper created from the tested circuit VHDL
file and its respective mapped EDIF file. This wrapper is
merged with the tester logic which is described in Section V
in detail. The final design is processed by the Vivado tool
that generates a bitstream for the FPGA.
Both outputs are used for the final evaluation.

VII. EXPERIMENTAL RESULTS

A mix of two standard benchmark sets LGSynth‘91
(MCNC) [49] and ISCAS‘89 [50] has been used in our
experiments. We have exercised 83 circuits from these sets,
those having up to 22 inputs. This limitation was necessary

because of the need for the application of the exhaustive test,
i.e., all 2n vectors, where n is the number of the CUT inputs.

In order to compute the fault coverage of the
ATPG-produced test, we first needed to determine the
set of SEU faults that can affect the functionality of the
implemented design. For this purpose, an exhaustive (trivial)
test for each circuit was generated for each tested circuit
using a Gray counter (see Subsection V-B).

During a more detailed testing it was discovered that certain
faults occurring in LUTs are not covered. Moreover, it was
found that the coverage of faults in routing resources also
depends on the order of the test vectors. Undetected faults
in LUTs are caused by the place&route tool in Vivado,
which may merge two LUTs into a dual-output one, and
its behavior (in terms of SEU effects) is slightly different.
This fact is unfortunately not reflected in the exported EDIF
file; the experiments were performed when dual-output LUTs
were separated manually and all SEU faults in LUTs were
covered. Also, a sequential behavior induced by SEUs in
switch-boxes can happen. Therefore, also test vectors produced
by all ATPG scenarios (fault models) were applied. We must
admit that some SEU faults may have escaped even in this
testing scenario. However, we believe that their number will
be negligible.

Next, vectors produced by the ATPG were applied to the
CUT, for different fault models. Particularly, the stuck-at (S@),
bit-flip (BF) fault models, and their combination were used.
In the case of the combined fault model, we have tried out
two scenarios: either the S@ or BF faults were tested first
(see Section IV).

The results for all fault models are shown in Table I.
Average fault coverage values are calculated over all
benchmark circuits for the specific fault models and the last
column shows the total number test vectors produced by the
ATPG, for all 83 circuits. The results show that the stuck-at
fault model itself is insufficient, while the combination of the
stuck-at and bit-flip model is the best option. The “Full” row
indicates the total number of vectors applied to achieve the
complete fault coverage.

Note that there is a slight difference in the ordering of fault
models (S@, BF vs. BF, S@); the S@, BF scenario performs
better, in terms of the test length and fault coverage. This issue
will be discussed in the Conclusions.

TABLE I
AVERAGE COVERAGE OF VARIOUS FAULT MODELS

Fault Model Avg. coverage Sum of vectors

S@,BF 99.14% 24,502
BF,S@ 98.95% 25,313

S@ 69.46% 4,398
BF 99.01% 25,359
Full 100.00% 20,947,008

Fault coverages for all the 83 tested circuits, for the S@



fault model and the combined model (S@, BF) are shown
in Figures 4 and 5. The circuits were sorted by the fault
coverage in ascending order, for better visualization. We can
see that the stuck-at fault model achieves the fault coverage
ranging between 48% and 94% and the combination of the
stuck-at with bit-flip fault model ranges between 92% and
100%, while the 100% fault coverage is achieved for most of
circuits.
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Fig. 4. Fault coverages for the S@ fault model
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Fig. 5. Fault coverages for the combined S@, BF fault model

Detailed results for three fault models for some selected
circuits are shown in Table II. After the circuit name, the
numbers of its inputs and outputs follow. The “ADF” column
shows the total number of detectable faults. Results for each
fault model follow, showing the numbers of detected faults,
the numbers of test vectors produced by the ATPG, and the
respective fault coverages.

VIII. CONCLUSIONS AND DISCUSSION

A SAT-based ATPG for application-oriented FPGA testing
employing a combined fault model has been presented. The
proposed fault model comprises of stuck-at and bit-flip faults.
The efficiency of such a fault model has been verified
by an exhaustive hardware emulation, by which the real
coverage of faults that may affect the functionality of the
implemented design was determined. As a result, the average
fault coverage reaches up to more than 99%, which makes
the proposed application-oriented FPGA testing approach
applicable in practice.

The experimental results indicate that the proposed fault
model reflects the internal structure of the FPGA relatively

precisely. While the stand-alone stuck-at fault model has been
proven highly insufficient for FPGA testing, and the bit-flip
fault model is not capable of covering faults outside of LUTs,
the combined model is able to cover a vast majority of faults.
Note that faults located in switch-boxes are assumed to be
covered by the stuck-at model, since in our scenario (i.e.,
the application-oriented testing), a switch-box represents just
a connection, no matter how complex its “internals” are.

Two test generation scenarios for this fault model were
examined, particularly test generation for stuck-at faults first
and then for SEUs, and the reverse scenario. The experiments
have shown that the first one yields better fault coverage, even
though fewer test vectors are generated. This can be explained
by the fact that test vectors targeting stuck-at faults probably
cover many SEU faults as well, unlike the opposite.

Note that all the experiments were performed using circuits
with a small number of inputs (n), for the purpose of hardware
emulation, where the exhaustive test (comprising 2n vectors)
is applied to obtain the total number of possible faults. The
experiments served as a proof-of-concept. In practice, there
is no limitation of the circuit size and the number of its
inputs and the scalability is determined by the ATPG algorithm
only. Also, note that the proposed concept can be used with
any SAT-based ATPG, as the ATPG algorithm modification is
straightforward.

The proposed method benefits from its simplicity. The
test generation can be very fast, since any SAT-based ATPG
can be used, including very advanced ATPGs. Just a very
slight modification must be involved, in order to accommodate
the bit-flip fault model. The test application is also fast,
compared to more sophisticated and more precise approaches.
Particularly, the number of test vectors is similar to that
for ASIC testing. Note that this data (test generation and
application time) was not not studied in this paper, since we
have used just our in-house ATPG, whose efficiency is far
below the standard of advanced SAT-based ATPGs, in terms
of the run-time, memory consumption, and the test vectors
count. However, it was sufficient enough for the purposes of
this paper.

Most importantly, no reconfiguration is needed, even though
the application must be temporarily suspended when tested.
However, this needs not be a problem in practice, because
of the short test time.

Even though the method is limited to combinational circuits,
it can be extended to sequential ones by using a sequential
ATPG. In any case, it can be applied to quickly and efficiently
test safety-critical combinational or small sequential cores
of FPGA-based designs.
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TABLE II
DETAILED RESULTS AND A COMPARISON OF FAULT MODELS

Benchmark circuit ATPG (S@, BF) ATPG (S@) ATPG (BF)
Name Ins Outs ADF1 DF2 Vectors % DF2 Vectors % DF2 Vectors %
5xp1 7 10 961 961 104 100.00 667 20 69.41 960 108 99.90
9sym 9 1 552 552 271 100.00 279 33 50.54 551 270 99.82
alcom 15 38 1838 1824 111 99.24 1726 55 93.91 1825 117 99.29
alu1 12 8 286 279 69 97.55 229 23 80.07 279 83 97.55
alu3 10 8 1030 1029 202 99.90 690 34 66.99 1030 204 100.00
apla 10 12 2139 2138 254 99.95 1680 53 78.54 2138 259 99.95
b11 8 30 1518 1517 85 99.93 1368 36 90.12 1517 89 99.93
b12 15 9 914 902 184 98.69 630 28 68.93 903 190 98.80
b2 15 17 18925 18111 1795 95.70 13353 284 70.56 17920 1809 94.69
b7 8 30 1521 1520 85 99.93 1367 36 89.88 1519 89 99.87
br1 12 8 1542 1537 225 99.68 1185 42 76.85 1538 235 99.74
br2 12 8 1363 1359 176 99.71 1042 46 76.45 1360 174 99.78
c17 5 2 81 81 23 100.00 64 9 79.01 81 24 100.00
clip 9 5 1522 1522 213 100.00 1111 48 73.00 1521 222 99.93
clpl 11 5 352 351 91 99.72 199 16 56.53 349 92 99.15
cmb 16 4 513 507 169 98.83 313 21 61.01 504 170 98.25
cu 14 11 651 647 171 99.39 466 29 71.58 647 173 99.39

dk27 9 9 1057 1053 203 99.62 713 41 67.46 1055 209 99.81
duke2 22 29 6541 6384 590 97.60 5444 122 83.23 6363 609 97.28

ex7 16 5 1073 1071 213 99.81 696 27 64.86 1070 211 99.72
f51m 8 8 728 728 125 100.00 505 22 69.37 728 130 100.00
gary 15 11 8401 8136 705 96.85 7095 172 84.45 8078 728 96.16
in2 19 10 6121 5863 746 95.79 4905 116 80.13 5834 747 95.31
intb 15 7 16930 15920 3939 94.03 11218 581 66.26 15761 4307 93.10

misex1 8 7 741 741 114 100.00 477 19 64.37 741 119 100.00
misex3c 14 14 8148 7496 1101 92.00 6001 187 73.65 7591 1103 93.16

mux 21 1 477 475 258 99.58 249 33 52.20 475 258 99.58
opa 17 61 9455 9443 419 99.87 8567 108 90.61 9442 438 99.86
pcle 19 9 714 709 164 99.30 523 28 73.25 708 166 99.16
pdc 16 40 9330 9165 886 98.23 7846 172 84.09 9161 905 98.19
pm1 16 13 803 762 99 94.89 619 32 77.09 754 101 93.90
risc 8 31 1664 1653 84 99.34 1505 37 90.44 1655 89 99.46

s1488 14 25 9932 9577 934 96.43 7382 145 74.33 9238 1002 93.01
s208 19 10 1032 1029 281 99.71 747 48 72.38 1025 283 99.32

s208 1 18 9 931 926 289 99.46 606 35 65.09 925 298 99.36
s27 7 4 171 171 65 100.00 113 9 66.08 171 67 100.00
s386 13 13 2430 2425 354 99.79 1685 56 69.34 2425 362 99.79
sao2 10 4 1964 1960 326 99.80 1257 48 64.00 1961 327 99.85
sex 9 14 974 971 123 99.69 677 26 69.51 972 124 99.79
t1 21 23 2496 2482 408 99.44 1780 69 71.31 2478 421 99.28
t3 12 8 1343 1341 243 99.85 914 42 68.06 1341 255 99.85

t481 16 1 506 506 193 100.00 302 25 59.68 501 210 99.01
ts10 22 16 2368 2308 313 97.47 1878 73 79.31 2312 323 97.64

Z5xp1 7 10 879 878 112 99.89 616 24 70.08 878 112 99.89
Z9sym 9 1 531 531 272 100.00 268 33 50.47 531 269 100.00

Summary for all 83 circuits: 24,502 99.14 4,398 69.46 25,359 99.01

1 All detectable faults
2 Detected faults

LM2018140) provided within the program Projects of Large
Research, Development and Innovations Infrastructures.
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