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Abstract 

This paper discusses possibilities for a choice of a 
pseudorandom pattern generator that is to be used 
in combination with the column-matching based 
built-in self-test design method. The pattern generator 
should be as small as possible, whereas patterns 
generated by it should guarantee satisfactory fault 
coverage. Weighted random pattern generators offer 
this. Several weighted pattern generator designs are 
proposed and their effectiveness is evaluated in this 
paper. Moreover, two methods for computing the 
weights are compared. 

 The column-matching method is primarily intended 
for a  test-per-clock BIST, i.e., test patterns are applied 
to the tested circuit in parallel. Pseudorandom vectors 
obtained by an LFSR are modified here by a 
combinational circuit, to obtain deterministic test 
patterns. The number of inputs of this block 
corresponds to the width of the LFSR, the outputs 
correspond to the tested circuit inputs. This paper 
discusses possibilities of a reduction of the LFSR 
width. 

1. Introduction 

As the complexity of VLSI circuits constantly 
increases, there is a need of a built-in self-test (BIST) 
to be used. Built-in self-test enables the chip to test 
itself and to evaluate the circuit’s response. Thus, the 
very complex and expensive external ATE (Automatic 
Test Equipment) may be completely omitted, or its 
complexity significantly reduced. Moreover, BIST 
enables an easy access to internal structures of the 
tested circuit, which are extremely hard to reach from 
outside. 

There have been proposed many BIST equipment 
design methods [1]. In most of the state-of-the-art 
methods some kind of a pseudorandom pattern 
generator (PRPG) is used to produce vectors to test the 
circuit. These vectors are applied to the circuit either as 

they are, or the vectors are modified by some 
additional circuitry in order to obtain better fault 
coverage. Then the circuit’s response to these vectors 
is evaluated in a response analyzer. 

Usually, linear feedback shift registers (LFSRs) or 
cellular automata (CA) [2] are used as PRPGs, for their 
simplicity.  Patterns generated by simple LFSRs or CA 
often do not provide a satisfactory fault coverage. 
Thus, these patterns have to be modified somehow. 
One of the most known approaches is the weighted 
random pattern testing [3, 4]. Here the LFSR code 
words are modified by a weighting logic to produce a 
test with given probabilities of occurrence of 0’s and 
1’s at the particular circuit under test (CUT) inputs. 
Many papers dealing with the computation of the 
weights and the design of the weighting logic have 
been published [4-7]. There are two problems in the 
weighted testing involved: the way how to compute the 
weights and the way how to design the weighting 
logic. These two aspects are discussed in this paper, 
compared and their influence on the overall 
column-matching based BIST design is evaluated. 

We propose several ways of a design of the 
pseudorandom pattern generator that is used in the 
BIST equipment produced by the column-matching 
BIST method [8, 9] in this paper. The main 
contribution reached in this research is a significant 
reduction of the width of the LFSR used, thus 
reduction of the overall test pattern generator (TPG) 
logic. Originally, the LFSR width was equal to the 
number to the CUT inputs. Now the LFSR width may 
be arbitrarily scaled. The effectiveness of this scaling 
and its possible extents are documented on BIST 
equipment design examples for some of the standard 
ISCAS benchmarks. 

The paper is structured as follows: basic principles 
of the mixed-mode column-matching BIST design 
method are described in Section 2. Section 3 discusses 
the weighted pattern testing issues, namely the 
influence of the weight computation and selection 
of the number of weights on the fault coverage. Then, 



LFSR width reduction possibilities are discussed 
in Section 4. Experimental results summarizing the 
effects of the proposed mechanisms are shown 
in Section 5. Section 6 concludes the paper. 

2. Mixed-Mode Column-Matching 

In the column-matching BIST design method the 
test pattern generator (TPG) consists of two parts: the 
pseudorandom pattern generator (PRPG), which is 
usually an LFSR and the output decoder. The output 
decoder is a combinational block transforming 
pseudorandom vectors into deterministic test patterns 
pre-computed by an ATPG tool. The method is 
designed for a test-per-clock BIST, i.e., the test 
patterns are fed to the circuit in parallel. Thus, the 
output decoder has as many inputs, as there are the 
PRPG outputs (LFSR bits) and as many outputs as 
there are CUT inputs. 

 

 
Figure 1. Test-per-clock BIST design 

 
The decoder is constructed using the 

column-matching algorithm, proposed in [8]. The 
inputs of the decoder are the PRPG patterns, the 
outputs are deterministic test vectors. The algorithm is 
designed to test combinational circuits only, thus the 
order, in which are the test patterns applied to the 
circuit, is insignificant. Thus, the vectors may be 
reordered in any way, i.e., we can freely decide, which 
PRPG vector will be “decoded” to obtain a particular 
deterministic vector. The main principle of the 
algorithm consists in trying to “match” as many 
decoder outputs with its inputs, by finding a suitable 
vector ordering. If an output is matched with an input, 
there will be no logic needed to implement this output; 
it will be implemented as a mere wire. Finding these 
matches is a simple permutation problem. Let us have 
an n-bit PRPG and an m-output CUT. The decoder will 
be an n-input and m-output combinational block. There 
are n possibilities for a column match for each of the m 
outputs. Thus, there are nm combinations to test, to 
obtain an optimum matching. Such an algorithm 
complexity is prohibitively large, thus some heuristic 
must be used instead of a brute force approach. We use 
a “thorough search” algorithm, having an asymptotic 
complexity O(n·m2

·p·s2), where p is the number 

of PRPG patterns and s the number of deterministic 
vectors. For more details see [8]. 

Then the algorithm has been extended to support a 
mixed-mode BIST [9]. Here the BIST is divided into 
two phases: the pseudorandom and deterministic one. 
The difference between our mixed-mode BIST method 
and the others is that the two phases are disjoint. First, 
the easy-to-detect faults are covered in the 
pseudo-random phase. Then, a set of deterministic test 
vectors covering the undetected faults is computed and 
these tests are then generated by a transformation 
of the subsequent PRPG patterns. This significantly 
reduces the decoder logic. A general scheme of the 
column-matching mixed-mode BIST is shown in 
Fig. 2. For sake of simplicity the number of LFSR bits 
(and thus the Decoder inputs) was set equal to the 
number of CUT inputs (m) here. 
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Figure 2. Column-matching BIST scheme 
 
The whole mixed-mode column-matching based 

TPG design process can be summarized as follows: 
 

1. Simulate several (PR) pseudo-random 
patterns for the CUT and determine the 
undetected faults (by fault simulation) 

2. Compute deterministic test patterns 
detecting these faults by an ATPG tool 

3. Perform the column-matching using the 
subsequent LFSR pseudo-random patterns  
and the deterministic tests 

4. Synthesize the unmatched decoder outputs 
using a two-level Boolean minimizer. 

3. Weighted Pattern Testing 

There have been many weighted pattern testing 
approaches proposed up to now [4, 5, 6, 7, 10, 11, 12]. 
Basically, all of them are based on computing the 
probability of occurrence of ‘1’ and ‘0’ values 
on particular inputs and modifying the pseudorandom 
sequence (which usually has the probability 0.5 on all 



inputs) by some additional weighting logic, to meet 
these weights. In general, the weighting logic consists 
of AND and OR gates, which, when fed by LFSR 
outputs, produce weighted patterns. For example, when 
two LFSR outputs are connected into an AND gate, the 
resulting probability of occurrence of ‘1’ at the output 
of the AND gate will be equal to 0.25. 

It was shown that using simple weighted pattern 
testing only does not ensure sufficient fault coverage 
and multiple weight sets are needed [13]. Another 
alternative is to use a combination of weighted pattern 
testing with deterministic test, as shown, e.g., in [12]. 
We also propose such an approach too in this paper, 
particularly the combination of weighted pattern 
pseudorandom testing with column-matching. 

 
3.1. Weight Set Computation 

The weights are usually being computed from the 
deterministic test set derived for the tested circuit. 
A common approach is to find a set of so called 
random pattern resistant faults (RPRFs), which are 
faults that are difficult to be detected by random 
patterns. Then, a test vector set is computed to test 
these faults. The weights are then derived 
by computing respective 0/1 value ratios for each CUT 
input. 

The RPRFs are determined by repeatedly applying 
pseudorandom vectors to the CUT and recording the 
undetected faults. The number of RPRFs obtained thus 
strongly depends on the number of pseudorandom 
patterns applied. The higher their number is, the less 
faults remains undetected. There arises a question what 
number of RPRFs should be considered in practice, 
to obtain optimum results. One limit approach is 
to consider all faults and to derive the weights from a 
complete test for the circuit. This approach is, 
unfortunately, unusable for very large circuits, since 
the complete test set computation would take a very 
long time. We have performed experiments to estimate 
what number of RPRFs should be used to compute the 
test weights. We have used the s9234.1 ISCAS’89 
benchmark circuit [14] for the following measurement. 
We have varied the number of pseudorandom vectors 
applied to the CUT to detect RPRFs, from 0 (all faults 
are used to compute weights) to 100 000. Then a 
3-weight set (see Subsection 3.2) was computed using 
the test vectors detecting these RPRFs. After that, the 
weighting logic was synthesized and the weighted 
PRPG was run for 10 000 cycles. The number 
of undetected faults was measured. Such an experiment 
was repeatedly run 10 000-times (using different 
LFSRs and keeping the computed weight set) and the 
average of the result computed (for the number 
of undetected faults), for higher precision of the 

measurement. The results are shown in Table 1. First 
the number of pseudorandom vectors used to determine 
RPRFs is shown, then the number of PRPFs obtained. 
The “vcts” column indicates the number of test vectors 
used for weight computation. Finally, the average 
number of faults undetected by the run of the resulting 
weighted pattern PRPG is shown (“UD”). The 
dependency of the number of undetected faults on the 
number of test vectors testing RPRFs is visualized 
by Fig. 3. There is an apparent global minimum to be 
seen, corresponding to the optimum number of test 
vectors to determine the test weights. However, it is 
hard to estimate this optimum in practice, for different 
circuits. It has to be found experimentally, by trying 
out different numbers of vectors that are applied to the 
circuit and picking the best trial. 

 
Table 1. Computing test weights 

 
vectors RPRFs vcts. UD 
0 6927 6470 852 
100 3060 2605 817 
1000 1997 1544 815 
2000 1709 1257 805 
2500 1614 1162 802 
3000 1482 1030 781 
4000 1347 895 762 
5000 1280 828 808 
10 000 1080 628 818 
20 000 950 498 860 
50 000 876 424 862 
100 000 715 263 891 
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Figure 3. Number of undetected faults 

 
3.2. The Weighting Logic 

Another issue that has to be taken into account is the 
design of the weighting logic. The higher is the 



precision of weight generation, the higher the area 
overhead. For our examples we will limit ourselves 
to the 3-weight and 5-weight logic only, since more 
weights (or even more weight sets) would involve a 
large area overhead caused by the weighting logic, 
while the gain in quality (fault coverage) is negligible. 

There have been several weighting logic designs 
proposed. The simplest one (see, e.g., [12]) proposes 
weights like 0, 0.5, 1 for 3-weighted logic, 0, 0.25, 0.5, 
0.75, 1 for 5-weight logic, etc. This approach has been 
found very inefficient in terms of the fault coverage 
reached, see Fig. 4. This is most probably due to 
constant 0 and 1 values in the test. However, such a 
3-weight test does not require any additional weighting 
hardware, since the 0 and 1 weights are implemented 
as hard-wired connections to the ground or the voltage 
supply, respectively, and the 0.5 weight is constructed 
as a direct connection to an LFSR output. We propose 
a 3-weight testing method where weights of 0.25, 0.5 
and 0.75. Thus, the two weights are constructed 
by AND-ing and OR-ing two LFSR inputs and a 
5-weight method (0.125, 0.25, 0.5, 0.625, 0.7) where 
the weights are generated by AND-ing and OR-ing two 
or three LFSR inputs. This approach involves some 
additional hardware, however the increase of the fault 
coverage reached by it is fully compensated by the 
reduction of the deterministic test generator logic. 

The effect of the use of the weighting logic on the 
fault coverage is illustrated by Fig. 4. We have 
computed the weights for the ISCAS’89 s13207.1 
circuit [14], repeatedly reseeded the LFSR and 
constructed the weighting logic (10 000-times). The 
number of faults that remained undetected by a 
sequence of 5000 vectors generated by the final TPG 
was measured. The curves represent the frequencies 
of the respective amounts of undetected faults (the area 
below the curves is equal to the number of tests, i.e., 
10 000). Four curves are shown, representing four 
different weighting logics. The most efficient one is the 
5-weight logic, without 0 and 1 weights used (the 
leftmost curve). Here minimum of vectors are left 
undetected. Similar 3-weight logic is illustrated by the 
neighboring curve. The number of undetected faults is 
almost the same. Then the case with no weighting logic 
used is shown, for comparison. It can be seen that the 
weighting logic significantly reduces the number 
of undetected faults, with respect to this case. The 
rightmost curve describes the 5-weight logic, where 
constant 0 and 1 weights are used. Here the number 
of undetected faults is even increased. The 3-weight 
logic with 0 and 1 constants is not shown in the graph, 
since the number of undetected faults is extremely 
high. 

The results are summarized in Table 2. Minimum 
and average numbers of undetected faults are shown 

there, for all the five weighting logic cases. The 
s13207.1 circuit has 9815 faults in total. 
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Figure 4. Weighting logic effects 

 
Table 2. Weighting logic effects 

 
Weighting logic Min. Avg. 
5-weights 
(0.125, 0.25, 0.5, 0.625, 0.75) 

269 392 

3-weights (0.25, 0.5, 0.75) 299 425 
no weights 742 1250 
5-weights (0, 0.25, 0.5, 0.75, 1) 1761 1823 
3-weights (0, 0.5, 1) 3762 3771 

4. Scaling the LFSR Width 

The column-matching algorithm is primarily 
designed for a test-per-clock BIST (as it was said 
before). Originally, the number of the LFSR bits had 
to be equal to the number of CUT inputs. Results 
presented here show that the LFSR width may be 
arbitrarily scaled. The effect of such a scaling will be 
shown in this Section. The LFSR scaling affects both 
the total TPG area overhead and the TPG design time. 
This is documented in the summary results presented 
in Section 5. 

 
4.1. Weighted Pattern Testing 

When the weighted pattern testing is used, a new 
block is introduced into the BIST design – the 
weighting logic block. See Fig. 5. The LFSR width (r) 
may be less than the number of CUT inputs (m), the 
number of TPG outputs is increased just by the 
weighting logic block. 

In practice, an LFSR with a random polynomial and 
random seed is used. This ensures (to some extent) a 
uniform distribution of ‘1’s and ‘0’s in code words 
produced by it. In other words, the weights of all the r 
LFSR outputs are approximately 0.5. To generate the 



weighted patterns, the outputs of the weighting logic 
are generated by AND-ing or OR-ing randomly 
selected LFSR outputs. Thus, m weighted PRPG 
outputs are generated by this way. 
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Figure 5. Weighted column-matching BIST 
scheme 

 
 

4.2. Non-Weighted Testing 

Another possibility how to reduce the LFSR width 
is to use a splitter. No weighting logic is involved here, 
however we need to synthesize an m-output 
pseudorandom pattern generator, to feed the CUT 
in the pseudorandom phase. The simplest way how 
to do this is to split the LFSR outputs among the PRPG 
outputs, thus feeding several CUT inputs by one LFSR 
output. This, of course, reduces the pseudorandom 
testing capabilities. On the other hand, a significant 
area overhead reduction is obtained by eliminating the 
weighting logic (and, more importantly, the number 
of LFSR flip-flops). 

The LFSR width reduction has a significant 
influence on the deterministic phase as well: since 
there are less decoder inputs, the column-matching 
process is sped up (linearly with the number of inputs, 
see Section 2). The negative influence of a reduction 
of the LFSR input is an increase of the area overhead 
of the decoder. This is caused by a decrease of the 
number of possibilities for a column match (there are 
nm column matches in total). However, this 
disadvantage is fully compensated by the LFSR area 
reduction. 

The structure of the BIST using a splitter is shown 
in Fig. 6.  
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Figure 6. Column-matching BIST scheme with 
a splitter 

 

5. Experimental Results 

Experimental results for several standard ISCAS 
benchmarks are presented in this section. The 
experiments are summarized in one table, for better 
comparison. See Table 3, at the end of the paper. First, 
the benchmark circuit name is stated, then the number 
of its inputs (“m”). The “LFSR” column indicates the 
width of the LFSR used (r). Then the length of the 
pseudorandom phase follows (“PR”), the length of the 
deterministic phase was set to 1000 in all cases. 
A short description of the PRPG design method 
follows (type of weighting logic or a splitter). In a case 
of weighted pattern testing the number of gates needed 
for the weighting logic is shown in the next column 
(“w”). The number of faults that remained undetected 
by the pseudorandom phase is shown in the “UD” 
column. Then the number of deterministic vectors 
for which the output decoder had to be synthesized is 
indicated in the “vcts” column. Finally the 
column-matching results are shown. The number 
of matches obtained is shown in the “M” column, the 
area overhead of the Decoder and Switch is shown next 
(“CM”), then the column-matching process runtime 
in seconds and, at the end, the overall area overhead 
of the whole TPG, including the weighting logic and 
an LFSR area overhead (“GEs”). The area overhead is 
computed in terms of gate equivalents [15]. An n-input 
NAND gate counts for 0.5n GEs, the two-input XOR 
gate (used in LFSR) is 2.5 GEs. The size of a 
D flip-flop is considered to be 4 GEs, which complies 
with the design of a standard flip-flop in CMOS logic. 

The pseudo-random patterns were simulated using 
HOPE fault simulator [16]. Test sets for the undetected 
faults were computed by Atalanta ATPG [17]. 
 



5.1. Comments on the Results 

The first three lines of the table describe the results 
for the c2670 ISCAS benchmark, for different 
weighting logics. First, no weighting logic was used, 
and then the 3-weight and 5-weight logic was applied. 
The weighting logic without constant 0 and 1 values 
was used (see Subsection 3.2). There is an apparent 
reduction of the number of undetected faults to be seen 
when the weighting logic is used. Unfortunately, the 
number of deterministic vectors needed to cover the 
undetected faults is in the 3-weight case higher than 
in the unweighted case. This caused an increase of both 
the column-matching algorithm runtime and decoder 
area overhead. When the 5-weight logic is used, the 
number of deterministic test vectors is significantly 
less, thus the algorithm runtime is significantly 
reduced. The overall overhead is unfortunately 
increased, due to the weighting logic overhead. 

An LFSR having the width equal to the number 
of CUT inputs was used in the previous example. Only 
a 50-bit LFSR is used in the next comparison example. 
Here the effect of the weighting logic is to be seen 
more apparently. Both the runtime and overall TPG 
logic is reduced when the weighting logic is used. 
Moreover, there is a very significant reduction of the 
TPG area overhead, when compared to the 233-bit 
LFSR case (41% in the unweighted case, 55% in the 
3-weight case). 

Similar weighting logic effect can be observed for 
the s838 benchmark circuit. 

More thorough experiments have been performed 
using the s13207.1 benchmark circuit. First of all, the 
effect of the use of the weighing logic is shown. Very 
significant reduction of the number of deterministic 
test vectors is seen when the 3-weight logic is used. 
This yielded a column-matching runtime reduction 
(more than 19-times) and the decoder area reduction 
(more than 4-times). Unfortunately, the overall TPG 
logic is slightly increased, due to the weighting logic 
overhead. 

Next, the LFSR scaling effects were observed, 
while the 3-weight logic is used. We have tried to scale 
the originally 700-bit LFSR down to 20 bits. It can be 
seen that optimum results are obtained for the 50-bit 
LFSR, the TPG area reduction is more than 70% with 
respect to the original (700-bit unweighted) case. 
When the LFSR width is scaled down more, the TPG 
area overhead rapidly increases, since the weighted 
PRPG is not able to cover enough faults, due to a 
reduced randomness of the patterns. The 
column-matching results for the 30- and 20-bit LFSR 
are not present, due to very high column-matching 
algorithm runtimes. 

 

6. Conclusions 

An analysis of several possible pseudo-random 
pattern generators used in connection with the 
column-matching BIST TPG design method is 
presented in this paper. The aim is to reduce both the 
test pattern generator area overhead and its design 
time. Formerly, the LFSR width used in the 
column-matching BIST design had to be equal to the 
number of the tested circuit inputs. Two methods 
reducing the LFSR width are proposed here. 

 Two approaches to do this are shown: the use of the 
weighted pattern testing and using a “splitter”. Several 
weight set generation methods are discussed and 
experimentally evaluated. The weighted pattern testing 
enables a reduction of the width of the LFSR used 
in our TPG design method, for a cost of the weighting 
logic overhead. Satisfactory trade-off between these 
two aspects has to be found here. 

The second way to reduce the overall TPG logic 
proposed in this paper is the use of the “splitter”. The 
LFSR width is reduced here as well, however no 
additional weighting logic is involved here; the LFSR 
outputs are simply branched to feed several CUT 
inputs simultaneously. This reduces the pseudo-
random fault coverage capabilities of the PRPG, which 
causes an increase of the amount of the combinational 
logic produced by column-matching. However, is a 
proper LFSR width scaling is found, this overhead 
increase is negligible when compared to the LFSR area 
reduction obtained. Moreover, the column-matching 
runtime is reduced as well. 
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Table 3. Experimental results 

 
bench m LFSR (r) PR method w UD vcts M CM time [s] GEs 

c2670 233 233 4000 standard - 320 104 197 219 606 1153.5 
  233  3-w 216 282 130 202 264.5 960 1415 
  233  5-w 406 159 72 224 226 171 1566.5 
  50  splitter - 334 120 193 323 475 677.5 
  50  3-w 219 275 144 203 248.5 427 629.5 
s838 67 67 5000 standard - 101 61 43 107 50 377.5 
  67  3-w 42 96 103 56 94.5 128 365 
  67  5-w 87 74 85 61 86.5 60 357 
s9234.1 247 247 50000 standard - 783 331 211 514 1030 1504.5 
  247  3-w 135 532 73 232 165.5 532 1291 
  50  splitter - 1226 526 188 1005.5 7343 1208 
  50  3-w 135 713 185 223 333 463 535.5 
s13207.1 700 700 10000 standard - 917 492 696 172.5 4720 2975 
  700  3-w 518 239 88 700 40.5 245 3361 
  200  3-w 365 240 108 697 63.5 653 1231 
  50  3-w 365 303 226 697 103.5 2835 671 
  45  3-w 365 334 232 696 145.5 3423 693 
  40  3-w 365 338 530 692 640.5 29434 1288 
  30  3-w 365 1069 851 - - - - 
  20  3-w 365 1085 886 - - - - 
 


