
Improvement of the Fault Coverage of the Pseudo-Random Phase
in Column-Matching BIST

Petr Fišer, Hana Kubátová

Department of Computer Science and Engineering
Czech Technical University

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

Several methods improving the fault coverage in
mixed-mode BIST are presented in this paper. The test is
divided into two phases: the pseudo-random and
deterministic. Maximum of faults should be detected by the
pseudo-random phase, to reduce the number of faults to be
covered in the deterministic one. We study the properties
of different pseudo-random pattern generators. Their
successfulness in fault covering strictly depends on the
tested circuit. We examine properties of LFSRs and
cellular automata. Four methods enhancing the
pseudo-random fault coverage have been proposed. Then
we propose a universal method to efficiently compute test
weights.

The observations are documented on some of the
standard ISCAS benchmarks and the final BIST circuitry is
synthesized using the Column-Matching method.

1. Introduction

As the complexity of VLSI circuits constantly increases,
there is a need of a built-in self-test (BIST) to be used.
Built-in self-test enables the chip to test itself and to
evaluate the circuit’s response. Thus, the very complex and
expensive external ATE (Automatic Test Equipment) can
be completely omitted, or its complexity significantly
reduced. Moreover, BIST enables an easy access to
internal structures of the tested circuit, which are extremely
hard to reach from outside.

Many BIST methods have been proposed [1], all of
them have been finding a trade-off between the BIST area
overhead, fault coverage achieved and the test time.
Generally, some kind of a pseudo-random pattern
generator (PRPG) is used to produce test patterns. These
are being applied to the tested circuit and the responses are
then evaluated by a signature analyzer. Usually, a linear
feedback shift registers (LFSRs) or cellular automata (CA)
[2] are used as PRPGs, for their simplicity. However,
patterns generated by simple LFSRs or CA often do not
provide a satisfactory fault coverage. Thus, these patterns
have to be modified somehow. One of the most known
approaches is the weighted random pattern testing [3, 4].

Here the LFSR code words are modified by a weighting
logic to produce a test with given probabilities of
occurrence of 0’s and 1’s at the particular circuit under test
(CUT) inputs. Many papers dealing with the computation
of the weights and the design of the weighting logic has
been published [4-7]. It has been found that multiple set of
weights have to be used to achieve satisfactory results [8].
The weighted random pattern testing is aimed to increase
the probability that vectors testing the hard-to-detect faults
will be generated. However, there is no guarantee that the
hard-to-detect faults will be really detected.

Other methods ensure 100% fault coverage by
modifying the pseudo-random LFSR code words, in order
to produce deterministic test vectors. Such an approach is
exploited in the bit-fixing method [9, 10], bit-flipping [11]
and the method proposed in [12, 13]. A similar principle is
exploited in our column-matching method [14, 15] as well.
In all these methods only some of the PRPG vectors are
being transformed into deterministic patterns. Preferably,
only vectors that do not detect any faults are being
modified. Such an approach, where the pseudo-random
vectors are mixed together with the deterministic ones, is
called a mixed-mode BIST.

The difference between our mixed-mode BIST method
– the column-matching - and the others is that the whole
test is divided into two disjoint phases. First, the easy-to-
detect faults are covered in the pseudo-random phase.
Then, a set of deterministic test vectors covering the
undetected faults is computed and these tests are then
produced by a transformation of the following PRPG
patterns, done by the Decoder. A general scheme of the
column-matching mixed-mode BIST is shown in Fig. 1.

LFSR

Decoder

Switch

CUT

MISR

TPG

mode

Figure 1. Column-matching BIST scheme

The more faults are covered in the pseudo-random
phase, the smaller the resulting BIST logic overhead is, see
[16]. Thus, our aim is to increase the pseudo-random fault
coverage to a maximum. There are several techniques
improving the fault coverage. However, a universal and
simple technique cannot be found yet. The effects of the
individual techniques significantly differ for different
circuits. This fact is documented in this paper. We have
examined four methods increasing the number of faults
covered in the pseudo-random phase and compared the
results. We propose an enhanced column-matching
scheme. Here the column-matching method proposed
before [14, 15] is augmented by methods increasing the
number of faults detected in the pseudo-random phase,
which reduces both the test time and BIST area overhead.
The results obtained by the best methods are presented and
compared with other state-of-the-art methods.

The proposed techniques are based on a random
selection of the PRPG parameters. Such a fast approach,
when applied many times repeatedly, could mostly
outperform time-demanding deterministic techniques
based on genetic algorithms [23] or a repeated simulation
of all the test patterns [24].

This paper is primarily intended as a case study of a
possibility of a combination of standard BIST methods
involving a modification of a PRPG and a deterministic
BIST. Moreover, in the beginning of the paper we
introduce a straightforward overview of the fault coverage
capabilities of different PRPGs.

The paper is organized as follows: first the pseudo-
random fault coverage properties and weight distributions
for standard LFSRs and CA will be discussed in Section 2.
Principles of the column-matching method will be briefly
described in Section 3 and techniques enhancing the fault
coverage will be described and evaluated in Section 4.
Section 5 shows a comparison of the enhanced column-
matching method with other state-of-the-art methods.
Section 6 concludes the paper.

2. Pseudo-Random Fault Coverage and

Weight Distributions

A certain number of pseudo-random patterns are being
applied to the CUT in the first phase of our
column-matching mixed-mode BIST method, to detect the
easily testable faults. The more faults are detected by these
patterns, the simpler the logic needed to produce
deterministic test vectors is. Thus, a good PRPG choice is
of a key importance for the whole BIST design process.

We have studied several different PRPGs, namely
LFSRs with different generating polynomials and seeds
and cellular automata with different seeds. The fault
coverage and the distribution of weights, thus the
probabilities of occurrence of 1’s and 0’s in the generated
code words will be evaluated in this section.

In all the following experiments we have used a cellular
automaton based on a rule 60 for each cell [2], due to its
simplicity. However, the results can be generalized for
most of other automata. The structure of this CA is shown
in Fig. 2.

Figure 2. Cellular automaton used

2.1. Influence of the LFSR Generating
Polynomial on Fault Coverage

In order to thoroughly evaluate the fault coverage of
different PRPGs, we have made a vast number of
experiments. The first group of experiments searches for
the optimal number of LFSR “taps” (i.e., the number of
XOR gates). In other words, we ask a question: “Is it
necessary to use a primitive polynomial to generate the
pseudo-random test patterns?” We have performed the
following experiment: we have repeatedly applied 500
pseudo-random patterns to the c3540 ISCAS benchmark
circuit [17]. The sets of test patterns were generated by
LFSRs with different generating polynomials and seeds,
both randomly generated. All the polynomials were chosen
such that a satisfactory period was ensured. The LFSR
width was set equal to the number of the CUT primary
inputs, thus 50 in a case of the c3540 benchmark. We have
gradually increased the number of LFSR taps, from 1 to
49. For each LFSR size 100 different random LFSRs were
produced, differing both in the tap positions and the seed.
Thus, for the circuit used, 5000 different LFSRs were
produced. The results of the experiment are shown in
Fig. 3. The horizontal axis corresponds to the number of
LFSR taps, the vertical axis shows the fault coverage
reached (number of undetected faults). In each horizontal
position 100 points showing the fault coverage reached are
drawn.

It can be observed that the number of taps does not
influence the fault coverage capability at all; the fault
coverage is steadily distributed. Thus, we can conclude
that the most advantageous LFSR is one from the 1-tap
LFSRs, since its area overhead is the smallest one. In most
cases a 1-tap LFSR having a satisfactory period can be
found. Using primitive polynomials thus becomes
counterproductive, since the number of their taps is mostly
bigger than one and they do not bring any contribution,
considering that each LFSR tap introduces one XOR gate
to the overall BIST overhead.

0 10 20 30 40 50

220

240

260

280

300

320

340

360
c3540

U
nd

et
ec

te
d

fa
ul

ts

Taps

Figure 3. Fault coverage of different LFSRs

2.2. Fault Coverage Probability

We have studied the measure of a probability of
detecting a given number of faults by a randomly
generated LFSR, with respect to the number of pseudo-
random test patterns. We have performed several sets of
experiments, each experiment with a different, randomly
generated LFSR (both in the polynomial and seed). The
results are shown in Fig. 4. Here sets of 10, 50, 100, 500,
1000 and 5000 LFSR patterns were gradually applied to
the c3540 circuit [17], 10 000 samples for each test size.
The distribution of the number of faults which remained
undetected is shown here. For a low number of patterns
many faults are left undetected, while also their number
varies a lot. When increasing the number of the test
patterns, the number of undetected faults rapidly decreases,
while the standard deviation of this number decreases as
well. It can be derived from this example, that a good
choice of a PRPG becomes very important when the
number of the applied patterns is low (right side of the
figure). For a relatively high number of pseudo-random
patterns applied, the influence of their (non-)randomness is
suppressed (left side of the figure).

500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

c3540

10

5000

1000

500

100
50

Fr
eq

ue
nc

y

Undetected Faults

Figure 4. Pseudo-random fault coverage

2.3. Cellular Automata vs. LFSRs – Fault
Coverage

The fault covering capabilities of cellular automata and
LFSRs are compared in this Subsection. The distribution
of the number of undetected faults, exactly as in Fig. 4, has
been studied for LFSRs and CA, rule 60. Such a CA has
been chosen for all our experiments that can be easily
implemented by T-flip-flops. The distribution curves for
these two types of generators are shown in Fig. 5. Here 500
patterns generated by random LFSRs seeded with random
seeds were repeatedly applied to the c3540 circuit (10 000
times). It can be observed that the mean value of the
number of undetected faults does not change when a CA is
used, but the standard deviation is decreased. Hence an
important conclusion can be derived: using a randomly
seeded CA does not increase the number of covered faults
in average, but the probability of detecting more faults by
the CA vectors is higher with respect to an LFSR.

200 250 300 350 400

0

200

400

600

800

1000

1200

LFSR

CA

c3540
500 patterns

F
re

qu
en

cy

Undetected faults

Figure 5. Comparison of the fault coverage

obtained by LFSR and CA

2.4. Cellular Automata with Unbalanced Seeds

The previous experiment has shown that using a
randomly seeded CA instead LFSRs does not bring any
contribution to the fault coverage reached. In all of these
experiments the seeds were generated randomly, with a
steady distribution of 1’s and 0’s. On the other hand, when
a “special” seed is selected for a cellular automaton, its
fault covering properties will dramatically change.

We have performed an experiment similar to the one
presented in Fig. 5, for the s838 ISCAS circuit [18]
applying LFSR and CA patterns, once with a steady
distribution of values in its seed, and once with a seed
having only one “1” value at a random position, thus the
weight of this seed was unbalanced. The four tests were
run for 500 cycles and the distribution of the number of
undetected faults was measured. The results are shown in
Fig. 6. We can observe that for this special seed the fault
coverage of a LFSR has rapidly decreased, but on the other
hand, the variability of fault coverage of a CA has
increased, while in some cases much more faults were
covered by vectors produced by this CA (left-hand side).

This observation can be explained by an unsteady
distribution of weights, as it will be shown in the following
Subsection. These properties of cellular automata have
been presented in other papers as well [19, 20].

100 200 300
0

100

200

300

400

500

600

700

800

900

1000

1100

CA, unbalanced seed

LFSR, unbalanced seed

Random CA

Random LFSR

Fr
eq

ue
nc

y

Undetected Faults

Figure 6. Fault coverage of a “specially” seeded

CA and LFSR

2.5. Distribution of Weights

When CA are seeded properly, the distribution of
weights on their outputs is non-uniform; it often varies
throughout the whole weight scale. This cannot be
observed by LFSRs. Thus, cellular automata can be used
for weighted pattern BIST, without using any additional
weighting logic.

The distribution of weights for four 100-bit PRPGs
running 1000 cycles is shown in Figures 7-10.

0,0 0,2 0,4 0,6 0,8 1,0
0

2

4

6

8

10

12

14

16
LFSR
random seed

F
re

qu
e

nc
y

Weight

0,0 0,2 0,4 0,6 0,8 1,0
0

5

10

15

20

25

LFSR
seed with one 1

Fr
eq

ue
nc

y

Weight

0,0 0,2 0,4 0,6 0,8 1,0
0

5

10

15

20

25

30

CA, rule 60
random seed

F
re

qu
e

nc
y

Weight

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0

5

10

15

20
CA, rule 60
seed with one 1

F
re

qu
e

nc
y

Weight

Figures 7-10. Distribution of weights for different

PRPGs

We can see that for a randomly generated seed, for both

the LFSR and CA, the weights near 0.5, thus there is a
balanced distribution of zeroes and ones in a test (Fig. 7
and 9). When a LFSR is unbalanced by a seed having only
one “1” value and the rest are zeroes, the weights at the
outputs are shifted to the weight of the seed in this
particular case (Fig. 8). The weights do not differ from
each other too much; the probabilities of zeroes and ones at
all the outputs are approximately equal. A 1-tap LFSR has
been chosen here, as we did for all of our experiments. If a
LFSR with greater number of taps were chosen, all weights
would near to 0.5, similarly to the case of a balanced seed.
In Figure 10 the CA seeded with an unbalanced seed
(having one “1” value) is shown. The weights vary from
negligible values (all zeroes) to more than 0.7. This is the
case where the weighted pattern testing can be
advantageously applied.

3. Column-Matching BIST

The column-matching BIST method is based on a
transformation of the PRPG code words into deterministic
test patterns pre-computed by some ATPG tool. This
transformation is being done by a combinational logic.

The method is designed for combinational or full-scan
circuits, thus the order of the patterns applied to the tested
circuit is not significant. In our column-matching method

we try to assign the PRPG patterns to the deterministic
vectors, so that some of the columns of the PRPG patterns
and ATPG tests are equal. Then the decoding logic needed
to implement the “matched” column would be reduced to a
mere wire connecting the decoder output with its
respective input. The unmatched outputs have to be
synthesized by some Boolean minimizer. For more
detailed description see [14]. The column-matching was
originally developed for a test-per-clock BIST, however it
can be easily modified for the test-per-scan BIST, as it is
proposed in [13]. The original principle has been further
extended to support the mixed-mode testing [15]. The
BIST run is divided into two disjoint phases here. First, the
circuit is tested using an unmodified sequence of LFSR
code words, to detect the easy-to-detect faults. For the rest
of the faults deterministic test patterns are computed by
Atalanta ATPG tool [21]. These vectors are to be produced
by the Decoder. There has to be some additional logic to
switch between the two phases. It is implemented as an
array of multiplexers, one for each CUT input, however we
try to eliminate the switching logic as well, by introducing
direct matches [15]. A simple example of a mixed-mode
column-matching BIST principle is shown in Fig. 11.
A 5-bit PRPG is run for 5 cycles first and the easily
testable faults are detected. Then we run the fault
simulation to find the undetected faults, for which the test
vectors are generated by an ATPG. At the end the Decoder
logic is synthesized for these tests and the subsequent
PRPG patterns. The resulting circuitry is shown in Fig. 12.

�����
�����

�����

�����

�����
�����

�����
�����

�����
�����

������	
����
�������� � ������� ���	����
��

���� ��
���� ����

�����
�

�����

�����

�����
�����

�����
�����

������
�����

�����

����	����
 ���
�������
��������

� �

! 	!
� "

# 	#
� "

����

�����
�����

�����
�����

�����
�����

�����

�����

�����

�����

�����	
��
	�������

Figure 11. Mixed-mode column-matching BIST

example

����

���

1

!� !� !$!% !"

#� #� #$ #% #"

 ���
�������
���

�&�!� �

�&�!

�&�!

�&�!

�&�! '!

� �

$ $

% �

" � �

(

('

Figure 12. Resulting BIST circuit

4. Enhancing Pseudo-Random Fault
Coverage

We have thoroughly examined several fault coverage
improving methods and compared the results. We have

found that none of these simple methods can be used
universally. Their effectiveness strictly depends on the
nature of the tested circuit.

Four methods will be proposed here: the repetitive
balanced LFSR reseeding, the repetitive unbalanced CA
reseeding, test weight-based wire reordering and a
standard weighted random pattern testing [3].

4.1. Repetitive Balanced LFSR Reseeding

As we have shown in Fig. 4, the number of faults
covered by a particular LFSR seeded by a random vector
notably varies. It is computationally infeasible to compute
an LFSR polynomial and seed so that the code words will
cover a maximum of faults, hence we have chosen a
randomized method. We randomly choose the LFSR
polynomial (1-tap) and randomly generate the seed having
a balanced number of zeroes and ones. Such an LFSR will
then produce code words with balanced weights at all its
outputs (see Subsection 2.5). Then we apply a certain
number of vectors produced by this LFSR to the tested
circuit [16] and determine the number of undetected faults,
using a fault simulator. We repeat this procedure several
times, while the “most successful” polynomial and seed are
remembered and at the end they are used to generate the
patterns. Using this simple method, we try to randomly
choose an LFSR that lies on the left side of the fault
coverage distribution curve shown in Fig. 4. The
experimental results for some of the ISCAS benchmarks
[17, 18] are shown in Table 1. The LFSR has been
repeatedly reseeded 100 times. The number of repetitions
required has been derived from our observation: we have
found that the number of faults that remain undetected
after 100 repetitions does not vary too much for our
benchmark circuits. The number of undetected faults as a
function of the number of repetitions is shown in Fig. 13.
The c3540 benchmark has been tested for 3000 pseudo-
random cycles here, up to 1000 repetitions. It can be seen
that the number of undetected faults after 1000 iterations
sinks by two only, with respect to the 100 repetitions.

0 200 400 600 800 1000

140

142

144

146

148

150

U
nd

et
ec

te
d

Repetitions

Figure 13. Improvement of fault coverage by

repeated reseeding

In Table 1, the “inps.” column indicates the number of
benchmark inputs, “PR / det.” the lengths of the pseudo-
random and deterministic phases [16], the “UD / vct.”
shows the number of undetected faults in the pseudo-
random phase and the number of deterministic vectors
produced by an ATPG, the “M / DM ” column indicates the
total number of column matches and the number of direct
matches. The last column shows the total complexity of the
resulting BIST, in terms of gate equivalents [15].

Table 1. Repetitive balanced LFSR reseeding

bench inps. PR/det. UD/vct M/DM GEs
c880 60 500/500 12/5 60/50 15
c1355 41 1K/1K 11/1 41/28 19.5
c1908 33 2K/1K 21/9 32/24 14.5
c3540 50 3K/1K 139/2 50/48 3
s420 35 500/500 40/23 32/17 31
s641 54 1K/1K 14/11 54/39 22.5
s713 54 1K/1K 52/11 54/37 25.5
s838 67 5K/1K 104/61 43/13 119.5
s1196 32 5K/1K 23/16 30/24 15

4.2. Repetitive Unbalanced CA Reseeding

According to the experiments described in Subsection
2.4, a properly seeded cellular automaton could cover a
significantly greater number of faults than a LFSR. We
have found that seeding a CA with a balanced seed yields
results very similar to those obtained by a LFSR, hence
such a case will not be discussed here. On the other hand, a
LFSR seeded with an unbalanced seed produces code
words with very low (or high) weights on all its outputs.
This is disadvantageous for most of circuits, which we
have found experimentally. Thus, this case will not be
studied either.

Similarly as in the previous subsection, we have
repeatedly reseeded a cellular automaton (rule 60) 100
times and the best seed was recorded. In all cases a random
seed having only one “1” value was selected. The results of
the experiment are shown in Table 2. The table format is
retained from Table 1.

Table 2. Repetitive unbalanced CA reseeding

bench inps. PR/det. UD/vct. M/DM GEs
c880 60 the CA period is too short
c1355 41 1000/1000 11/1 41/33 12
c1908 33 the CA period is too short
c3540 50 3000/1000 148/7 50/43 10.5
s420 35 500/500 17/12 35/26 13.5
s641 54 1000/1000 53/22 51/32 42.5
s713 54 1000/1000 93/22 49/32 45.5
s838 67 5000/1000 24/17 67/52 22.5
s1196 32 the CA period is too short

4.3. Determining Test Weights

The two previously described methods were based on a
repeated random selection of a PRPG. The two following

methods are based on deterministic decisions – we try to
generate pseudo-random patterns, so that their weights will
be in correlation with the required test weights.

At first, the weight set for the test has to be computed.
Most of the present mixed-mode or weighted BIST
methods target the hard-to-detect faults. Here either the
deterministic test vectors detecting these faults [13] are
generated or the pseudo-random patterns are modified by
weights, so that the weights correspond to weights of the
test set detecting these faults [3]. Usually, these
hard-to-detect faults are identified first and then the test set
is computed for them. Typically, several sets of pseudo-
random patterns are applied to the CUT, the fault
simulation is performed, and faults that were detected by
each set of patterns are assigned as easy-to-detect, the rest
are assigned as hard-to-detect faults [13].

We have applied a different approach to determine the
test weights (i.e., the probabilities of occurrence of 1’s and
0’s on individual test bits). We do not compute the set for
the hard-to-detect faults; the weights are derived directly
from the test sets. Similarly to the previously mentioned
method, we apply several sets of pseudo-random patterns
to the CUT. For each pattern set we generate a set of test
vectors covering the faults that remained undetected. For
each test set, the weights are computed and after all the
weights are averaged together, to obtain the final weight
set. This method allows us to avoid fluctuations and weight
differences between different test sets for the hard-to-
detect faults. Moreover, weight sets generated by this
weight do not reflect the hard-to-detect faults only; the
testability of all faults is considered.

Usually, the weights of the individual bits do not differ
between the test sets. We have found experimentally that
the average value of the ranges of weight values
(difference between the highest and lowest weight) does
not exceed 0.2.

4.4. Test Weight-Based Wire Reordering

In the Repetitive Unbalanced CA Reseeding we have
tried to randomly select the CA seed, and hoped that it will
“fit” the weights. There is a more sophisticated approach to
do so – the Test Weight-Based Wire Reordering. First, we
compute the test weights using the procedure described in
the previous Subsection. Then we randomly generate a
seed for a cellular automaton. The seed should be selected
so that the CA weights are unbalanced, thus e.g., the seed
having only one “1” value. Then we compute the weights
of the PRPG patterns and reorder the CA outputs, so that
the CA weights correlate with the test weights. This is
done by sorting both the CA outputs and test bits according
their weights. Then they are assigned to each other
according their order. This approach is in many cases
better than a simple random CA reseeding, however there

are cases where it fails as well. The experimental results
are shown in Table 3.

Table 3. Test weight-based wire reordering
bench inps. PR/det. UD/vct. M/DM GEs
c880 60 the CA period is too short
c1355 41 1000/1000 11/1 41/35 9
c1908 33 the CA period is too short
c3540 50 3000/1000 150/5 50/44 9
s420 35 500/500 32/15 35/27 12
s641 54 1000/1000 23/15 43/42 18
s713 54 1000/1000 74/20 52/39 25.5
s838 67 5000/1000 13/12 67/52 22.5
s1196 32 the CA period is too short

4.5. Weighted Random Pattern Testing

We have selected a common weighted random pattern
testing method as the last one to try. Instead of reordering
the wires, we use an additional logic to generate weighted
outputs of the PRPG. A standard balanced LFSR can be
advantageously used here, since all its weights are
approximately 0.5, thus a computation of additional
weights becomes simple. Using an AND gate connecting
two different LFSR outputs, we obtain an output having a
weight 0.25. Similarly, OR-ing two outputs we get a
weight 0.75. The weights 0 and 1 can be acquired by
connecting the CUT input to the ground or the power.

In all our experiments we have used only this set of
weights (0, 0.25, 0.5, 0.75, 1). The results are shown in
Table 4.

Table 4. Weighted random pattern testing

bench inps. PR/det. UD/vct. M/DM GEs
c880 60 500/500 20/6 60/46 21
c1355 41 1000/1000 11/1 41/28 19.5
c1908 33 2000/1000 45/28 27/11 52
c3540 50 3000/1000 141/4 50/46 6
s420 35 500/500 18/7 35/25 15
s641 54 1000/1000 12/5 54/52 3
s713 54 1000/1000 50/6 54/51 4.5
s838 67 5000/1000 38/20 60/39 49
s1196 32 5000/1000 208/71 27/21 73

4.6. Comparison of the Results

A comparison of the four methods is presented in this
section, see Table 5. The a) column stands for the
Repetitive Balanced LFSR Reseeding, b) for the Repetitive
Unbalanced CA Reseeding, c) for Test the Weight-Based
Wire Reordering and d) for the Weighted Random Pattern
Testing. The entries in the cells correspond to the
complexity of the BIST, in terms of GEs. The respective
field is shadowed where the method gave best results. It
can be seen that no single method can be universally used;
one has to be chosen according the properties of the tested
circuit. Unfortunately, we have no clue which method to
chose, other than trying out all of them and pick the best

one. Finding out some selection rules will be the aim of
our further research.

Table 5. Comparison of the results

bench a) b) c) d)
c880 15 - - 21
c1355 19.5 12 9 19.5
c1908 14.5 - - 52
c3540 3 10.5 9 6
s420 31 13.5 12 15
s641 22.5 42.5 18 3
s713 25.5 45.5 25.5 4.5
s838 119.5 22.5 22.5 49
s1196 15 - - 73

5. Comparison with Other Methods

We have made a comparison of our enhanced
column-matching mixed-mode method with other stand-or-
the-art methods, namely the bit-fixing [9] and the method
proposed in [13]. The experimental results are shown in
Table 6. The “TL” column gives the length of the test
(clock cycles), the “GEs” column the complexity of the
resulting BIST logic, in terms of gate equivalents [22]. The
“method” column indicates the enhancement method used,
similarly as in the previous Subsection.

 The empty cells indicate that the data for the respective
circuit was not available to us.

6. Conclusions

We have proposed an enhancement of our column-
matching mixed-mode method. The pseudo-random phase
has been altered so that more faults are covered by it. Four
methods enhancing the pseudo-random fault coverage have
been proposed and their results evaluated. We have found
that no universal method can be used, unless the area
overhead caused by it is prohibitive.

The study of the PRPG type effect on the fault coverage
has been given, showing that using a one-tap LFSR is
sufficient to reach a satisfactory fault coverage.

We have proposed a new method to compute the weight
set. Not only the hard-to-detect faults are being targeted
here, the obtained weight set reflect the testability of all the
faults.

Acknowledgement

This research was supported by grant GA 102/04/2137
and MSM6840770014

References
[1] V.K. Agrawal, C.R. Kime and K.K., Saluja, „A tutorial on

BIST, part 1: Principles“, IEEE Design & Test of Computers,
vol. 10, No.1 March 1993, pp.73-83

[2] P.P. Chaudhuri, et al., „Additive Cellular Automata Theory
and Applications, Volume I“, IEEE Computer Society Press,
1997, 340 pp.

[3] P.H. Bardell, W.H. McAnney and J. Savir, „Built-In Test for
VLSI: Pseudo-Random Techniques“, New York: John Wiley
& Sons, 1987

[4] H.J. Wunderlich, „Self Test Using Unequiprobable Random
Patterns“, International Symposium on Fault-Tolerant
Computing, 1987

[5] F. Muradali, V.K. Agarwal and B. Nadeau-Dostie, “A New
Procedure for Weighted Random Built-In-Self-Test,” Proc.
International Test Conference (ITC‘90), pp. 660-668, 1990

[6] M.A. Miranda et al., “Generation of Optimized Single
Distributions of Weights for Random BIST,” Proc.
International Test Conf. (ITC’93), pp. 1023- 1030, 1993

[7] J. Hartmann and G. Kemnitz, “How to Do Weighted Random
Testing for BIST,” Proc. International Konference on
Computer-Aided Design (ICCAD), 1993

[8] H. Wunderlich, “Multiple Distributions of Biased Random
Test Patterns”, IEEE Trans. Computer-Aided Design, vol. 9,
no. 6, June 1990

[9] N.A. Touba, „Synthesis of mapping logic for generating
transformed pseudo-random patterns for BIST“, Proc. of
International Test Conference, pp. 674-682, 1995

[10] N.A. Touba and E.J. McCluskey, “Bit-Fixing in
Pseudorandom Sequences for Scan BIST”, IEEE Trans.
Computer-Aided Design, vol. 20, no. 4, pp 545-555, 2001

[11] H.J. Wunderlich and G. Keifer, „Bit-Flipping BIST“, Proc.
ACM/IEEE International Conference on CAD-96, San Jose,
California, November 1996, pp. 337-343

[12] M. Chatterjee and D.K. Pradhan, „A novel pattern generator
for near-perfect fault coverage“, Proc. of VLSI Test
Symposium 1995, pp. 417-425

[13] M. Chatterjee and D.K. Pradhan, „A BIST Pattern Generator
Design for Near-Perfect Fault Coverage“, IEEE Transactions
on Computers, vol. 52, no. 12, 2003, pp. 1543-1558

[14] P. Fišer, J. Hlavi�ka and H. Kubátová, „Column-
Matching BIST Exploiting Test Don't-Cares“, Proc. 8th IEEE
Europian Test Workshop, Maastricht, 2003, pp. 215-216

[15] P. Fišer and H. Kubátová, „An Efficient Mixed-Mode
BIST Technique“, Proc. 7th IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop 2004, Tatranská
Lomnica, SK, 18.-21.4.2004, pp. 227-230

[16] P. Fišer and H. Kubátová, „Influence of the Test Lengths
on Area Overhead in Mixed-Mode BIST“, Proc. 9th Biennial
Conference on Electronics and Microsystem Technology
2004 (BEC'04), Tallinn (Estonia), 3.-6.10.2004, pp. 201-204

[17] F. Brglez and H. Fujiwara, „A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target Translator in
Fortan“, Proc. of International Symposium on Circuits and
Systems, 1985, pp. 663-698

[18] F. Brglez, D. Bryan and K. Kozminski, „Combinational
Profiles of Sequential Benchmark Circuits“, Proc. of
International Symposium of Circuits and Systems, pp. 1929-
1934, 1989

[19] Hortensius, et al. Cellular automata circuits for BIST, IBM J.
R&Dev, vol 34, no 2/3, pp. 389-405, 1990

[20] O. Novák, „Pseudorandom, Weighted Random and
Pseudoexhaustive Test Patterns Generated in Universal
Cellular automata“, Springer: Lecture Notes in Computer
Science 1667, pp. 303-320, 1999

[21] H.K. Lee, D.S. Ha, „Atalanta: an Efficient ATPG for
Combinational Circuits“, Technical Report, 93-12, Dep't of
Electrical Eng., Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 1993

[22] G. De Micheli, “Synthesis and Optimization of Digital
Circuits”, McGraw-Hill, 1994

[23] S. Chiusano, F. Corno, P. Prinetto and M. Sonza Reorda,
„Cellular Automata for Sequential Test Pattern Generation“,
15th IEEE VLSI Test Symposium, Monterey, CA (USA),
April 1997, pp. 60-65

[24] C. Fagot, O. Gascuel, P. Girard and C. Landrault, „On
calculating efficient LFSR seeds for built-in self test“, Proc.
IEEE European Test Workshop 1999, Constance, Germany,
1999, pp. 7-14

Table 3. Comparison the results

 Column-matching Bit-fixing Row-matching
Bench TL GEs method TL GEs TL GEs

c880 1 K 15 a) 1 K 27 1 K 21
c1355 2 K 9 c) 3 K 11 2 K 0
c1908 3 K 7.5 a) 4 K 12 4.5 K 8
c3540 4 K 3 a) 4.5 K 13 4.5 K 4
s420 1 K 12 c) 1 K 28 - -
s641 2 K 3 d) 10 K 12 10 K 6
s713 2 K 4.5 d) - - 5 K 4
s838 6 K 22.5 c) 10 K 37 - -
s1196 6 K 15 a) - - 10 K 36

