Boolean Minimizer FC-Min: Coverage Finding Process

Petr FiSer, Hana Kubéatova
Department of Computer Science and Engineering
Czech Technical University

Karlovo nam. 13,

121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

This paper describes principles of a novel twodlleve
multi-output Boolean minimizer FC-Min, namely itsdF
Coverage phase. The problem of Boolean minimizasion
approached in a reverse way than common minimers
First, the cover of the on-set is found, and aftext the
appropriate implicants are being constructed toisfgt
this cover. Thus, only the necessary group impi&ame
being generated, which makes FC-Min an extremedy fa
and efficient minimizer for functions with many putt
variables. An essential phase of the algorithmhées Eind
Coverage procedure. This phase determines the nushbe
terms in the final solution, which has to be redlde
minimum. It solves an NP-hard problem, thus some
heuristic has to be applied. We propose our hdarist
method to solve this problem and study the inflaeoic
parameters on the final solution quality and rurgim

1. Introduction

The problem of two-level Boolean minimization ocgur
in many areas of logic design, in logic synthesigeneral
[1], in build-in self-test (BIST) design [2], in @esign of
control systems, as so on. The basis for all
conventional minimization algorithms was laid in'$0y
Quine and McCluskey [3, 4]. Here the minimization
process was divided into two successive phases: the
generation of implicants and the solution of theecing
problem (CP). Mostly the prime implicants (PIs) are
looked for at the beginning, and then they haveébéo
further reduced to obtain group implicants for riault
output functions. The representatives of thesecipiies
are MINI [5], ESPRESSO [6] and its modificationg,[7
later Scherzo [8] with its improved CP solutionaithm
was introduced. Lately we have developed a Boolean
minimizer BOOM [9, 10], which is able to handle
functions with an extremely large number of input
variables.

A common drawback of the previously mentioned
algorithms is the way they handle multi-output fimes.

The implicant reduction phase is often very time

the

consuming and produces many unnecessary implicants
(i.e., implicants that will not be a part of thelwimn).

A large number of prime implicants of all the outpu
functions is being generated as well, which then
complicates the CP solution. Generally, minimizataf
functions with a large number of output variabks very
time-consuming process and the results are often
suboptimal.

Our Boolean minimizer FC-Min [11] generally solved
this problem. Here the implicants are being geedrat a
completely different way: first the cover of the-set is
found (in the Find Coverage phase) and after that t
implicants satisfying this cover are computed frtime
input terms. Only the necessary set of implicarsts i
generated; no implicants that will not be a parttiogé
solution are produced. The covering problem satutio
phase can be completely omitted here. BasicaleyFind
Coverage phase can be apprehended as a covering
problem solution, but in a reverse way.

The basic FC-Min algorithm was then extended to
support the iterative minimization. The princip lep®its
the fact that during the minimization some decisiamne
being done at random. Thus, multiple runs of thmesa
algorithm yield different results. All the obtained
implicants are then put together and the regulari€CP
solved. This enables us to reach better results: forice
of a longer runtime.

We have extensively tested the minimizer on stahdar
MCNC benchmarks and on randomly generated problems.
Our results were compared with ESPRESSO and BOOM.
FC-Min is superior to these methods in both theinum
and result quality, especially for functions withamy
output variables. On the other hand, it is not athg@eous
to use FC-Min for single-output functions, since tover
is being generated partially at random in this casethe
result is not optimal.

The paper is structured as follows: Section 2 dpnsta
the problem statement, Section 3 describes theipkas
of FC-Min, with emphasis on the Find Coverage phase
The comparison of the method with other algorithms
given in Section 4, Section 5 concludes the paper.

2. Problem Statement

Let us have a set oh Boolean functions ofi input
variables. The input variables will be denoted »xas
0<i<n, the output variables ag, 0 < j < m. The
functions will be referenced &5 (X1, %, ... %), F2(X1, X
e %), -er F(Xg, %, ... %). The output values of the care
terms (both minterms and terms of a higher dimerssio
may be used) are defined by a truth table. Thush ea
function is specified by its on-sef(k, %, ... %) and off-
set R(Xy, X, ... %). To the minterms that are not present in
the truth table are implicitly assigned don’t caidues.
The don't cares can be given explicitly too, baththe
input matrix (thus defining a term of a higher diva®n)
and the output matrix (specifying an output dorérec
value for a given input term). The part of a tradle
representing the terms will be denoted asnaoit matrix
I, the rows of the input matrix will be denoted iaput
vectors The part defining the output values of the
functions will be called aoutput matrixO; similarly, the
rows of this matriboutput vectorsEach row of the output
matrix defines values of the output variables ffer values
of input variables specified by the correspondiay iin
the input matrix. The number of matrix columns
correspond to the number of input varialieshe number
of O matrix columns is equal to the number of output
variablesm, the number of andO matrix rows will be
denoted ap.

Specifying a Boolean function by its on-set andsef,
rather than by its on-set and dont care set, is
advantageous especially for highly unspecified tions,
i.e., functions that have the defined values ofydiew
terms, the rest are don’t cares. A typical exangple use
of such functions can be found, e.g., in the binldelf-
test (BIST) design [12, 13, 14].

Our task is to synthesize a two-level circuit

implementing a multiple-output Boolean function
described by a truth table, whereas the implementaf
the circuit should be as small as possible. Thus, w
perform a group two-level Boolean minimization wher
set of functions is given by their on-sets andsaffs. The
result will be in a form of a set gh SOP (sum-of-the-
product) forms implementingm output functions.
In practice, the output of an algorithm is a PLI& {“type
fd") describing the structure of the PLA implemeitta
of the required circuit. In our algorithm we try take
advantage of the group implicants, thus terms ithaty
more than one output function.

3. Principles of FC-Min

The FC-Min algorithm produces implicants of a
function in a way that is reverse to other common
minimization algorithms. First, the cover of the-ggt is
found and after then the implicants are being @erivom
this cover. Hence, there are two major phases isf th

algorithm: theFind Coverphase and th&ind Implicant
phase. After that, the implicants should be yetaxied in
order to reduce the total number of literals. Digsion of
this process exceeds the scope of this paper, toe m
information see [11].

3.1. Find Cover Phase

In the Find Cover phase we try to find a rectangle
cover [1] of the whole on-set. This means that vyetd
find potential implicants that could be a part tkt
solution, if they met the requirements for theexdatover.
This phase is the most essential one, since irrdetes
the number of implicants in the final solution.

Before we describe the principles of the algoritiven
have to state four Definitions.

Definition 1

Let t; be an implicant. Theoverage seC(t) of the
implicantt; is a set of vectors (rows) of tl@ matrix, in
which at least one “1” value is covered by this licgnt.
In other words, the coverage set is a set of veaibthe
output matrix for whicht; is an implicant for at least one

output variable.
|

Definition 2

The coverage mask) of the implicantt; is a set of
columns in thed matrix, in which all the vectors included
in C(t) have one or more “1” value. The coverage mask
M(t) can also be expressed as a vector in the regultin
output matrix corresponding to the tertn In the
following text we will use both these representagiof

the coverage mask.
|

Definition 3
The coverage of an implicaritis a pair of the sefs(t)
andM(t) for which the following equation holds:

DaOc(t), ObOM(t): Ofa,b] 2 0"

The “1” or don’t care values covered tare identified
by the Cartesian produ€(t;) x M(t;).
|
Definition 4
The coverage of the matri© is a set of implicant
coverages €(t), M(t)} such that

Da< p,0b<mOfa,b]="1":{fa Ol JC(t) xM(t,)

The individual implicant coverages will be also
denoted asoverage elementsith respect to the coverage
of the matrix.

An example of such a coverage of tBematrix is
shown in Figure 1. Here all the “1”s are coveredsby

implicantst; - ts. Their respective coverage sets and masks
are listed in Table 1.

This output matrixO corresponds to a function with
5 output variables and 10 care terms defined. The
potentialt; —t; terms cover all the “1” values in the output
matrix and cover no zero. For example treup term
(implicant)t; covers the ones of the fourth and fifth output
variable of vectors4, 6 and 8. Let us note that the
structure of the terms is not known yet; only tle¢ of
covered “1"s is known. However, now it is appare¢hat
if we succeed in finding the implicants having the
properties oft; — t5 (i.e., the terms cover the respective
“1"s), the solution will consist of six implicants.

YoY.

R
0[noooo
1 oo
2 01100
]

Z

l;
Figure 1. Cover of the output matrix

Table 1. Coverage sets and masks

Implicant C(t) M(t;)
t {4.6,8 |{ys ys} =00011
t {1.2,%4 |{y, y} =01100
. [{8.% [{yo v} =10100
ty {3} {y. ys} =01010
ts {0, {Yo, yi} = 11000
t {4, 7 {y2, ya} =00101

Finding an optimum rectangle cover is a NP-hard
problem, thus some heuristic must be used. Theist ex
many efficient algorithms finding a cover consigtiof the
minimum of elements [1]. However, such a cover seed
not be always optimal for solving our minimization
problem. The solution will be then consisted of a
minimum of product terms, however, it needs not be
minimal with respect to the number of literals.

Our heuristic is based on a gradual search forragee
elements consisting of the maximum number of “1"s.
Firstly the output vector containing the most oft no
covered “1”s is selected as a basis for a new cowepur
example (Fig. 1) it is the row no.\8ith four “1"s. Now
we continue the search for a next row to add ireotd
increase the number of the covered ones. In ounplea
when the row 6 is added to the row 8, the number of
covered ones will not increase (because the firdt tae
third variable cannot be covered after that), haveiv

does not decrease either. After adding the rowhé, t
number of covered ones increases to Six.

After finding one cover, the “1”s that are includedit
are marked as “covered” and we continue the sefarch
other covers until all the ones in the output matie
covered.

Finding a cover consisting of many “1”s in the autp
matrix is advantageous, however it often means ithat
contains many vectors. This fact complicates the
subsequent phase — finding the structure of a tArtarm
whose cover consists of fewer vectors is easidinth
Thus, the heuristic algorithm is driven bydepth factor
DF. Since each of the rectangle covers is beinguymed
by a successive cumulating of vectors, we can eestficbr
each addition, whether to extend the cover to more
vectors, or to terminate its generation, even i€atld
grow bigger. The decision is made at random with a
probability given by DF. For instance, when DF £,1:
there is an equal probability that the search edlttinue;
when DF = 1:5, there is a probability 1:5 for a toual,
and thus terms that cover fewer vectors and motgutsi
are more likely generated. In general: when thettdep
factor is low, the runtimes are shorter, while the
complexity of the result is slightly higher.

Such a heuristic approach, where the implicants are
looked for independently on the input matrix (seurc
terms) explains, why the algorithm is generally
advantageous for functions with many outputs: treug
implicants of many output functions are very eas¥ind
this way. On the other hand, when it is used for
single-output functions, the algorithm cannot fitide
primes — it generates the implicants entirely ad-Adws,
using the algorithm for few-output functions
disadvantageous.

The Find Cover algorithm can be described intoitleta
by the following pseudo-code:

is

FindCover(O) {

Cc= [0;

M= all _out put _vari abl es;

k = nunber _of _ones_i n_Q

do {
v = vector_w th_maxi mal _x_for(0 <i

X = [C+1[*]M n O[i1l-ICIM[;

c=C 0O{v} 1 include v into C
M=M nO[vV], /I reduce M
Assign_as_Covered(O, C xM)
k = k—(IC+1[M n O[]l - [CIMI);

} while (k >0);

return (C, M);

<p

Algorithm 1. Find Cover phase

3.2.

After the coverages and the coverage masks are
produced, the implicants have to be derived udiage
coverages and thé matrix. Obviously, when a term

Incremental Implicant Generation

(cube) should cover a particular output vector, the
corresponding input vector must be contained i ¢thbe,
since the input vector implies the output. Thereftite
minimumterm t satisfying the particular cover must be
constructed as aninimum supercubeof all the input
vectors corresponding tG(t). Moreover, this supercube
must not intersect arlymatrix term that is not included in
its coverage set, since it would cover some zehes.t
This process will be denoted as lamplicant Generation
phase. For more detailed description see [11].

Here we assume that a term created as a minimum
supercube of the propkematrix terms is a valid implicant
of all the output functions included in its respeet
coverage mask. But some of such terms may intetisect
off-set (i.e., some of thematrix terms that are not
included in its coverage set), and thus they atevalid.

In this case there is no solution, particularly, ist
impossible to find implicants for the computed aove
Therefore, the cover must be recomputed somehow. On
possibility is to try to split the cover in ordes make
supercubes of fewer terms. This approach leadsapid
growth of the number of terms in the final solutidine
other possibility is to recompute the whole cowéys
repeat the phases until a solution is found. Such a
approach causes a great growth of the run-timeatsal
the algorithm often gets into an insolvable state.

We have found that the best way how to solve this
problem is anincremental implicant generatiorin this
approach the two main phases are not separatstly fir
one coverage element is generated, then immedidsely
minimum implicant is created and, if it is not kit
covers some zeroes), just the last coverage element
discarded and a different one is found. This apgrda
very fast and produces best results. It can beegurahvat
this approach always yields a solution; there igenea
chance to reach an insolvable state.

The whole algorithm can be described by the follgvi
pseudo-code. The inputs of the algorithm are thputin
matrix | and the output matriX, the output is a PLA
matrix G.

FC_Minimize(1, O {
G= [0;
do {
do {
¢ = FindOneCoverElement(O);
t = GenerateMinimumTerm(|,
c);
} while !llsValid(t, I);
G=G O t;
} while 'AllCovered();
return G;
}

Algorithm 2. The minimization algorithm

3.3.

Since the depth factor DF significantly drives the
generation of the cover, it is important to choageoper
value to obtain a desirable solution. Bigger valoE®F
force the algorithm to generate “deeper” terms, fegms
that cover many on-set terms. These terms are then
implicants of a smaller number of output variabkagce
the cardinality of the coverage mask of a term tetuwd
decrease with an increasing cardinality of its eetipe
coverage set (see Alg. 1). Unfortunately, theseexov
often are not be valid (see the previous Subséctibns
they have to be often recomputed (see Alg. 2). rf@ans
a rapid increase of a runtime. The ratio of thaltotimber
of cover computations (tries) to the number of drali
coverage elements (hits) as a function of DF isvshim
Fig. 2, Fig. 3 depicts the total runtime as a fiorcbf DF.
The problem solved was a 20-input, 20-output fiomcti
with 500 care terms. In both the input and outpatrices,
10% of explicit don’t cares were included.

For a low value of DF, implicants that cover a dmal
number of terms are more likely produced, howeliey t
are implicants of a large number of outputs. Irriaal
case, solution of a problem withterms could consist @f
implicants created just by an expansion of the tigums,
while the coverage masks of the terms would be ldqua
the output vectors of the respective source teHase the
Find Cover phase is, de facto, omitted, the miratiin
consists just of the input expansion phase (seg.[11

In general, a low value of DF generates a solutican
extremely short time, but the cost of the solui®migh.
High values of DF produce solutions having a lownber
of implicants (product terms) and literals as wéll; a
cost of slightly longer runtimes. These dependeneie
shown in Figures 4 and 5. The same problem asgnzFi
and 3 was solved. Figure 4 shows the dependentiee of
number of terms in a solution on DF, Fig. 5 shotes t
total cost of the solution, measured as a sum ef th
number of literals and the output cost (the outmst is
the number of inputs into the OR-gates, if the udtrds
implemented as an AND-OR net).

Influence of DF on the Solution

Tries / hits

T 1
11 1:100

DF ratio

Figure 2. Ratio of the tries to the hits

T T T 1
511 11 1:50 1:100
DF ratio

Figure 3. FC-Min runtime

500 - - mmmmmm e ms eI

480

460

Terms

440

420

Solution cost

T T T 1
511 11 1:50 1:100
DF ratio

Figure 4. Number of terms

We have concluded from our experiments that thet mos

t 1
511 11 1:50 1:100
DF ratio

Figure 5. Total solution cost

efficient value of DF is about 10:1. Higher valuegan
just the growth of a runtime, while the improvemehthe
guality of the solution is negligible.

3.4. Iterative FC-Min

In most

cases the FC-Min algorithm

is not

deterministic — the progress of the Find Coverauggesp is
controlled by a random number generator when degidi
whether to continue the "prolongation” of the pszezl
cover element or not. Secondly, when two or moreaty
advantageous steps are possible, one is chosandainn.
Thus, repeated run of FC-Min could produce differen

results. The idea of arterative FC-Min consists in
repeating the FC-Min several times, while all tiféedent
implicants are put together and stored. At thetaedinal
solution is constructed by solving the coveringlyem
using all the implicants. Even if each of the stngC-Min
runs produces a valid solution, a properly selected
combination of the implicants obtained from different
iterations might produce a better solution. It &dpby a
longer runtime.

4500+ 13500
4000- Laas0
3500
3000} 43400
[%2]
< 250017 43350
] ®
.© 2000 m
= 43300 ©
£ 1500
1000- 43250
5001 13200

0
0 2000 4000 6000 8000 10000
Iteration

Figure 6. Ilterative minimization example

An example of an iterative FC-Min run is shown in
Fig. 6. The sample problem solved was a randomly
generated function of 20 input and 20 output viemb
with 200 terms defined. The input matrix contairié®o
of explicit don't cares. The depth factor was g&t:1. The
thin line indicates the growth of the number of lizgnts.

We can observe that in 10000 iterations the tatahlver
of different implicants increased from 200 to 400bwe
thick line shows the quality of the result afterclea
iteration. It is measured in gate equivalents (Gislich
is a good approximation of a complexity of the ptas
implementation of the circuit [16]. The number G&isan
n input NAND or NOR gate is computed 2.

The number of GEs was reduced by 8% in 4000
iterations, and then it remains unchanged, evethef
number of implicants is still increasing.

Figure 7 illustrates the influence of the depthda®F
on the implicant growth rate. For an extremely D&
(1:100) the number of implicants remains almost
unchanged. On the other hand, many different impts
are being generated when increasing DF. This allsie
reach a better result in a shorter time. Howeveth w
increasing DF also the runtime grows rapidly. Thagsne
kind of a tradeoff must be found to achieve thdefsts
implicant growth. It is illustrated by Fig. 8. Hetlee same
problem was solved and the increase of the number o
implicants was measured as a function of a time.cére
observe that the fastest growth was achieved for
DF =10:1. For higher DF the seemingly faster icgntit
production is suppressed by longer runtimes.

100:1
10:1

4000
2:1

3000 L1
1:2

2000

Implicants

\i

10004 1:10

1:100

0

T T T J
3000 4000 5000 6000

Iteration

T T
0 1000 2000

Figure 7. Influence of DF on the number of
iterations

4000

3000

Implicants
IS
8

1000
1:100

T T 1
10000 15000 20000

Time[s]

T T
0 5000

Figure 8. Influence of DF - growth of the number
of implicants with time

4. Experimental Results

Many experiments have been performed in order to
evaluate the performance of the method and to coampa
the results with other up-to-date two-level miniatian
tools. The algorithm was programmed in C++ Builder
under Windows XP, the computer used for tests was
Athlon 900 MHz with 256 MB RAM.

We have tested the algorithm on standard MCNC
benchmarks [15] and compared the results and rastim
with ESPRESSO v2.3. Since the benchmark functions
were originally specified by their on-sets and dasdre
sets (PLA type fd), the sources had to be convebted
ESPRESSO into a format where the function is sjgekif
by its on-set and off-set. The time needed for the
conversion was not included in the runtimes.

There was 120 benchmark problems solved, plus 19
so-called “hard” MCNC benchmarks. The 86 (72%) from
120 of them were solved by FC-Min in a shorter tifmen

4.1. Randomly Generated Problems - One

Iteration

The second set of problems on which we have tested
FC-Min were randomly generated functions, functions
with no special properties (no aggregated oneshé t
output matrix, etc.). With a help of such probleme can
easily observe the properties and scalability o th
algorithm. One of the reasons why FC-Min was dgwetb
was aneed to synthesize the combinational logic fo
BIST, namely the output decoder transforming th&RF
patterns into test patterns pre-generated by anGAID®I.
Both the LFSR and ATPG patterns mostly have a nando
nature, and thus the randomly generated benchmarks
simulate these practical problems very well [12-14]

We have generated problems with a varying number of
input variables and terms, the number of outputs fixad
to 15. These artificial benchmarks were solved by
FC-Min, BOOM [9, 10] and ESPRESSO [6] to compare
the performance. Here only one iteration of BOOM an
FC-Min was performed, the FC-Min depth factor wat s
to 10:1.

The results of the minimization are shown in Table
The number of inputs increases in the horizontadation
(i), the number of care terms in the vertical dictp).
Each of the cells contains average values of teblpms
of the same size that were solved, to ensure steady
statistical values. The first row of each cell ire ttable
contains results obtained by ESPRESSO, the secoad o
the result obtained by BOOM and the third by FC-Min
The first number in each line indicates the runfirtie
second one the number of literals in the SOP faha,
output cost follows and last number indicates thmloer
of terms. We can see that in all the cases FC-Min
completed the minimization in a significantly skeortime
than ESPRESSO and BOOM, while the result quality is
comparable.

4.2. Randomly Generated Problems — Same
Time

Next, we have solved the same set of problems, but
taking advantage of the iterative minimization thise.
The functions were minimized by ESPRESSO first, and
then both by BOOM and FC-Min, while the runtime was
set to meet the runtime that ESPRESSO neededdb aea
solution.

The results are shown in Table 3. The format of the
table is retained from the previous example, exoéftat
only the ESPRESSO runtime is shown, while the numbe

by ESPRESSO. For 103 cases (86%) FC-Min reached the Of iterations (to meet that time) is given in trergntheses

same or better result (in 8 cases the result wisrpand

in 80 cases (67%) the same or better result wabiedan

a shorter time than by ESPRESSO. For more detalil
information see [11].

for BOOM and FC-Min.

Here FC-Min gives much better results than
ESPRESSO, especially for problems with many input
variables. For most of these problems FC-Min
outperforms BOOM as well. However, for problemshwit

a low number of output variables BOOM is faster émel
result quality is better too. Thus, for an effidien w0l Inputs: 20

minimization we have to decide whether to use BO@M Outputs: 20
FC-Min, judging by the number of outputs.

30

4.3. Time Complexity Evaluation

Time [s]

Since FC-Min is a heuristic method, it is difficult to

determine its time complexity exactly. In orderesiimate]

the time complexity of the method FC-Min was runan

large number of randomly generated problems with on T o e e e
parameter varying each time, while the minimization Terms

times were recorded. , . _ .
Figures 9-11 show the time dependencies on the Figure 11. Time complexity as a function of the

number of input variables (Fig. 9), output variable number of the care terms
(Fig. 10) and the number of care terms (Fig. 1e T)
values of the fixed parameters are indicated irfithees, 5. Conclusions

the depth factor was set to 10:1. No exponentiaigr of

time can be observed in any of the curves, thusithod

can be scaled to very large problems while theiment
remains minimal.

We have presented a new two-level Boolean
minimization method called FC-Min. It is based dwe t
idea that the coverage of the output matrix is b
first, and then the structure of implicants is ded from

84 this cover. The algorithm is extremely fast anisivery
Outputs: 15 efficient, especially for functions with a largember of
Terms: 200 outputs. Particularly, the Find Coverage phasechvig
essential for the algorithm, is more thoroughlyatiéed

10 in this paper. The influence of the Depth Factortlom

2 ol runtime and the quality of the solution was studiece.

" o] The method was tested on the MCNC benchmarks and
o] randomly generated problems. We have shown that for
2] problems with higher number of output variablessit
0 , faster than both ESPRESSO and BOOM and gives better

’ e results as well. The algorithm was tested on rariglom
generated problems in order to estimate the statist
Figure 9. Time complexity as a function of the properties and scalability of the method. We hawmend
number of inputs that the method can be easily applied to very large
problems without a significant growth of a runtime.
°] Inputs: 20
*1 Terms: 20 Acknowledgement

This research was supported by a grant
GA 102/04/2137 and MSM 212300014

Time [s]

References

[1] S. Hassoun and T. Sasao, ,Logic Synthesis agrifigation”,
1 Boston, MA, Kluwer Academic Publishers, 2002, 494 p
° 2 40 60 80 100 120 0 160 180 [2] Agarwal, Kime, Saluja: A tutorial on BIST, pdrt
oupus Principles. IEEE Design & Test of Computers, vél, No.1
Figure 10. Time complexity as a function of the gﬂpég%hql? 93, Pp.73-83, part 2: Applications, No.ad1993,
number of outputs [3] W.V. Quine, “The problem of simplifying truttufictions”,
Amer. Math. Monthly, 59, No.8, 1952, pp. 521-531
[4] E.J. McCluskey, “Minimization of Boolean funetis”, The
Bell System Technical Journal, 35, No. 5, Nov. 1956
pp. 1417-1444

[5] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINIh&uristic
approach for logic minimization”, IBM Journal of Re&
Dev., Sept. 1974, pp.443-458

[6] R.K. Brayton et al., “Logic minimization algahims for
VLSI synthesis”, Boston, MA, Kluwer Academic Publéss,

1984, 192 pp.

[7] P. McGeer et al., “ESPRESSO-SIGNATURE: A neva&x
minimizer for logic functions”, Proc. DAC'93

[8] O. Coudert, “Doing two-level logic minimizatiat00 times
faster”, Proc. of the sixth annual ACM-SIAM sympgsion
Discrete algorithms, 1995, pp.112-121

[9] J.Hlavitka and P. FiSerBOOM - a Heuristic Boolean
Minimizer”, Proc. ICCAD-2001, San Jose, Cal. (USA),
8.11.2001, 439-442

[10]1P. FiSer and. Hlavi¢ka, ,BOOM - A Heuristic Boolean
Minimizer”, Computers and Informatics, Vol. 22, Z)No.

1, pp. 19-51

[11] P. FiSerJ.Hlavicka and H. KubatovdFC-Min: A Fast
Multi-Output Boolean Minimizer“, Proc. Euromicro

Table 2. Randomly generated problems — one iteratio

Symposium on Digital Systems Design (DSD'03), Aretal

(TR), 3.-5.9.2003

[12] M. Chatterjee and D.J. Pradhan, “A novel patgenerator
for near-perfect fault coverage”, Proc. of VLS| Tes
Symposium 1995, pp. 417-425

[13] N.A. Touba and E.J. McCluskey, “Transformeeurio-
Random Patterns for BIST”, CRC Technical Report .

10, 1994

[14] P. FiSerJ.Hlavitka and H. KubatovgColumn-
Matching BIST Exploiting Test Don't-Cares*. Proc.
8th IEEE Europian Test Workshop (ETW'03),
Maastricht (NL), 25.-28.5.2003, pp. 215-216

[15] S. Yang, ,Logic Synthesis and Optimization Bemarks
User Guide", Technical Report 1991-IWLS-UG-Saeyang,
MCNC, Research Triangle Park, NC, January 1991

[16] G. De Micheli, “Synthesis and OptimizationDigital
Circuits”. McGraw-Hill, 1994

n

p/i

25

50

100

150

50

2.27/232/341/49
1.30/413/220/87
0.27/315/305/59

11.34/219/318/48
1.40/428/156/94
0.29/304/241/58

46.35/202/301/46
1.59/412/121/90
0.34/293/195/56

94.64/203/303/47
1.73/371/96/84
0.41/283/181/54

100

10.22/577/687/98
2.59/998/506/168
0.50/716/648/110

100.14/537/576/91
2.56/1103/342/190
0.51/718/491/113

369.45/510/569/90
3.02/1050/244/186
0.64/676/413/106

883.24/488/554/88
3.53/943/186/168
0.79/647/372/102

125

14.44/772/849/123
3.51/1333/650/211
0.66/952/846/137

148.96/710/728/114
3.49/1468/449/237
0.65/927/642/137

1756.21/666/704/110
4.23/1408/317/231
0.86/880/519/131

2146.03/652/674/10
4.82/1252/243/211
1.09/829/473/124

150

23.35/973/1005/14
4.71/1691/785/255
0.86/1182/1007/163

7283.88/892/869/13¢
4.63/1849/563/285
3 0.84/1164/779/164

51111.23/833/800/12
4.72/1761/378/278
1.04/1098/638/157

D 3422.94/798/773/12
5.65/1613/295/256
1.33/1039/573/148

o7

Entry format: time [s] / # of literals / output cos# of implicants

Entry format:

Table 3. Randomly generated problems — same time as

ESPRESSO

p/n

25

50

100

50 |340/246/7

290/264/5

2.15/233/346/49

10.80/218
294/189/6
252/185/5

0(2)
8(8)

/324148
1(7)
0(28)

51.96/204/309/47
247/139/53(27)
214/150/43(81)

75 |525/381/9

465/394/8

5.62/400/513/74

34.37/370
466/276/8
404/279/7

5(3)
3(13)

/46370
6(12)
1(47)

154.71/357/438/68
423/218/79(35)
357/223/62(99)

11.24/581
768/528/1
659/543/1

100

/673199
27(4)
10(19)

84.48/546
665/358/1
571/365/9

/586/92
11(16)
2(63)

416.29/520/564/90
600/287/102(44)
498/301/80(118)

17.75/773
125

868/674/1

1010/616/160(4)

/845/123 | 157.19/70

872/459/1

38(22)

745/456/115(71)

6/722/113
37(17)

895.25/657/700/110
765/359/122(52)
650/374/99(137)

ESPRESSO: time [s] / # of literalsutput cost / # of implicants

next lines: # of literals / output cost / # wiglicants (iterations)

