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Abstract 

This paper describes principles of a novel two-level 
multi-output Boolean minimizer FC-Min, namely its Find 
Coverage phase. The problem of Boolean minimization is 
approached in a reverse way than common minimizers do. 
First, the cover of the on-set is found, and after that the 
appropriate implicants are being constructed to satisfy 
this cover. Thus, only the necessary group implicants are 
being generated, which makes FC-Min an extremely fast 
and efficient minimizer for functions with many output 
variables. An essential phase of the algorithm is the Find 
Coverage procedure. This phase determines the number of 
terms in the final solution, which has to be reduced to 
minimum. It solves an NP-hard problem, thus some 
heuristic has to be applied. We propose our heuristic 
method to solve this problem and study the influence of 
parameters on the final solution quality and runtime. 

1. Introduction 

The problem of two-level Boolean minimization occurs 
in many areas of logic design, in logic synthesis in general 
[1], in build-in self-test (BIST) design [2], in a design of 
control systems, as so on. The basis for all the 
conventional minimization algorithms was laid in 50’s by 
Quine and McCluskey [3, 4]. Here the minimization 
process was divided into two successive phases: the 
generation of implicants and the solution of the covering 
problem (CP). Mostly the prime implicants (PIs) are 
looked for at the beginning, and then they have to be 
further reduced to obtain group implicants for multi-
output functions. The representatives of these principles 
are MINI [5], ESPRESSO [6] and its modifications [7], 
later Scherzo [8] with its improved CP solution algorithm 
was introduced. Lately we have developed a Boolean 
minimizer BOOM [9, 10], which is able to handle 
functions with an extremely large number of input 
variables. 

A common drawback of the previously mentioned 
algorithms is the way they handle multi-output functions. 
The implicant reduction phase is often very time 

consuming and produces many unnecessary implicants 
(i.e., implicants that will not be a part of the solution). 
A large number of prime implicants of all the output 
functions is being generated as well, which then 
complicates the CP solution. Generally, minimization of 
functions with a large number of output variables is a very 
time-consuming process and the results are often 
suboptimal. 

Our Boolean minimizer FC-Min [11] generally solved 
this problem. Here the implicants are being generated in a 
completely different way: first the cover of the on-set is 
found (in the Find Coverage phase) and after that the 
implicants satisfying this cover are computed from the 
input terms. Only the necessary set of implicants is 
generated; no implicants that will not be a part of the 
solution are produced. The covering problem solution 
phase can be completely omitted here. Basically, the Find 
Coverage phase can be apprehended as a covering 
problem solution, but in a reverse way. 

The basic FC-Min algorithm was then extended to 
support the iterative minimization. The principle exploits 
the fact that during the minimization some decisions are 
being done at random. Thus, multiple runs of the same 
algorithm yield different results. All the obtained 
implicants are then put together and the regular CP is 
solved. This enables us to reach better results for a price 
of a longer runtime. 

We have extensively tested the minimizer on standard 
MCNC benchmarks and on randomly generated problems. 
Our results were compared with ESPRESSO and BOOM. 
FC-Min is superior to these methods in both the runtime 
and result quality, especially for functions with many 
output variables. On the other hand, it is not advantageous 
to use FC-Min for single-output functions, since the cover 
is being generated partially at random in this case, so the 
result is not optimal. 

The paper is structured as follows: Section 2 contains 
the problem statement, Section 3 describes the principles 
of FC-Min, with emphasis on the Find Coverage phase. 
The comparison of the method with other algorithms is 
given in Section 4, Section 5 concludes the paper. 



2. Problem Statement 

Let us have a set of m Boolean functions of n input 
variables. The input variables will be denoted as xi, 
0 ≤ i < n, the output variables as yj, 0 ≤ j < m. The 
functions will be referenced as F1(x1, x2, … xn), F2(x1, x2, 
… xn), … Fm(x1, x2, … xn). The output values of the care 
terms (both minterms and terms of a higher dimensions 
may be used) are defined by a truth table. Thus, each 
function is specified by its on-set Fi(x1, x2, … xn) and off-
set Ri(x1, x2, … xn). To the minterms that are not present in 
the truth table are implicitly assigned don’t care values. 
The don’t cares can be given explicitly too, both in the 
input matrix (thus defining a term of a higher dimension) 
and the output matrix (specifying an output don’t care 
value for a given input term). The part of a truth table 
representing the terms will be denoted as an input matrix 
I, the rows of the input matrix will be denoted as input 
vectors. The part defining the output values of the 
functions will be called an output matrix O; similarly, the 
rows of this matrix output vectors. Each row of the output 
matrix defines values of the output variables for the values 
of input variables specified by the corresponding row in 
the input matrix. The number of I  matrix columns 
correspond to the number of input variables n, the number 
of O matrix columns is equal to the number of output 
variables m, the number of I  and O matrix rows will be 
denoted as p. 

Specifying a Boolean function by its on-set and off-set, 
rather than by its on-set and don’t care set, is 
advantageous especially for highly unspecified functions, 
i.e., functions that have the defined values of only few 
terms, the rest are don’t cares. A typical example of a use 
of such functions can be found, e.g., in the build-in self-
test (BIST) design [12, 13, 14]. 

Our task is to synthesize a two-level circuit 
implementing a multiple-output Boolean function 
described by a truth table, whereas the implementation of 
the circuit should be as small as possible. Thus, we 
perform a group two-level Boolean minimization where a 
set of functions is given by their on-sets and off-sets. The 
result will be in a form of a set of m SOP (sum-of-the-
product) forms implementing m output functions. 
In practice, the output of an algorithm is a PLA file (“type 
fd”) describing the structure of the PLA implementation 
of the required circuit. In our algorithm we try to take 
advantage of the group implicants, thus terms that imply 
more than one output function. 

3. Principles of FC-Min 

The FC-Min algorithm produces implicants of a 
function in a way that is reverse to other common 
minimization algorithms. First, the cover of the on-set is 
found and after then the implicants are being derived from 
this cover. Hence, there are two major phases of this 

algorithm: the Find Cover phase and the Find Implicant 
phase. After that, the implicants should be yet expanded in 
order to reduce the total number of literals. Description of 
this process exceeds the scope of this paper, for more 
information see [11]. 

3.1. Find Cover Phase 

In the Find Cover phase we try to find a rectangle 
cover [1] of the whole on-set. This means that we try to 
find potential implicants that could be a part of the 
solution, if they met the requirements for the stated cover. 
This phase is the most essential one, since it determines 
the number of implicants in the final solution. 

Before we describe the principles of the algorithm we 
have to state four Definitions. 

 
Definition 1 
Let ti be an implicant. The coverage set C(ti) of the 

implicant ti is a set of vectors (rows) of the O matrix, in 
which at least one “1” value is covered by this implicant. 
In other words, the coverage set is a set of vectors of the 
output matrix for which ti is an implicant for at least one 
output variable. 

� 
Definition 2 
The coverage mask M(ti) of the implicant ti is a set of 

columns in the O matrix, in which all the vectors included 
in C(ti) have one or more “1” value. The coverage mask 
M(ti) can also be expressed as a vector in the resulting 
output matrix corresponding to the term ti. In the 
following text we will use both these representations of 
the coverage mask. 

� 

Definition 3 
The coverage of an implicant ti is a pair of the sets C(ti) 

and M(ti) for which the following equation holds: 
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The “1” or don’t care values covered by ti are identified 
by the Cartesian product C(ti) × M(ti). 

� 

Definition 4 
The coverage of the matrix O is a set of implicant 

coverages {C(ti), M(ti)} such that 
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The individual implicant coverages will be also 
denoted as coverage elements with respect to the coverage 
of the matrix. 

An example of such a coverage of the O matrix is 
shown in Figure 1. Here all the “1”s are covered by six 



implicants t1 - t6. Their respective coverage sets and masks 
are listed in Table 1. 

This output matrix O corresponds to a function with 
5 output variables and 10 care terms defined. The 
potential t1 – t6 terms cover all the “1” values in the output 
matrix and cover no zero. For example the group term 
(implicant) t1 covers the ones of the fourth and fifth output 
variable of vectors 4, 6 and 8. Let us note that the 
structure of the terms is not known yet; only the set of 
covered “1”s is known. However, now it is apparent, that 
if we succeed in finding the implicants having the 
properties of t1 – t6 (i.e., the terms cover the respective 
“1”s), the solution will consist of six implicants. �y -y0 4

 
Figure 1. Cover of the output matrix 

 
Table 1. Coverage sets and masks 

Implicant C(ti) M(ti) 
t1 {4, 6, 8} { y3, y4} ≡ 00011 
t2 {1, 2, 7} { y1, y2} ≡ 01100 
t3 {8, 9} { y0, y2} ≡ 10100 
t4 {3} { y1, y3} ≡ 01010 
t5 {0, 1} { y0, y1} ≡ 11000 
t6 {4, 7} { y2, y4} ≡ 00101 

 
Finding an optimum rectangle cover is a NP-hard 

problem, thus some heuristic must be used. There exist 
many efficient algorithms finding a cover consisting of the 
minimum of elements [1]. However, such a cover needs 
not be always optimal for solving our minimization 
problem. The solution will be then consisted of a 
minimum of product terms, however, it needs not be 
minimal with respect to the number of literals. 

Our heuristic is based on a gradual search for coverage 
elements consisting of the maximum number of “1”s. 
Firstly the output vector containing the most of not 
covered “1”s is selected as a basis for a new cover - in our 
example (Fig. 1) it is the row no. 8 with four “1”s. Now 
we continue the search for a next row to add in order to 
increase the number of the covered ones. In our example, 
when the row 6 is added to the row 8, the number of 
covered ones will not increase (because the first and the 
third variable cannot be covered after that), however it 

does not decrease either. After adding the row 4, the 
number of covered ones increases to six. 

After finding one cover, the “1”s that are included in it 
are marked as “covered” and we continue the search for 
other covers until all the ones in the output matrix are 
covered. 

Finding a cover consisting of many “1”s in the output 
matrix is advantageous, however it often means that it 
contains many vectors. This fact complicates the 
subsequent phase – finding the structure of a term. A term 
whose cover consists of fewer vectors is easier to find. 
Thus, the heuristic algorithm is driven by a depth factor 
DF. Since each of the rectangle covers is being produced 
by a successive cumulating of vectors, we can decide after 
each addition, whether to extend the cover to more 
vectors, or to terminate its generation, even if it could 
grow bigger. The decision is made at random with a 
probability given by DF. For instance, when DF = 1:1, 
there is an equal probability that the search will continue; 
when DF = 1:5, there is a probability 1:5 for a continual, 
and thus terms that cover fewer vectors and more outputs 
are more likely generated. In general: when the depth 
factor is low, the runtimes are shorter, while the 
complexity of the result is slightly higher. 

Such a heuristic approach, where the implicants are 
looked for independently on the input matrix (source 
terms) explains, why the algorithm is generally 
advantageous for functions with many outputs: the group 
implicants of many output functions are very easy to find 
this way. On the other hand, when it is used for 
single-output functions, the algorithm cannot find the 
primes – it generates the implicants entirely ad-hoc. Thus, 
using the algorithm for few-output functions is 
disadvantageous. 

The Find Cover algorithm can be described into detail 
by the following pseudo-code: 

 
FindCover(O) { 

C = ∅; 
M = all_output_variables; 
k = number_of_ones_in_O; 
do { 

v = vector_with_maximal_x_for(0 ≤ i < p) 
x = |C+1|*|M ∩ O[ i]| - |C|*|M|; 

C = C ∪ { v}; // include v into C 

M = M ∩ O[ v]; // reduce M 
Assign_as_Covered( O, C × M) 
k = k – (|C+1|*|M ∩ O[ i]| - |C|*|M|); 

} while ( k > 0); 
return (C, M); 

} 

Algorithm 1. Find Cover phase 

3.2. Incremental Implicant Generation 

After the coverages and the coverage masks are 
produced, the implicants have to be derived using these 
coverages and the I  matrix. Obviously, when a term 



(cube) should cover a particular output vector, the 
corresponding input vector must be contained in this cube, 
since the input vector implies the output. Therefore the 
minimum term ti satisfying the particular cover must be 
constructed as a minimum supercube of all the input 
vectors corresponding to C(ti). Moreover, this supercube 
must not intersect any I  matrix term that is not included in 
its coverage set, since it would cover some zeros then. 
This process will be denoted as an Implicant Generation 
phase. For more detailed description see [11]. 

Here we assume that a term created as a minimum 
supercube of the proper I  matrix terms is a valid implicant 
of all the output functions included in its respective 
coverage mask. But some of such terms may intersect the 
off-set (i.e., some of the I  matrix terms that are not 
included in its coverage set), and thus they are not valid. 
In this case there is no solution, particularly, it is 
impossible to find implicants for the computed cover. 
Therefore, the cover must be recomputed somehow. One 
possibility is to try to split the cover in order to make 
supercubes of fewer terms. This approach leads to a rapid 
growth of the number of terms in the final solution. The 
other possibility is to recompute the whole cover, thus 
repeat the phases until a solution is found. Such an 
approach causes a great growth of the run-time and also 
the algorithm often gets into an insolvable state. 

We have found that the best way how to solve this 
problem is an incremental implicant generation. In this 
approach the two main phases are not separated; firstly 
one coverage element is generated, then immediately its 
minimum implicant is created and, if it is not valid (it 
covers some zeroes), just the last coverage element is 
discarded and a different one is found. This approach is 
very fast and produces best results. It can be proved that 
this approach always yields a solution; there is never a 
chance to reach an insolvable state. 

The whole algorithm can be described by the following 
pseudo-code. The inputs of the algorithm are the input 
matrix I and the output matrix O, the output is a PLA 
matrix G. 

 
FC_Minimize( I, O) { 

G = ∅; 
do { 

do { 
c = FindOneCoverElement( O); 
t = GenerateMinimumTerm( I, 

c); 
} while !IsValid( t, I); 
G = G ∪ t; 

} while !AllCovered(); 
return G; 

} 
Algorithm 2. The minimization algorithm 

3.3. Influence of DF on the Solution 

Since the depth factor DF significantly drives the 
generation of the cover, it is important to choose a proper 
value to obtain a desirable solution. Bigger values of DF 
force the algorithm to generate “deeper” terms, i.e., terms 
that cover many on-set terms. These terms are then 
implicants of a smaller number of output variables, since 
the cardinality of the coverage mask of a term tends to 
decrease with an increasing cardinality of its respective 
coverage set (see Alg. 1). Unfortunately, these covers 
often are not be valid (see the previous Subsection), thus 
they have to be often recomputed (see Alg. 2). This means 
a rapid increase of a runtime. The ratio of the total number 
of cover computations (tries) to the number of valid 
coverage elements (hits) as a function of DF is shown in 
Fig. 2, Fig. 3 depicts the total runtime as a function of DF. 
The problem solved was a 20-input, 20-output function 
with 500 care terms. In both the input and output matrices, 
10% of explicit don’t cares were included. 

For a low value of DF, implicants that cover a small 
number of terms are more likely produced, however they 
are implicants of a large number of outputs. In a trivial 
case, solution of a problem with p terms could consist of p 
implicants created just by an expansion of the input terms, 
while the coverage masks of the terms would be equal to 
the output vectors of the respective source terms. Here the 
Find Cover phase is, de facto, omitted, the minimization 
consists just of the input expansion phase (see [11]). 

In general, a low value of DF generates a solution in an 
extremely short time, but the cost of the solution is high. 
High values of DF produce solutions having a low number 
of implicants (product terms) and literals as well, for a 
cost of slightly longer runtimes. These dependencies are 
shown in Figures 4 and 5. The same problem as in Fig. 2 
and 3 was solved. Figure 4 shows the dependence of the 
number of terms in a solution on DF, Fig. 5 shows the 
total cost of the solution, measured as a sum of the 
number of literals and the output cost (the output cost is 
the number of inputs into the OR-gates, if the circuit is 
implemented as an AND-OR net). 
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 Figure 2. Ratio of the tries to the hits 
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 Figure 3. FC-Min runtime 
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Figure 4. Number of terms 
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Figure 5. Total solution cost 

 
We have concluded from our experiments that the most 

efficient value of DF is about 10:1. Higher values mean 
just the growth of a runtime, while the improvement of the 
quality of the solution is negligible. 

3.4. Iterative FC-Min 

In most cases the FC-Min algorithm is not 
deterministic – the progress of the Find Coverage phase is 
controlled by a random number generator when deciding 
whether to continue the "prolongation" of the processed 
cover element or not. Secondly, when two or more equally 
advantageous steps are possible, one is chosen at random. 
Thus, repeated run of FC-Min could produce different 

results. The idea of an Iterative FC-Min consists in 
repeating the FC-Min several times, while all the different 
implicants are put together and stored. At the end the final 
solution is constructed by solving the covering problem 
using all the implicants. Even if each of the single FC-Min 
runs produces a valid solution, a properly selected 
combination of the implicants obtained from different 
iterations might produce a better solution. It is paid by a 
longer runtime. 
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Figure 6. Iterative minimization example 

 
An example of an iterative FC-Min run is shown in 

Fig. 6. The sample problem solved was a randomly 
generated function of 20 input and 20 output variables, 
with 200 terms defined. The input matrix contained 10% 
of explicit don't cares. The depth factor was set to 2:1. The 
thin line indicates the growth of the number of implicants. 
We can observe that in 10000 iterations the total number 
of different implicants increased from 200 to 4000. The 
thick line shows the quality of the result after each 
iteration. It is measured in gate equivalents (GEs), which 
is a good approximation of a complexity of the physical 
implementation of the circuit [16]. The number GEs for an 
n input NAND or NOR gate is computed as n/2. 

The number of GEs was reduced by 8% in 4000 
iterations, and then it remains unchanged, even if the 
number of implicants is still increasing. 

Figure 7 illustrates the influence of the depth factor DF 
on the implicant growth rate. For an extremely low DF 
(1:100) the number of implicants remains almost 
unchanged. On the other hand, many different implicants 
are being generated when increasing DF. This allows us to 
reach a better result in a shorter time. However, with 
increasing DF also the runtime grows rapidly. Thus, some 
kind of a tradeoff must be found to achieve the fastest 
implicant growth. It is illustrated by Fig. 8. Here the same 
problem was solved and the increase of the number of 
implicants was measured as a function of a time. We can 
observe that the fastest growth was achieved for 
DF = 10:1. For higher DF the seemingly faster implicant 
production is suppressed by longer runtimes. 
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Figure 7. Influence of DF on the number of 

iterations 
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Figure 8. Influence of DF - growth of the number 

of implicants with time 
 

4. Experimental Results 

Many experiments have been performed in order to 
evaluate the performance of the method and to compare 
the results with other up-to-date two-level minimization 
tools. The algorithm was programmed in C++ Builder 
under Windows XP, the computer used for tests was 
Athlon 900 MHz with 256 MB RAM. 

We have tested the algorithm on standard MCNC 
benchmarks [15] and compared the results and runtimes 
with ESPRESSO v2.3. Since the benchmark functions 
were originally specified by their on-sets and don’t care 
sets (PLA type fd), the sources had to be converted by 
ESPRESSO into a format where the function is specified 
by its on-set and off-set. The time needed for the 
conversion was not included in the runtimes. 

There was 120 benchmark problems solved, plus 19 
so-called “hard” MCNC benchmarks. The 86 (72%) from 
120 of them were solved by FC-Min in a shorter time than 
by ESPRESSO. For 103 cases (86%) FC-Min reached the 
same or better result (in 8 cases the result was better) and 
in 80 cases (67%) the same or better result was reached in 
a shorter time than by ESPRESSO. For more detail 
information see [11]. 

4.1. Randomly Generated Problems – One 
Iteration 

The second set of problems on which we have tested 
FC-Min were randomly generated functions, functions 
with no special properties (no aggregated ones in the 
output matrix, etc.). With a help of such problems we can 
easily observe the properties and scalability of the 
algorithm. One of the reasons why FC-Min was developed 
was a need to synthesize the combinational logic for 
BIST, namely the output decoder transforming the LFSR 
patterns into test patterns pre-generated by an ATPG tool. 
Both the LFSR and ATPG patterns mostly have a random 
nature, and thus the randomly generated benchmarks 
simulate these practical problems very well [12-14]. 

We have generated problems with a varying number of 
input variables and terms, the number of outputs was fixed 
to 15. These artificial benchmarks were solved by 
FC-Min, BOOM [9, 10] and ESPRESSO [6] to compare 
the performance. Here only one iteration of BOOM and 
FC-Min was performed, the FC-Min depth factor was set 
to 10:1. 

The results of the minimization are shown in Table 2. 
The number of inputs increases in the horizontal direction 
(i), the number of care terms in the vertical direction (p). 
Each of the cells contains average values of ten problems 
of the same size that were solved, to ensure steady 
statistical values. The first row of each cell in the table 
contains results obtained by ESPRESSO, the second one 
the result obtained by BOOM and the third by FC-Min. 
The first number in each line indicates the runtime, the 
second one the number of literals in the SOP form, the 
output cost follows and last number indicates the number 
of terms. We can see that in all the cases FC-Min 
completed the minimization in a significantly shorter time 
than ESPRESSO and BOOM, while the result quality is 
comparable. 

4.2. Randomly Generated Problems – Same 
Time 

Next, we have solved the same set of problems, but 
taking advantage of the iterative minimization this time. 
The functions were minimized by ESPRESSO first, and 
then both by BOOM and FC-Min, while the runtime was 
set to meet the runtime that ESPRESSO needed to reach a 
solution. 

The results are shown in Table 3. The format of the 
table is retained from the previous example, except of that 
only the ESPRESSO runtime is shown, while the number 
of iterations (to meet that time) is given in the parentheses 
for BOOM and FC-Min. 

Here FC-Min gives much better results than 
ESPRESSO, especially for problems with many input 
variables. For most of these problems FC-Min 
outperforms BOOM as well. However, for problems with 



a low number of output variables BOOM is faster and the 
result quality is better too. Thus, for an efficient 
minimization we have to decide whether to use BOOM or 
FC-Min, judging by the number of outputs. 

4.3. Time Complexity Evaluation 

Since FC-Min is a heuristic method, it is difficult to 
determine its time complexity exactly. In order to estimate 
the time complexity of the method FC-Min was run on a 
large number of randomly generated problems with one 
parameter varying each time, while the minimization 
times were recorded. 

Figures 9-11 show the time dependencies on the 
number of input variables (Fig. 9), output variables 
(Fig. 10) and the number of care terms (Fig. 11). The 
values of the fixed parameters are indicated in the figures, 
the depth factor was set to 10:1. No exponential growth of 
time can be observed in any of the curves, thus the method 
can be scaled to very large problems while the runtime 
remains minimal. 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0 100 200 300 400 500

0

2

4

6

8

10

12

14

16

18

Outputs: 15
Terms: 200

T
im

e
 [s

]

Inputs

 
Figure 9. Time complexity as a function of the 

number of inputs 
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Figure 10. Time complexity as a function of the 

number of outputs 
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Figure 11. Time complexity as a function of the 

number of the care terms 

5. Conclusions 

We have presented a new two-level Boolean 
minimization method called FC-Min. It is based on the 
idea that the coverage of the output matrix is found at 
first, and then the structure of implicants is derived from 
this cover. The algorithm is extremely fast and it is very 
efficient, especially for functions with a large number of 
outputs. Particularly, the Find Coverage phase, which is 
essential for the algorithm, is more thoroughly described 
in this paper. The influence of the Depth Factor on the 
runtime and the quality of the solution was studied here. 

The method was tested on the MCNC benchmarks and 
randomly generated problems. We have shown that for 
problems with higher number of output variables it is 
faster than both ESPRESSO and BOOM and gives better 
results as well. The algorithm was tested on randomly 
generated problems in order to estimate the statistical 
properties and scalability of the method. We have found 
that the method can be easily applied to very large 
problems without a significant growth of a runtime. 
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Table 2. Randomly generated problems – one iteratio n 

p / i 25 50 100 150 
50 2.27/232/341/49 

1.30/413/220/87 
0.27/315/305/59 

11.34/219/318/48 
1.40/428/156/94 
0.29/304/241/58 

46.35/202/301/46 
1.59/412/121/90 
0.34/293/195/56 

94.64/203/303/47 
1.73/371/96/84 
0.41/283/181/54 

100 10.22/577/687/98 
2.59/998/506/168 
0.50/716/648/110 

100.14/537/576/91 
2.56/1103/342/190 
0.51/718/491/113 

369.45/510/569/90 
3.02/1050/244/186 
0.64/676/413/106 

883.24/488/554/88 
3.53/943/186/168 
0.79/647/372/102 

125 14.44/772/849/123 
3.51/1333/650/211 
0.66/952/846/137 

148.96/710/728/114 
3.49/1468/449/237 
0.65/927/642/137 

756.21/666/704/110 
4.23/1408/317/231 
0.86/880/519/131 

2146.03/652/674/108 
4.82/1252/243/211 
1.09/829/473/124 

150 23.35/973/1005/147 
4.71/1691/785/255 
0.86/1182/1007/163 

283.88/892/869/136 
4.63/1849/563/285 
0.84/1164/779/164 

1111.23/833/800/129 
4.72/1761/378/278 
1.04/1098/638/157 

3422.94/798/773/126 
5.65/1613/295/256 
1.33/1039/573/148 

Entry format: time [s] / # of literals / output cost / # of implicants 
 

Table 3. Randomly generated problems – same time as  ESPRESSO 
p/n 25 50 100 

50 
2.15/233/346/49 
340/246/70(2) 
290/264/58(8) 

10.80/218/324/48 
294/189/61(7) 
252/185/50(28) 

51.96/204/309/47 
247/139/53(27) 
214/150/43(81) 

75 
5.62/400/513/74 
525/381/95(3) 
465/394/83(13) 

34.37/370/463/70 
466/276/86(12) 
404/279/71(47) 

154.71/357/438/68 
423/218/79(35) 
357/223/62(99) 

100 
11.24/581/673/99 
768/528/127(4) 
659/543/110(19) 

84.48/546/586/92 
665/358/111(16) 
571/365/92(63) 

416.29/520/564/90 
600/287/102(44) 
498/301/80(118) 

125 
17.75/773/845/123 
1010/616/160(4) 
868/674/138(22) 

157.19/706/722/113 
872/459/137(17) 
745/456/115(71) 

895.25/657/700/110 
765/359/122(52) 
650/374/99(137) 

Entry format: ESPRESSO: time [s] / # of literals / output cost / # of implicants 
   next lines: # of literals / output cost / # of implicants (iterations) 

 


