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Abstract 

Several methods improving the fault coverage in 
mixed-mode BIST are presented in this paper. The test is 
divided into two phases: the pseudo-random and 
deterministic. Maximum of faults should be detected by the 
pseudo-random phase, to reduce the number of faults to be 
covered in the deterministic one. We study the properties 
of different pseudo-random pattern generators. Their 
successfulness in fault covering strictly depends on the 
tested circuit. We examine properties of LFSRs and 
cellular automata. Four methods enhancing the 
pseudo-random fault coverage have been proposed. Then 
we propose a universal method to efficiently compute test 
weights.  

The observations are documented on some of the 
standard ISCAS benchmarks and the final BIST circuitry is 
synthesized using the Column-Matching method. 

 
1. Introduction 

As the complexity of VLSI circuits constantly increases, 
there is a need of a built-in self-test (BIST) to be used. 
Built-in self-test enables the chip to test itself and to 
evaluate the circuit’s response. Thus, the very complex and 
expensive external ATE (Automatic Test Equipment) can 
be completely omitted, or its complexity significantly 
reduced. Moreover, BIST enables an easy access to 
internal structures of the tested circuit, which are extremely 
hard to reach from outside. 

Many BIST methods have been proposed [1], all of 
them have been finding a trade-off between the BIST area 
overhead, fault coverage achieved and the test time. 
Generally, some kind of a pseudo-random pattern 
generator (PRPG) is used to produce test patterns. These 
are being applied to the tested circuit and the responses are 
then evaluated by a signature analyzer. Usually, a linear 
feedback shift registers (LFSRs) or cellular automata (CA) 
[2] are used as PRPGs, for their simplicity. However, 
patterns generated by simple LFSRs or CA often do not 
provide a satisfactory fault coverage. Thus, these patterns 
have to be modified somehow. One of the most known 
approaches is the weighted random pattern testing [3, 4]. 

Here the LFSR code words are modified by a weighting 
logic to produce a test with given probabilities of 
occurrence of 0’s and 1’s at the particular circuit under test 
(CUT) inputs. Many papers dealing with the computation 
of the weights and the design of the weighting logic has 
been published [4-7]. It has been found that multiple set of 
weights have to be used to achieve satisfactory results [8]. 
The weighted random pattern testing is aimed to increase 
the probability that vectors testing the hard-to-detect faults 
will be generated. However, there is no guarantee that the 
hard-to-detect faults will be really detected. 

Other methods ensure 100% fault coverage by 
modifying the pseudo-random LFSR code words, in order 
to produce deterministic test vectors. Such an approach is 
exploited in the bit-fixing method [9, 10], bit-flipping [11] 
and the method proposed in [12, 13]. A similar principle is 
exploited in our column-matching method [14, 15] as well. 
In all these methods only some of the PRPG vectors are 
being transformed into deterministic patterns. Preferably, 
only vectors that do not detect any faults are being 
modified. Such an approach, where the pseudo-random 
vectors are mixed together with the deterministic ones, is 
called a mixed-mode BIST.  

The difference between our mixed-mode BIST method 
– the column-matching - and the others is that the whole 
test is divided into two disjoint phases. First, the easy-to-
detect faults are covered in the pseudo-random phase. 
Then, a set of deterministic test vectors covering the 
undetected faults is computed and these tests are then 
produced by a transformation of the following PRPG 
patterns, done by the Decoder. A general scheme of the 
column-matching mixed-mode BIST is shown in Fig. 1. 
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Figure 1. Column-matching BIST scheme 



The more faults are covered in the pseudo-random 
phase, the smaller the resulting BIST logic overhead is, see 
[16]. Thus, our aim is to increase the pseudo-random fault 
coverage to a maximum. There are several techniques 
improving the fault coverage. However, a universal and 
simple technique cannot be found yet. The effects of the 
individual techniques significantly differ for different 
circuits. This fact is documented in this paper. We have 
examined four methods increasing the number of faults 
covered in the pseudo-random phase and compared the 
results. We propose an enhanced column-matching 
scheme. Here the column-matching method proposed 
before [14, 15] is augmented by methods increasing the 
number of faults detected in the pseudo-random phase, 
which reduces both the test time and BIST area overhead. 
The results obtained by the best methods are presented and 
compared with other state-of-the-art methods. 

The proposed techniques are based on a random 
selection of the PRPG parameters. Such a fast approach, 
when applied many times repeatedly, could mostly 
outperform time-demanding deterministic techniques 
based on genetic algorithms [23] or a repeated simulation 
of all the test patterns [24]. 

This paper is primarily intended as a case study of a 
possibility of a combination of standard BIST methods 
involving a modification of a PRPG and a deterministic 
BIST. Moreover, in the beginning of the paper we 
introduce a straightforward overview of the fault coverage 
capabilities of different PRPGs. 

The paper is organized as follows: first the pseudo-
random fault coverage properties and weight distributions 
for standard LFSRs and CA will be discussed in Section 2. 
Principles of the column-matching method will be briefly 
described in Section 3 and techniques enhancing the fault 
coverage will be described and evaluated in Section 4. 
Section 5 shows a comparison of the enhanced column-
matching method with other state-of-the-art methods. 
Section 6 concludes the paper. 

 
2. Pseudo-Random Fault Coverage and 

Weight Distributions 

A certain number of pseudo-random patterns are being 
applied to the CUT in the first phase of our 
column-matching mixed-mode BIST method, to detect the 
easily testable faults. The more faults are detected by these 
patterns, the simpler the logic needed to produce 
deterministic test vectors is. Thus, a good PRPG choice is 
of a key importance for the whole BIST design process. 

We have studied several different PRPGs, namely 
LFSRs with different generating polynomials and seeds 
and cellular automata with different seeds. The fault 
coverage and the distribution of weights, thus the 
probabilities of occurrence of 1’s and 0’s in the generated 
code words will be evaluated in this section. 

In all the following experiments we have used a cellular 
automaton based on a rule 60 for each cell [2], due to its 
simplicity. However, the results can be generalized for 
most of other automata. The structure of this CA is shown 
in Fig. 2. 

 

 
 

Figure 2. Cellular automaton used 
 

2.1. Influence of the LFSR Generating 
Polynomial on Fault Coverage 

In order to thoroughly evaluate the fault coverage of 
different PRPGs, we have made a vast number of 
experiments. The first group of experiments searches for 
the optimal number of LFSR “taps” (i.e., the number of 
XOR gates). In other words, we ask a question: “Is it 
necessary to use a primitive polynomial to generate the 
pseudo-random test patterns?” We have performed the 
following experiment: we have repeatedly applied 500 
pseudo-random patterns to the c3540 ISCAS benchmark 
circuit [17]. The sets of test patterns were generated by 
LFSRs with different generating polynomials and seeds, 
both randomly generated. All the polynomials were chosen 
such that a satisfactory period was ensured. The LFSR 
width was set equal to the number of the CUT primary 
inputs, thus 50 in a case of the c3540 benchmark. We have 
gradually increased the number of LFSR taps, from 1 to 
49. For each LFSR size 100 different random LFSRs were 
produced, differing both in the tap positions and the seed. 
Thus, for the circuit used, 5000 different LFSRs were 
produced. The results of the experiment are shown in 
Fig. 3. The horizontal axis corresponds to the number of 
LFSR taps, the vertical axis shows the fault coverage 
reached (number of undetected faults). In each horizontal 
position 100 points showing the fault coverage reached are 
drawn. 

It can be observed that the number of taps does not 
influence the fault coverage capability at all; the fault 
coverage is steadily distributed. Thus, we can conclude 
that the most advantageous LFSR is one from the 1-tap 
LFSRs, since its area overhead is the smallest one. In most 
cases a 1-tap LFSR having a satisfactory period can be 
found. Using primitive polynomials thus becomes 
counterproductive, since the number of their taps is mostly 
bigger than one and they do not bring any contribution, 
considering that each LFSR tap introduces one XOR gate 
to the overall BIST overhead. 
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Figure 3. Fault coverage of different LFSRs 

 
2.2. Fault Coverage Probability 

We have studied the measure of a probability of 
detecting a given number of faults by a randomly 
generated LFSR, with respect to the number of pseudo-
random test patterns. We have performed several sets of 
experiments, each experiment with a different, randomly 
generated LFSR (both in the polynomial and seed). The 
results are shown in Fig. 4. Here sets of 10, 50, 100, 500, 
1000 and 5000 LFSR patterns were gradually applied to 
the c3540 circuit [17], 10 000 samples for each test size. 
The distribution of the number of faults which remained 
undetected is shown here. For a low number of patterns 
many faults are left undetected, while also their number 
varies a lot. When increasing the number of the test 
patterns, the number of undetected faults rapidly decreases, 
while the standard deviation of this number decreases as 
well. It can be derived from this example, that a good 
choice of a PRPG becomes very important when the 
number of the applied patterns is low (right side of the 
figure). For a relatively high number of pseudo-random 
patterns applied, the influence of their (non-)randomness is 
suppressed (left side of the figure). 
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Figure 4. Pseudo-random fault coverage 

 

2.3. Cellular Automata vs. LFSRs – Fault 
Coverage 

The fault covering capabilities of cellular automata and 
LFSRs are compared in this Subsection. The distribution 
of the number of undetected faults, exactly as in Fig. 4, has 
been studied for LFSRs and CA, rule 60. Such a CA has 
been chosen for all our experiments that can be easily 
implemented by T-flip-flops. The distribution curves for 
these two types of generators are shown in Fig. 5. Here 500 
patterns generated by random LFSRs seeded with random 
seeds were repeatedly applied to the c3540 circuit (10 000 
times). It can be observed that the mean value of the 
number of undetected faults does not change when a CA is 
used, but the standard deviation is decreased. Hence an 
important conclusion can be derived: using a randomly 
seeded CA does not increase the number of covered faults 
in average, but the probability of detecting more faults by 
the CA vectors is higher with respect to an LFSR. 
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Figure 5. Comparison of the fault coverage 

obtained by LFSR and CA 
 

2.4. Cellular Automata with Unbalanced Seeds 

The previous experiment has shown that using a 
randomly seeded CA instead LFSRs does not bring any 
contribution to the fault coverage reached. In all of these 
experiments the seeds were generated randomly, with a 
steady distribution of 1’s and 0’s. On the other hand, when 
a “special” seed is selected for a cellular automaton, its 
fault covering properties will dramatically change. 

We have performed an experiment similar to the one 
presented in Fig. 5, for the s838 ISCAS circuit [18] 
applying LFSR and CA patterns, once with a steady 
distribution of values in its seed, and once with a seed 
having only one “1” value at a random position, thus the 
weight of this seed was unbalanced. The four tests were 
run for 500 cycles and the distribution of the number of 
undetected faults was measured. The results are shown in 
Fig. 6. We can observe that for this special seed the fault 
coverage of a LFSR has rapidly decreased, but on the other 
hand, the variability of fault coverage of a CA has 
increased, while in some cases much more faults were 
covered by vectors produced by this CA (left-hand side). 



This observation can be explained by an unsteady 
distribution of weights, as it will be shown in the following 
Subsection. These properties of cellular automata have 
been presented in other papers as well [19, 20]. 
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Figure 6. Fault coverage of a “specially” seeded 

CA and LFSR 
 

2.5. Distribution of Weights 

When CA are seeded properly, the distribution of 
weights on their outputs is non-uniform; it often varies 
throughout the whole weight scale. This cannot be 
observed by LFSRs. Thus, cellular automata can be used 
for weighted pattern BIST, without using any additional 
weighting logic. 

The distribution of weights for four 100-bit PRPGs 
running 1000 cycles is shown in Figures 7-10. 
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Figures 7-10. Distribution of weights for different  

PRPGs 
 
We can see that for a randomly generated seed, for both 

the LFSR and CA, the weights near 0.5, thus there is a 
balanced distribution of zeroes and ones in a test (Fig. 7 
and 9). When a LFSR is unbalanced by a seed having only 
one “1” value and the rest are zeroes, the weights at the 
outputs are shifted to the weight of the seed in this 
particular case (Fig. 8). The weights do not differ from 
each other too much; the probabilities of zeroes and ones at 
all the outputs are approximately equal. A 1-tap LFSR has 
been chosen here, as we did for all of our experiments. If a 
LFSR with greater number of taps were chosen, all weights 
would near to 0.5, similarly to the case of a balanced seed. 
In Figure 10 the CA seeded with an unbalanced seed 
(having one “1” value) is shown. The weights vary from 
negligible values (all zeroes) to more than 0.7. This is the 
case where the weighted pattern testing can be 
advantageously applied. 

 
3. Column-Matching BIST 

The column-matching BIST method is based on a 
transformation of the PRPG code words into deterministic 
test patterns pre-computed by some ATPG tool. This 
transformation is being done by a combinational logic.  

The method is designed for combinational or full-scan 
circuits, thus the order of the patterns applied to the tested 
circuit is not significant. In our column-matching method 



we try to assign the PRPG patterns to the deterministic 
vectors, so that some of the columns of the PRPG patterns 
and ATPG tests are equal. Then the decoding logic needed 
to implement the “matched” column would be reduced to a 
mere wire connecting the decoder output with its 
respective input. The unmatched outputs have to be 
synthesized by some Boolean minimizer. For more 
detailed description see [14]. The column-matching was 
originally developed for a test-per-clock BIST, however it 
can be easily modified for the test-per-scan BIST, as it is 
proposed in [13]. The original principle has been further 
extended to support the mixed-mode testing [15]. The 
BIST run is divided into two disjoint phases here. First, the 
circuit is tested using an unmodified sequence of LFSR 
code words, to detect the easy-to-detect faults. For the rest 
of the faults deterministic test patterns are computed by 
Atalanta ATPG tool [21]. These vectors are to be produced 
by the Decoder. There has to be some additional logic to 
switch between the two phases. It is implemented as an 
array of multiplexers, one for each CUT input, however we 
try to eliminate the switching logic as well, by introducing 
direct matches [15]. A simple example of a mixed-mode 
column-matching BIST principle is shown in Fig. 11. 
A 5-bit PRPG is run for 5 cycles first and the easily 
testable faults are detected. Then we run the fault 
simulation to find the undetected faults, for which the test 
vectors are generated by an ATPG. At the end the Decoder 
logic is synthesized for these tests and the subsequent 
PRPG patterns. The resulting circuitry is shown in Fig. 12. 
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Figure 11. Mixed-mode column-matching BIST 

example 
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Figure 12. Resulting BIST circuit 
 

4. Enhancing Pseudo-Random Fault 
Coverage 

We have thoroughly examined several fault coverage 
improving methods and compared the results. We have 

found that none of these simple methods can be used 
universally. Their effectiveness strictly depends on the 
nature of the tested circuit. 

Four methods will be proposed here: the repetitive 
balanced LFSR reseeding, the repetitive unbalanced CA 
reseeding, test weight-based wire reordering and a 
standard weighted random pattern testing [3]. 

 
4.1. Repetitive Balanced LFSR Reseeding 

As we have shown in Fig. 4, the number of faults 
covered by a particular LFSR seeded by a random vector 
notably varies. It is computationally infeasible to compute 
an LFSR polynomial and seed so that the code words will 
cover a maximum of faults, hence we have chosen a 
randomized method. We randomly choose the LFSR 
polynomial (1-tap) and randomly generate the seed having 
a balanced number of zeroes and ones. Such an LFSR will 
then produce code words with balanced weights at all its 
outputs (see Subsection 2.5). Then we apply a certain 
number of vectors produced by this LFSR to the tested 
circuit [16] and determine the number of undetected faults, 
using a fault simulator. We repeat this procedure several 
times, while the “most successful” polynomial and seed are 
remembered and at the end they are used to generate the 
patterns. Using this simple method, we try to randomly 
choose an LFSR that lies on the left side of the fault 
coverage distribution curve shown in Fig. 4. The 
experimental results for some of the ISCAS benchmarks 
[17, 18] are shown in Table 1. The LFSR has been 
repeatedly reseeded 100 times. The number of repetitions 
required has been derived from our observation: we have 
found that the number of faults that remain undetected 
after 100 repetitions does not vary too much for our 
benchmark circuits. The number of undetected faults as a 
function of the number of repetitions is shown in Fig. 13. 
The c3540 benchmark has been tested for 3000 pseudo-
random cycles here, up to 1000 repetitions. It can be seen 
that the number of undetected faults after 1000 iterations 
sinks by two only, with respect to the 100 repetitions. 
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Figure 13. Improvement of fault coverage by 

repeated reseeding 
 



In Table 1, the “inps.” column indicates the number of 
benchmark inputs, “PR / det.” the lengths of the pseudo-
random and deterministic phases [16], the “UD / vct.” 
shows the number of undetected faults in the pseudo-
random phase and the number of deterministic vectors 
produced by an ATPG, the “M / DM ” column indicates the 
total number of column matches and the number of direct 
matches. The last column shows the total complexity of the 
resulting BIST, in terms of gate equivalents [15]. 

 
Table 1. Repetitive balanced LFSR reseeding 

bench inps. PR/det. UD/vct M/DM GEs 
c880 60 500/500 12/5 60/50 15 
c1355 41 1K/1K 11/1 41/28 19.5 
c1908 33 2K/1K 21/9 32/24 14.5 
c3540 50 3K/1K 139/2 50/48 3 
s420 35 500/500 40/23 32/17 31 
s641 54 1K/1K 14/11 54/39 22.5 
s713 54 1K/1K 52/11 54/37 25.5 
s838 67 5K/1K 104/61 43/13 119.5 
s1196 32 5K/1K 23/16 30/24 15 

 
4.2. Repetitive Unbalanced CA Reseeding 

According to the experiments described in Subsection 
2.4, a properly seeded cellular automaton could cover a 
significantly greater number of faults than a LFSR. We 
have found that seeding a CA with a balanced seed yields 
results very similar to those obtained by a LFSR, hence 
such a case will not be discussed here. On the other hand, a 
LFSR seeded with an unbalanced seed produces code 
words with very low (or high) weights on all its outputs. 
This is disadvantageous for most of circuits, which we 
have found experimentally. Thus, this case will not be 
studied either. 

Similarly as in the previous subsection, we have 
repeatedly reseeded a cellular automaton (rule 60) 100 
times and the best seed was recorded. In all cases a random 
seed having only one “1” value was selected. The results of 
the experiment are shown in Table 2. The table format is 
retained from Table 1. 

 
Table 2. Repetitive unbalanced CA reseeding 

bench inps. PR/det. UD/vct. M/DM GEs 
c880 60 the CA period is too short 
c1355 41 1000/1000 11/1 41/33 12 
c1908 33 the CA period is too short 
c3540 50 3000/1000 148/7 50/43 10.5 
s420 35 500/500 17/12 35/26 13.5 
s641 54 1000/1000 53/22 51/32 42.5 
s713 54 1000/1000 93/22 49/32 45.5 
s838 67 5000/1000 24/17 67/52 22.5 
s1196 32 the CA period is too short 

 
4.3. Determining Test Weights 

The two previously described methods were based on a 
repeated random selection of a PRPG. The two following 

methods are based on deterministic decisions – we try to 
generate pseudo-random patterns, so that their weights will 
be in correlation with the required test weights. 

At first, the weight set for the test has to be computed. 
Most of the present mixed-mode or weighted BIST 
methods target the hard-to-detect faults. Here either the 
deterministic test vectors detecting these faults [13] are 
generated or the pseudo-random patterns are modified by 
weights, so that the weights correspond to weights of the 
test set detecting these faults [3]. Usually, these 
hard-to-detect faults are identified first and then the test set 
is computed for them. Typically, several sets of pseudo-
random patterns are applied to the CUT, the fault 
simulation is performed, and faults that were detected by 
each set of patterns are assigned as easy-to-detect, the rest 
are assigned as hard-to-detect faults [13]. 

We have applied a different approach to determine the 
test weights (i.e., the probabilities of occurrence of 1’s and 
0’s on individual test bits). We do not compute the set for 
the hard-to-detect faults; the weights are derived directly 
from the test sets. Similarly to the previously mentioned 
method, we apply several sets of pseudo-random patterns 
to the CUT. For each pattern set we generate a set of test 
vectors covering the faults that remained undetected. For 
each test set, the weights are computed and after all the 
weights are averaged together, to obtain the final weight 
set. This method allows us to avoid fluctuations and weight 
differences between different test sets for the hard-to-
detect faults. Moreover, weight sets generated by this 
weight do not reflect the hard-to-detect faults only; the 
testability of all faults is considered. 

Usually, the weights of the individual bits do not differ 
between the test sets. We have found experimentally that 
the average value of the ranges of weight values 
(difference between the highest and lowest weight) does 
not exceed 0.2. 

 
4.4. Test Weight-Based Wire Reordering 

In the Repetitive Unbalanced CA Reseeding we have 
tried to randomly select the CA seed, and hoped that it will 
“fit” the weights. There is a more sophisticated approach to 
do so – the Test Weight-Based Wire Reordering. First, we 
compute the test weights using the procedure described in 
the previous Subsection. Then we randomly generate a 
seed for a cellular automaton. The seed should be selected 
so that the CA weights are unbalanced, thus e.g., the seed 
having only one “1” value. Then we compute the weights 
of the PRPG patterns and reorder the CA outputs, so that 
the CA weights correlate with the test weights. This is 
done by sorting both the CA outputs and test bits according 
their weights. Then they are assigned to each other 
according their order. This approach is in many cases 
better than a simple random CA reseeding, however there 



are cases where it fails as well. The experimental results 
are shown in Table 3. 

 
Table 3. Test weight-based wire reordering 
bench inps. PR/det. UD/vct. M/DM GEs 
c880 60 the CA period is too short 
c1355 41 1000/1000 11/1 41/35 9 
c1908 33 the CA period is too short 
c3540 50 3000/1000 150/5 50/44 9 
s420 35 500/500 32/15 35/27 12 
s641 54 1000/1000 23/15 43/42 18 
s713 54 1000/1000 74/20 52/39 25.5 
s838 67 5000/1000 13/12 67/52 22.5 
s1196 32 the CA period is too short 

 
4.5. Weighted Random Pattern Testing 

We have selected a common weighted random pattern 
testing method as the last one to try. Instead of reordering 
the wires, we use an additional logic to generate weighted 
outputs of the PRPG. A standard balanced LFSR can be 
advantageously used here, since all its weights are 
approximately 0.5, thus a computation of additional 
weights becomes simple. Using an AND gate connecting 
two different LFSR outputs, we obtain an output having a 
weight 0.25. Similarly, OR-ing two outputs we get a 
weight 0.75. The weights 0 and 1 can be acquired by 
connecting the CUT input to the ground or the power. 

In all our experiments we have used only this set of 
weights (0, 0.25, 0.5, 0.75, 1). The results are shown in 
Table 4. 

 
Table 4. Weighted random pattern testing 

bench inps. PR/det. UD/vct. M/DM GEs 
c880 60 500/500 20/6 60/46 21 
c1355 41 1000/1000 11/1 41/28 19.5 
c1908 33 2000/1000 45/28 27/11 52 
c3540 50 3000/1000 141/4 50/46 6 
s420 35 500/500 18/7 35/25 15 
s641 54 1000/1000 12/5 54/52 3 
s713 54 1000/1000 50/6 54/51 4.5 
s838 67 5000/1000 38/20 60/39 49 
s1196 32 5000/1000 208/71 27/21 73 

 
4.6. Comparison of the Results 

A comparison of the four methods is presented in this 
section, see Table 5. The a) column stands for the 
Repetitive Balanced LFSR Reseeding, b) for the Repetitive 
Unbalanced CA Reseeding, c) for Test the Weight-Based 
Wire Reordering and d) for the Weighted Random Pattern 
Testing. The entries in the cells correspond to the 
complexity of the BIST, in terms of GEs. The respective 
field is shadowed where the method gave best results. It 
can be seen that no single method can be universally used; 
one has to be chosen according the properties of the tested 
circuit. Unfortunately, we have no clue which method to 
chose, other than trying out all of them and pick the best 

one. Finding out some selection rules will be the aim of 
our further research. 

 
Table 5. Comparison of the results 

bench a) b) c) d) 
c880 15 - - 21 
c1355 19.5 12 9 19.5 
c1908 14.5 - - 52 
c3540 3 10.5 9 6 
s420 31 13.5 12 15 
s641 22.5 42.5 18 3 
s713 25.5 45.5 25.5 4.5 
s838 119.5 22.5 22.5 49 
s1196 15 - - 73 

 
5. Comparison with Other Methods 

We have made a comparison of our enhanced 
column-matching mixed-mode method with other stand-or-
the-art methods, namely the bit-fixing [9] and the method 
proposed in [13]. The experimental results are shown in 
Table 6. The “TL” column gives the length of the test 
(clock cycles), the “GEs” column the complexity of the 
resulting BIST logic, in terms of gate equivalents [22]. The 
“method” column indicates the enhancement method used, 
similarly as in the previous Subsection. 

 The empty cells indicate that the data for the respective 
circuit was not available to us. 

 
6. Conclusions 

We have proposed an enhancement of our column-
matching mixed-mode method. The pseudo-random phase 
has been altered so that more faults are covered by it. Four 
methods enhancing the pseudo-random fault coverage have 
been proposed and their results evaluated. We have found 
that no universal method can be used, unless the area 
overhead caused by it is prohibitive. 

The study of the PRPG type effect on the fault coverage 
has been given, showing that using a one-tap LFSR is 
sufficient to reach a satisfactory fault coverage. 

We have proposed a new method to compute the weight 
set. Not only the hard-to-detect faults are being targeted 
here, the obtained weight set reflect the testability of all the 
faults. 
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Table 3. Comparison the results 

 Column-matching Bit-fixing Row-matching 
Bench TL GEs method TL GEs TL GEs 

c880 1 K 15 a) 1 K 27 1 K 21 
c1355 2 K 9 c) 3 K 11 2 K 0 
c1908 3 K 7.5 a) 4 K 12 4.5 K 8 
c3540 4 K 3 a) 4.5 K 13 4.5 K 4 
s420 1 K 12 c) 1 K 28 - - 
s641 2 K 3 d) 10 K 12 10 K 6 
s713 2 K 4.5 d) - - 5 K 4 
s838 6 K 22.5 c) 10 K 37 - - 
s1196 6 K 15 a) - - 10 K 36 

 


