
Pseudo-Random Pattern Generator Design for Column-Matching BIST

Petr Fišer
Czech Technical University

Dept. of Computer Science and Engineering
Karlovo nám. 13, 121 35, Prague 2

e-mail: fiserp@fel.cvut.cz

Abstract

This paper discusses possibilities for a choice of a
pseudorandom pattern generator that is to be used
in combination with the column-matching based
built-in self-test design method. The pattern generator
should be as small as possible, whereas patterns
generated by it should guarantee satisfactory fault
coverage. Weighted random pattern generators offer
this. Several weighted pattern generator designs are
proposed and their effectiveness is evaluated in this
paper. Moreover, two methods for computing the
weights are compared.

 The column-matching method is primarily intended
for a test-per-clock BIST, i.e., test patterns are applied
to the tested circuit in parallel. Pseudorandom vectors
obtained by an LFSR are modified here by a
combinational circuit, to obtain deterministic test
patterns. The number of inputs of this block
corresponds to the width of the LFSR, the outputs
correspond to the tested circuit inputs. This paper
discusses possibilities of a reduction of the LFSR
width.

1. Introduction

As the complexity of VLSI circuits constantly
increases, there is a need of a built-in self-test (BIST)
to be used. Built-in self-test enables the chip to test
itself and to evaluate the circuit’s response. Thus, the
very complex and expensive external ATE (Automatic
Test Equipment) may be completely omitted, or its
complexity significantly reduced. Moreover, BIST
enables an easy access to internal structures of the
tested circuit, which are extremely hard to reach from
outside.

There have been proposed many BIST equipment
design methods [1]. In most of the state-of-the-art
methods some kind of a pseudorandom pattern
generator (PRPG) is used to produce vectors to test the
circuit. These vectors are applied to the circuit either as

they are, or the vectors are modified by some
additional circuitry in order to obtain better fault
coverage. Then the circuit’s response to these vectors
is evaluated in a response analyzer.

Usually, linear feedback shift registers (LFSRs) or
cellular automata (CA) [2] are used as PRPGs, for their
simplicity. Patterns generated by simple LFSRs or CA
often do not provide a satisfactory fault coverage.
Thus, these patterns have to be modified somehow.
One of the most known approaches is the weighted
random pattern testing [3, 4]. Here the LFSR code
words are modified by a weighting logic to produce a
test with given probabilities of occurrence of 0’s and
1’s at the particular circuit under test (CUT) inputs.
Many papers dealing with the computation of the
weights and the design of the weighting logic have
been published [4-7]. There are two problems in the
weighted testing involved: the way how to compute the
weights and the way how to design the weighting
logic. These two aspects are discussed in this paper,
compared and their influence on the overall
column-matching based BIST design is evaluated.

We propose several ways of a design of the
pseudorandom pattern generator that is used in the
BIST equipment produced by the column-matching
BIST method [8, 9] in this paper. The main
contribution reached in this research is a significant
reduction of the width of the LFSR used, thus
reduction of the overall test pattern generator (TPG)
logic. Originally, the LFSR width was equal to the
number to the CUT inputs. Now the LFSR width may
be arbitrarily scaled. The effectiveness of this scaling
and its possible extents are documented on BIST
equipment design examples for some of the standard
ISCAS benchmarks.

The paper is structured as follows: basic principles
of the mixed-mode column-matching BIST design
method are described in Section 2. Section 3 discusses
the weighted pattern testing issues, namely the
influence of the weight computation and selection
of the number of weights on the fault coverage. Then,

LFSR width reduction possibilities are discussed
in Section 4. Experimental results summarizing the
effects of the proposed mechanisms are shown
in Section 5. Section 6 concludes the paper.

2. Mixed-Mode Column-Matching

In the column-matching BIST design method the
test pattern generator (TPG) consists of two parts: the
pseudorandom pattern generator (PRPG), which is
usually an LFSR and the output decoder. The output
decoder is a combinational block transforming
pseudorandom vectors into deterministic test patterns
pre-computed by an ATPG tool. The method is
designed for a test-per-clock BIST, i.e., the test
patterns are fed to the circuit in parallel. Thus, the
output decoder has as many inputs, as there are the
PRPG outputs (LFSR bits) and as many outputs as
there are CUT inputs.

Figure 1. Test-per-clock BIST design

The decoder is constructed using the

column-matching algorithm, proposed in [8]. The
inputs of the decoder are the PRPG patterns, the
outputs are deterministic test vectors. The algorithm is
designed to test combinational circuits only, thus the
order, in which are the test patterns applied to the
circuit, is insignificant. Thus, the vectors may be
reordered in any way, i.e., we can freely decide, which
PRPG vector will be “decoded” to obtain a particular
deterministic vector. The main principle of the
algorithm consists in trying to “match” as many
decoder outputs with its inputs, by finding a suitable
vector ordering. If an output is matched with an input,
there will be no logic needed to implement this output;
it will be implemented as a mere wire. Finding these
matches is a simple permutation problem. Let us have
an n-bit PRPG and an m-output CUT. The decoder will
be an n-input and m-output combinational block. There
are n possibilities for a column match for each of the m
outputs. Thus, there are nm combinations to test, to
obtain an optimum matching. Such an algorithm
complexity is prohibitively large, thus some heuristic
must be used instead of a brute force approach. We use
a “thorough search” algorithm, having an asymptotic
complexity O(n·m2

·p·s2), where p is the number

of PRPG patterns and s the number of deterministic
vectors. For more details see [8].

Then the algorithm has been extended to support a
mixed-mode BIST [9]. Here the BIST is divided into
two phases: the pseudorandom and deterministic one.
The difference between our mixed-mode BIST method
and the others is that the two phases are disjoint. First,
the easy-to-detect faults are covered in the
pseudo-random phase. Then, a set of deterministic test
vectors covering the undetected faults is computed and
these tests are then generated by a transformation
of the subsequent PRPG patterns. This significantly
reduces the decoder logic. A general scheme of the
column-matching mixed-mode BIST is shown in
Fig. 2. For sake of simplicity the number of LFSR bits
(and thus the Decoder inputs) was set equal to the
number of CUT inputs (m) here.

LFSR

Decoder

Switch

CUT

MISR

TPG

mode

m

m

m

Figure 2. Column-matching BIST scheme

The whole mixed-mode column-matching based

TPG design process can be summarized as follows:

1. Simulate several (PR) pseudo-random
patterns for the CUT and determine the
undetected faults (by fault simulation)

2. Compute deterministic test patterns
detecting these faults by an ATPG tool

3. Perform the column-matching using the
subsequent LFSR pseudo-random patterns
and the deterministic tests

4. Synthesize the unmatched decoder outputs
using a two-level Boolean minimizer.

3. Weighted Pattern Testing

There have been many weighted pattern testing
approaches proposed up to now [4, 5, 6, 7, 10, 11, 12].
Basically, all of them are based on computing the
probability of occurrence of ‘1’ and ‘0’ values
on particular inputs and modifying the pseudorandom
sequence (which usually has the probability 0.5 on all

inputs) by some additional weighting logic, to meet
these weights. In general, the weighting logic consists
of AND and OR gates, which, when fed by LFSR
outputs, produce weighted patterns. For example, when
two LFSR outputs are connected into an AND gate, the
resulting probability of occurrence of ‘1’ at the output
of the AND gate will be equal to 0.25.

It was shown that using simple weighted pattern
testing only does not ensure sufficient fault coverage
and multiple weight sets are needed [13]. Another
alternative is to use a combination of weighted pattern
testing with deterministic test, as shown, e.g., in [12].
We also propose such an approach too in this paper,
particularly the combination of weighted pattern
pseudorandom testing with column-matching.

3.1. Weight Set Computation

The weights are usually being computed from the
deterministic test set derived for the tested circuit.
A common approach is to find a set of so called
random pattern resistant faults (RPRFs), which are
faults that are difficult to be detected by random
patterns. Then, a test vector set is computed to test
these faults. The weights are then derived
by computing respective 0/1 value ratios for each CUT
input.

The RPRFs are determined by repeatedly applying
pseudorandom vectors to the CUT and recording the
undetected faults. The number of RPRFs obtained thus
strongly depends on the number of pseudorandom
patterns applied. The higher their number is, the less
faults remains undetected. There arises a question what
number of RPRFs should be considered in practice,
to obtain optimum results. One limit approach is
to consider all faults and to derive the weights from a
complete test for the circuit. This approach is,
unfortunately, unusable for very large circuits, since
the complete test set computation would take a very
long time. We have performed experiments to estimate
what number of RPRFs should be used to compute the
test weights. We have used the s9234.1 ISCAS’89
benchmark circuit [14] for the following measurement.
We have varied the number of pseudorandom vectors
applied to the CUT to detect RPRFs, from 0 (all faults
are used to compute weights) to 100 000. Then a
3-weight set (see Subsection 3.2) was computed using
the test vectors detecting these RPRFs. After that, the
weighting logic was synthesized and the weighted
PRPG was run for 10 000 cycles. The number
of undetected faults was measured. Such an experiment
was repeatedly run 10 000-times (using different
LFSRs and keeping the computed weight set) and the
average of the result computed (for the number
of undetected faults), for higher precision of the

measurement. The results are shown in Table 1. First
the number of pseudorandom vectors used to determine
RPRFs is shown, then the number of PRPFs obtained.
The “vcts” column indicates the number of test vectors
used for weight computation. Finally, the average
number of faults undetected by the run of the resulting
weighted pattern PRPG is shown (“UD”). The
dependency of the number of undetected faults on the
number of test vectors testing RPRFs is visualized
by Fig. 3. There is an apparent global minimum to be
seen, corresponding to the optimum number of test
vectors to determine the test weights. However, it is
hard to estimate this optimum in practice, for different
circuits. It has to be found experimentally, by trying
out different numbers of vectors that are applied to the
circuit and picking the best trial.

Table 1. Computing test weights

vectors RPRFs vcts. UD
0 6927 6470 852
100 3060 2605 817
1000 1997 1544 815
2000 1709 1257 805
2500 1614 1162 802
3000 1482 1030 781
4000 1347 895 762
5000 1280 828 808
10 000 1080 628 818
20 000 950 498 860
50 000 876 424 862
100 000 715 263 891

0 1000 2000 3000 4000 5000 6000

760

780

800

820

840

860

880

900

U
n

d
et

ec
te

d
fa

u
lt

s

Vectors to compute weights

Figure 3. Number of undetected faults

3.2. The Weighting Logic

Another issue that has to be taken into account is the
design of the weighting logic. The higher is the

precision of weight generation, the higher the area
overhead. For our examples we will limit ourselves
to the 3-weight and 5-weight logic only, since more
weights (or even more weight sets) would involve a
large area overhead caused by the weighting logic,
while the gain in quality (fault coverage) is negligible.

There have been several weighting logic designs
proposed. The simplest one (see, e.g., [12]) proposes
weights like 0, 0.5, 1 for 3-weighted logic, 0, 0.25, 0.5,
0.75, 1 for 5-weight logic, etc. This approach has been
found very inefficient in terms of the fault coverage
reached, see Fig. 4. This is most probably due to
constant 0 and 1 values in the test. However, such a
3-weight test does not require any additional weighting
hardware, since the 0 and 1 weights are implemented
as hard-wired connections to the ground or the voltage
supply, respectively, and the 0.5 weight is constructed
as a direct connection to an LFSR output. We propose
a 3-weight testing method where weights of 0.25, 0.5
and 0.75. Thus, the two weights are constructed
by AND-ing and OR-ing two LFSR inputs and a
5-weight method (0.125, 0.25, 0.5, 0.625, 0.7) where
the weights are generated by AND-ing and OR-ing two
or three LFSR inputs. This approach involves some
additional hardware, however the increase of the fault
coverage reached by it is fully compensated by the
reduction of the deterministic test generator logic.

The effect of the use of the weighting logic on the
fault coverage is illustrated by Fig. 4. We have
computed the weights for the ISCAS’89 s13207.1
circuit [14], repeatedly reseeded the LFSR and
constructed the weighting logic (10 000-times). The
number of faults that remained undetected by a
sequence of 5000 vectors generated by the final TPG
was measured. The curves represent the frequencies
of the respective amounts of undetected faults (the area
below the curves is equal to the number of tests, i.e.,
10 000). Four curves are shown, representing four
different weighting logics. The most efficient one is the
5-weight logic, without 0 and 1 weights used (the
leftmost curve). Here minimum of vectors are left
undetected. Similar 3-weight logic is illustrated by the
neighboring curve. The number of undetected faults is
almost the same. Then the case with no weighting logic
used is shown, for comparison. It can be seen that the
weighting logic significantly reduces the number
of undetected faults, with respect to this case. The
rightmost curve describes the 5-weight logic, where
constant 0 and 1 weights are used. Here the number
of undetected faults is even increased. The 3-weight
logic with 0 and 1 constants is not shown in the graph,
since the number of undetected faults is extremely
high.

The results are summarized in Table 2. Minimum
and average numbers of undetected faults are shown

there, for all the five weighting logic cases. The
s13207.1 circuit has 9815 faults in total.

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400
5 weights: 0.125, 0.25, 0.5, 0.625, 0.75

3 weights: 0.25, 0.5, 0.75

5 weights: 0, 0.25, 0.5, 0.75, 1

no weights

Fr
eq

u
en

cy

Undetected faults

Figure 4. Weighting logic effects

Table 2. Weighting logic effects

Weighting logic Min. Avg.
5-weights
(0.125, 0.25, 0.5, 0.625, 0.75)

269 392

3-weights (0.25, 0.5, 0.75) 299 425
no weights 742 1250
5-weights (0, 0.25, 0.5, 0.75, 1) 1761 1823
3-weights (0, 0.5, 1) 3762 3771

4. Scaling the LFSR Width

The column-matching algorithm is primarily
designed for a test-per-clock BIST (as it was said
before). Originally, the number of the LFSR bits had
to be equal to the number of CUT inputs. Results
presented here show that the LFSR width may be
arbitrarily scaled. The effect of such a scaling will be
shown in this Section. The LFSR scaling affects both
the total TPG area overhead and the TPG design time.
This is documented in the summary results presented
in Section 5.

4.1. Weighted Pattern Testing

When the weighted pattern testing is used, a new
block is introduced into the BIST design – the
weighting logic block. See Fig. 5. The LFSR width (r)
may be less than the number of CUT inputs (m), the
number of TPG outputs is increased just by the
weighting logic block.

In practice, an LFSR with a random polynomial and
random seed is used. This ensures (to some extent) a
uniform distribution of ‘1’s and ‘0’s in code words
produced by it. In other words, the weights of all the r
LFSR outputs are approximately 0.5. To generate the

weighted patterns, the outputs of the weighting logic
are generated by AND-ing or OR-ing randomly
selected LFSR outputs. Thus, m weighted PRPG
outputs are generated by this way.

Decoder

Switch

CUT

MISR

TPG

mode

m

m

m

LFSR
r<m

Weighting logic

Figure 5. Weighted column-matching BIST
scheme

4.2. Non-Weighted Testing

Another possibility how to reduce the LFSR width
is to use a splitter. No weighting logic is involved here,
however we need to synthesize an m-output
pseudorandom pattern generator, to feed the CUT
in the pseudorandom phase. The simplest way how
to do this is to split the LFSR outputs among the PRPG
outputs, thus feeding several CUT inputs by one LFSR
output. This, of course, reduces the pseudorandom
testing capabilities. On the other hand, a significant
area overhead reduction is obtained by eliminating the
weighting logic (and, more importantly, the number
of LFSR flip-flops).

The LFSR width reduction has a significant
influence on the deterministic phase as well: since
there are less decoder inputs, the column-matching
process is sped up (linearly with the number of inputs,
see Section 2). The negative influence of a reduction
of the LFSR input is an increase of the area overhead
of the decoder. This is caused by a decrease of the
number of possibilities for a column match (there are
nm column matches in total). However, this
disadvantage is fully compensated by the LFSR area
reduction.

The structure of the BIST using a splitter is shown
in Fig. 6.

Decoder

Switch

CUT

MISR

TPG

mode

m

m

m

LFSR
r<m

 Splitter

Figure 6. Column-matching BIST scheme with
a splitter

5. Experimental Results

Experimental results for several standard ISCAS
benchmarks are presented in this section. The
experiments are summarized in one table, for better
comparison. See Table 3, at the end of the paper. First,
the benchmark circuit name is stated, then the number
of its inputs (“m”). The “LFSR” column indicates the
width of the LFSR used (r). Then the length of the
pseudorandom phase follows (“PR”), the length of the
deterministic phase was set to 1000 in all cases.
A short description of the PRPG design method
follows (type of weighting logic or a splitter). In a case
of weighted pattern testing the number of gates needed
for the weighting logic is shown in the next column
(“w”). The number of faults that remained undetected
by the pseudorandom phase is shown in the “UD”
column. Then the number of deterministic vectors
for which the output decoder had to be synthesized is
indicated in the “vcts” column. Finally the
column-matching results are shown. The number
of matches obtained is shown in the “M” column, the
area overhead of the Decoder and Switch is shown next
(“CM”), then the column-matching process runtime
in seconds and, at the end, the overall area overhead
of the whole TPG, including the weighting logic and
an LFSR area overhead (“GEs”). The area overhead is
computed in terms of gate equivalents [15]. An n-input
NAND gate counts for 0.5n GEs, the two-input XOR
gate (used in LFSR) is 2.5 GEs. The size of a
D flip-flop is considered to be 4 GEs, which complies
with the design of a standard flip-flop in CMOS logic.

The pseudo-random patterns were simulated using
HOPE fault simulator [16]. Test sets for the undetected
faults were computed by Atalanta ATPG [17].

5.1. Comments on the Results

The first three lines of the table describe the results
for the c2670 ISCAS benchmark, for different
weighting logics. First, no weighting logic was used,
and then the 3-weight and 5-weight logic was applied.
The weighting logic without constant 0 and 1 values
was used (see Subsection 3.2). There is an apparent
reduction of the number of undetected faults to be seen
when the weighting logic is used. Unfortunately, the
number of deterministic vectors needed to cover the
undetected faults is in the 3-weight case higher than
in the unweighted case. This caused an increase of both
the column-matching algorithm runtime and decoder
area overhead. When the 5-weight logic is used, the
number of deterministic test vectors is significantly
less, thus the algorithm runtime is significantly
reduced. The overall overhead is unfortunately
increased, due to the weighting logic overhead.

An LFSR having the width equal to the number
of CUT inputs was used in the previous example. Only
a 50-bit LFSR is used in the next comparison example.
Here the effect of the weighting logic is to be seen
more apparently. Both the runtime and overall TPG
logic is reduced when the weighting logic is used.
Moreover, there is a very significant reduction of the
TPG area overhead, when compared to the 233-bit
LFSR case (41% in the unweighted case, 55% in the
3-weight case).

Similar weighting logic effect can be observed for
the s838 benchmark circuit.

More thorough experiments have been performed
using the s13207.1 benchmark circuit. First of all, the
effect of the use of the weighing logic is shown. Very
significant reduction of the number of deterministic
test vectors is seen when the 3-weight logic is used.
This yielded a column-matching runtime reduction
(more than 19-times) and the decoder area reduction
(more than 4-times). Unfortunately, the overall TPG
logic is slightly increased, due to the weighting logic
overhead.

Next, the LFSR scaling effects were observed,
while the 3-weight logic is used. We have tried to scale
the originally 700-bit LFSR down to 20 bits. It can be
seen that optimum results are obtained for the 50-bit
LFSR, the TPG area reduction is more than 70% with
respect to the original (700-bit unweighted) case.
When the LFSR width is scaled down more, the TPG
area overhead rapidly increases, since the weighted
PRPG is not able to cover enough faults, due to a
reduced randomness of the patterns. The
column-matching results for the 30- and 20-bit LFSR
are not present, due to very high column-matching
algorithm runtimes.

6. Conclusions

An analysis of several possible pseudo-random
pattern generators used in connection with the
column-matching BIST TPG design method is
presented in this paper. The aim is to reduce both the
test pattern generator area overhead and its design
time. Formerly, the LFSR width used in the
column-matching BIST design had to be equal to the
number of the tested circuit inputs. Two methods
reducing the LFSR width are proposed here.

 Two approaches to do this are shown: the use of the
weighted pattern testing and using a “splitter”. Several
weight set generation methods are discussed and
experimentally evaluated. The weighted pattern testing
enables a reduction of the width of the LFSR used
in our TPG design method, for a cost of the weighting
logic overhead. Satisfactory trade-off between these
two aspects has to be found here.

The second way to reduce the overall TPG logic
proposed in this paper is the use of the “splitter”. The
LFSR width is reduced here as well, however no
additional weighting logic is involved here; the LFSR
outputs are simply branched to feed several CUT
inputs simultaneously. This reduces the pseudo-
random fault coverage capabilities of the PRPG, which
causes an increase of the amount of the combinational
logic produced by column-matching. However, is a
proper LFSR width scaling is found, this overhead
increase is negligible when compared to the LFSR area
reduction obtained. Moreover, the column-matching
runtime is reduced as well.

Acknowledgement

This research has been supported by MSMT under
research program MSM6840770014.

References
[1] V.K. Agrawal, C.R. Kime and K.K., Saluja, „A tutorial

on BIST, part 1: Principles“, IEEE Design & Test of
Computers, vol. 10, No.1 March 1993, pp.73-83

[2] P.P. Chaudhuri, et al., „Additive Cellular Automata
Theory and Applications, Volume I“, IEEE Computer
Society Press, 1997, 340 pp.

[3] P.H. Bardell, W.H. McAnney and J. Savir, „Built-In Test
for VLSI: Pseudo-Random Techniques“, New York:
John Wiley & Sons, 1987

[4] H.J. Wunderlich, „Self Test Using Unequiprobable
Random Patterns“, International Symposium on Fault-
Tolerant Computing, 1987

[5] F. Muradali, V.K. Agarwal and B. Nadeau-Dostie, “A
New Procedure for Weighted Random Built-In-Self-
Test,” Proc. International Test Conference (ITC‘90), pp.
660-668, 1990

[6] M.A. Miranda et al., “Generation of Optimized Single
Distributions of Weights for Random BIST”, Proc.
International Test Conf. (ITC’93), pp. 1023- 1030, 1993

[7] J. Hartmann and G. Kemnitz, “How to Do Weighted
Random Testing for BIST”, Proc. International
Konference on Computer-Aided Design (ICCAD), 1993

[8] Fišer, P., Hlavička, J., Kubátová, H.: „Column-Matching
BIST Exploiting Test Don't-Cares“, Proc. 8th IEEE
Europian Test Workshop, Maastricht, 2003, pp. 215-216

[9] Fišer, P., Kubátová, H.: „An Efficient Mixed-Mode BIST
Technique“, Proc. 7th IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop 2004,
Tatranská Lomnica, SK, 18.-21.4.2004, pp. 227-230

[10] Kunzmann, A.: „Efficient random testing with global
weights“. In Proceedings of the Conference on European
Design Automation (Geneva, Switzerland). Computer
Society Press, Los Alamitos, CA, 1996, pp. 227-232.

[11] Jas, A., Krishna, C. V. and Touba, N. A. 2001. Hybrid
BIST Based on Weighted Pseudo-Random Testing: A
New Test Resource Partitioning Scheme. In Proceedings
of the 19th IEEE VLSI Test Symposium (March 29 -
April 03, 2001). VTS. IEEE Computer Society,
Washington, DC, 2.

[12] Wang, S. 2001. Low hardware overhead scan based 3-
weight weighted random BIST. In Proceedings of the
IEEE international Test Conference 2001 (October 30 -
November 01, 2001). IEEE Computer Society,
Washington, DC, 868-877.

 [13] F. Brglez and H. Fujiwara, „A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortan“, Proc. of International Symposium
on Circuits and Systems, 1985, pp. 663-698

[14] F. Brglez, D. Bryan and K. Kozminski, „Combinational
Profiles of Sequential Benchmark Circuits“, Proc. of
International Symposium of Circuits and Systems, pp.
1929-1934, 1989

[15] G. De Micheli, “Synthesis and Optimization of Digital
Circuits”, McGraw-Hill, 1994

[16] H.K. Lee and D.S. Ha. An Efficient Forward Fault
Simulation Algorithm Based on the Paralel Pattern Single
Fault Propagation, Proc. of the 1991 International Test
Conference, pp. 946-955, Oct. 1991

[17] H.K. Lee and D.S. Ha. Atalanta: an Efficient ATPG for
Combinational Circuits. Technical Report, 93-12, Dep't
of Electrical Eng., Virginia Polytechnic Institute and
State University, Blacksburg, Virginia, 199

[18] N.A. Touba and E.J. McCluskey: “Bit-Fixing in
Pseudorandom Sequences for Scan BIST“, IEEE
Transactions on CAD, Vol. 20, No. 4, April 2001, pp.
545-555

[19] E.M. Sentovich et al.: „SIS: A System for Sequential
Circuit Synthesis“, Electronics Research Laboratory
Memorandum No. UCB/ERL M92/41, University of
California, Berkeley, CA 94720, 1992

Table 3. Experimental results

bench m LFSR (r) PR method w UD vcts M CM time [s] GEs

c2670 233 233 4000 standard - 320 104 197 219 606 1153.5
 233 3-w 216 282 130 202 264.5 960 1415
 233 5-w 406 159 72 224 226 171 1566.5
 50 splitter - 334 120 193 323 475 677.5
 50 3-w 219 275 144 203 248.5 427 629.5
s838 67 67 5000 standard - 101 61 43 107 50 377.5
 67 3-w 42 96 103 56 94.5 128 365
 67 5-w 87 74 85 61 86.5 60 357
s9234.1 247 247 50000 standard - 783 331 211 514 1030 1504.5
 247 3-w 135 532 73 232 165.5 532 1291
 50 splitter - 1226 526 188 1005.5 7343 1208
 50 3-w 135 713 185 223 333 463 535.5
s13207.1 700 700 10000 standard - 917 492 696 172.5 4720 2975
 700 3-w 518 239 88 700 40.5 245 3361
 200 3-w 365 240 108 697 63.5 653 1231
 50 3-w 365 303 226 697 103.5 2835 671
 45 3-w 365 334 232 696 145.5 3423 693
 40 3-w 365 338 530 692 640.5 29434 1288
 30 3-w 365 1069 851 - - - -
 20 3-w 365 1085 886 - - - -

