
Boolean Minimizer FC-Min: Coverage Finding Process

Petr Fišer, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University
Karlovo nam. 13, 121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

This paper describes principles of a novel two-level
multi-output Boolean minimizer FC-Min, namely its Find
Coverage phase. The problem of Boolean minimization is
approached in a reverse way than common minimizers do.
First, the cover of the on-set is found, and after that the
appropriate implicants are being constructed to satisfy
this cover. Thus, only the necessary group implicants are
being generated, which makes FC-Min an extremely fast
and efficient minimizer for functions with many output
variables. An essential phase of the algorithm is the Find
Coverage procedure. This phase determines the number of
terms in the final solution, which has to be reduced to
minimum. It solves an NP-hard problem, thus some
heuristic has to be applied. We propose our heuristic
method to solve this problem and study the influence of
parameters on the final solution quality and runtime.

1. Introduction

The problem of two-level Boolean minimization occurs
in many areas of logic design, in logic synthesis in general
[1], in build-in self-test (BIST) design [2], in a design of
control systems, as so on. The basis for all the
conventional minimization algorithms was laid in 50’s by
Quine and McCluskey [3, 4]. Here the minimization
process was divided into two successive phases: the
generation of implicants and the solution of the covering
problem (CP). Mostly the prime implicants (PIs) are
looked for at the beginning, and then they have to be
further reduced to obtain group implicants for multi-
output functions. The representatives of these principles
are MINI [5], ESPRESSO [6] and its modifications [7],
later Scherzo [8] with its improved CP solution algorithm
was introduced. Lately we have developed a Boolean
minimizer BOOM [9, 10], which is able to handle
functions with an extremely large number of input
variables.

A common drawback of the previously mentioned
algorithms is the way they handle multi-output functions.
The implicant reduction phase is often very time

consuming and produces many unnecessary implicants
(i.e., implicants that will not be a part of the solution).
A large number of prime implicants of all the output
functions is being generated as well, which then
complicates the CP solution. Generally, minimization of
functions with a large number of output variables is a very
time-consuming process and the results are often
suboptimal.

Our Boolean minimizer FC-Min [11] generally solved
this problem. Here the implicants are being generated in a
completely different way: first the cover of the on-set is
found (in the Find Coverage phase) and after that the
implicants satisfying this cover are computed from the
input terms. Only the necessary set of implicants is
generated; no implicants that will not be a part of the
solution are produced. The covering problem solution
phase can be completely omitted here. Basically, the Find
Coverage phase can be apprehended as a covering
problem solution, but in a reverse way.

The basic FC-Min algorithm was then extended to
support the iterative minimization. The principle exploits
the fact that during the minimization some decisions are
being done at random. Thus, multiple runs of the same
algorithm yield different results. All the obtained
implicants are then put together and the regular CP is
solved. This enables us to reach better results for a price
of a longer runtime.

We have extensively tested the minimizer on standard
MCNC benchmarks and on randomly generated problems.
Our results were compared with ESPRESSO and BOOM.
FC-Min is superior to these methods in both the runtime
and result quality, especially for functions with many
output variables. On the other hand, it is not advantageous
to use FC-Min for single-output functions, since the cover
is being generated partially at random in this case, so the
result is not optimal.

The paper is structured as follows: Section 2 contains
the problem statement, Section 3 describes the principles
of FC-Min, with emphasis on the Find Coverage phase.
The comparison of the method with other algorithms is
given in Section 4, Section 5 concludes the paper.

2. Problem Statement

Let us have a set of m Boolean functions of n input
variables. The input variables will be denoted as xi,
0 ≤ i < n, the output variables as yj, 0 ≤ j < m. The
functions will be referenced as F1(x1, x2, … xn), F2(x1, x2,
… xn), … Fm(x1, x2, … xn). The output values of the care
terms (both minterms and terms of a higher dimensions
may be used) are defined by a truth table. Thus, each
function is specified by its on-set Fi(x1, x2, … xn) and off-
set Ri(x1, x2, … xn). To the minterms that are not present in
the truth table are implicitly assigned don’t care values.
The don’t cares can be given explicitly too, both in the
input matrix (thus defining a term of a higher dimension)
and the output matrix (specifying an output don’t care
value for a given input term). The part of a truth table
representing the terms will be denoted as an input matrix
I, the rows of the input matrix will be denoted as input
vectors. The part defining the output values of the
functions will be called an output matrix O; similarly, the
rows of this matrix output vectors. Each row of the output
matrix defines values of the output variables for the values
of input variables specified by the corresponding row in
the input matrix. The number of I matrix columns
correspond to the number of input variables n, the number
of O matrix columns is equal to the number of output
variables m, the number of I and O matrix rows will be
denoted as p.

Specifying a Boolean function by its on-set and off-set,
rather than by its on-set and don’t care set, is
advantageous especially for highly unspecified functions,
i.e., functions that have the defined values of only few
terms, the rest are don’t cares. A typical example of a use
of such functions can be found, e.g., in the build-in self-
test (BIST) design [12, 13, 14].

Our task is to synthesize a two-level circuit
implementing a multiple-output Boolean function
described by a truth table, whereas the implementation of
the circuit should be as small as possible. Thus, we
perform a group two-level Boolean minimization where a
set of functions is given by their on-sets and off-sets. The
result will be in a form of a set of m SOP (sum-of-the-
product) forms implementing m output functions.
In practice, the output of an algorithm is a PLA file (“type
fd”) describing the structure of the PLA implementation
of the required circuit. In our algorithm we try to take
advantage of the group implicants, thus terms that imply
more than one output function.

3. Principles of FC-Min

The FC-Min algorithm produces implicants of a
function in a way that is reverse to other common
minimization algorithms. First, the cover of the on-set is
found and after then the implicants are being derived from
this cover. Hence, there are two major phases of this

algorithm: the Find Cover phase and the Find Implicant
phase. After that, the implicants should be yet expanded in
order to reduce the total number of literals. Description of
this process exceeds the scope of this paper, for more
information see [11].

3.1. Find Cover Phase

In the Find Cover phase we try to find a rectangle
cover [1] of the whole on-set. This means that we try to
find potential implicants that could be a part of the
solution, if they met the requirements for the stated cover.
This phase is the most essential one, since it determines
the number of implicants in the final solution.

Before we describe the principles of the algorithm we
have to state four Definitions.

Definition 1
Let ti be an implicant. The coverage set C(ti) of the

implicant ti is a set of vectors (rows) of the O matrix, in
which at least one “1” value is covered by this implicant.
In other words, the coverage set is a set of vectors of the
output matrix for which ti is an implicant for at least one
output variable.

�
Definition 2
The coverage mask M(ti) of the implicant ti is a set of

columns in the O matrix, in which all the vectors included
in C(ti) have one or more “1” value. The coverage mask
M(ti) can also be expressed as a vector in the resulting
output matrix corresponding to the term ti. In the
following text we will use both these representations of
the coverage mask.

�

Definition 3
The coverage of an implicant ti is a pair of the sets C(ti)

and M(ti) for which the following equation holds:

 () () [] "0" ,:, ≠∈∀∈∀ batMbtCa ii O

The “1” or don’t care values covered by ti are identified
by the Cartesian product C(ti) × M(ti).

�

Definition 4
The coverage of the matrix O is a set of implicant

coverages {C(ti), M(ti)} such that

[] { } () ()�
i

ii tMtCa,bbambpa
∀

×∈=<∀<∀ :"1" ,,, O

�

The individual implicant coverages will be also
denoted as coverage elements with respect to the coverage
of the matrix.

An example of such a coverage of the O matrix is
shown in Figure 1. Here all the “1”s are covered by six

implicants t1 - t6. Their respective coverage sets and masks
are listed in Table 1.

This output matrix O corresponds to a function with
5 output variables and 10 care terms defined. The
potential t1 – t6 terms cover all the “1” values in the output
matrix and cover no zero. For example the group term
(implicant) t1 covers the ones of the fourth and fifth output
variable of vectors 4, 6 and 8. Let us note that the
structure of the terms is not known yet; only the set of
covered “1”s is known. However, now it is apparent, that
if we succeed in finding the implicants having the
properties of t1 – t6 (i.e., the terms cover the respective
“1”s), the solution will consist of six implicants. �y -y0 4

Figure 1. Cover of the output matrix

Table 1. Coverage sets and masks

Implicant C(ti) M(ti)
t1 {4, 6, 8} { y3, y4} ≡ 00011
t2 {1, 2, 7} { y1, y2} ≡ 01100
t3 {8, 9} { y0, y2} ≡ 10100
t4 {3} { y1, y3} ≡ 01010
t5 {0, 1} { y0, y1} ≡ 11000
t6 {4, 7} { y2, y4} ≡ 00101

Finding an optimum rectangle cover is a NP-hard

problem, thus some heuristic must be used. There exist
many efficient algorithms finding a cover consisting of the
minimum of elements [1]. However, such a cover needs
not be always optimal for solving our minimization
problem. The solution will be then consisted of a
minimum of product terms, however, it needs not be
minimal with respect to the number of literals.

Our heuristic is based on a gradual search for coverage
elements consisting of the maximum number of “1”s.
Firstly the output vector containing the most of not
covered “1”s is selected as a basis for a new cover - in our
example (Fig. 1) it is the row no. 8 with four “1”s. Now
we continue the search for a next row to add in order to
increase the number of the covered ones. In our example,
when the row 6 is added to the row 8, the number of
covered ones will not increase (because the first and the
third variable cannot be covered after that), however it

does not decrease either. After adding the row 4, the
number of covered ones increases to six.

After finding one cover, the “1”s that are included in it
are marked as “covered” and we continue the search for
other covers until all the ones in the output matrix are
covered.

Finding a cover consisting of many “1”s in the output
matrix is advantageous, however it often means that it
contains many vectors. This fact complicates the
subsequent phase – finding the structure of a term. A term
whose cover consists of fewer vectors is easier to find.
Thus, the heuristic algorithm is driven by a depth factor
DF. Since each of the rectangle covers is being produced
by a successive cumulating of vectors, we can decide after
each addition, whether to extend the cover to more
vectors, or to terminate its generation, even if it could
grow bigger. The decision is made at random with a
probability given by DF. For instance, when DF = 1:1,
there is an equal probability that the search will continue;
when DF = 1:5, there is a probability 1:5 for a continual,
and thus terms that cover fewer vectors and more outputs
are more likely generated. In general: when the depth
factor is low, the runtimes are shorter, while the
complexity of the result is slightly higher.

Such a heuristic approach, where the implicants are
looked for independently on the input matrix (source
terms) explains, why the algorithm is generally
advantageous for functions with many outputs: the group
implicants of many output functions are very easy to find
this way. On the other hand, when it is used for
single-output functions, the algorithm cannot find the
primes – it generates the implicants entirely ad-hoc. Thus,
using the algorithm for few-output functions is
disadvantageous.

The Find Cover algorithm can be described into detail
by the following pseudo-code:

FindCover(O) {

C = ∅;
M = all_output_variables;
k = number_of_ones_in_O;
do {

v = vector_with_maximal_x_for(0 ≤ i < p)
x = |C+1|*|M ∩ O[i]| - |C|*|M|;

C = C ∪ { v}; // include v into C

M = M ∩ O[v]; // reduce M
Assign_as_Covered(O, C × M)
k = k – (|C+1|*|M ∩ O[i]| - |C|*|M|);

} while (k > 0);
return (C, M);

}

Algorithm 1. Find Cover phase

3.2. Incremental Implicant Generation

After the coverages and the coverage masks are
produced, the implicants have to be derived using these
coverages and the I matrix. Obviously, when a term

(cube) should cover a particular output vector, the
corresponding input vector must be contained in this cube,
since the input vector implies the output. Therefore the
minimum term ti satisfying the particular cover must be
constructed as a minimum supercube of all the input
vectors corresponding to C(ti). Moreover, this supercube
must not intersect any I matrix term that is not included in
its coverage set, since it would cover some zeros then.
This process will be denoted as an Implicant Generation
phase. For more detailed description see [11].

Here we assume that a term created as a minimum
supercube of the proper I matrix terms is a valid implicant
of all the output functions included in its respective
coverage mask. But some of such terms may intersect the
off-set (i.e., some of the I matrix terms that are not
included in its coverage set), and thus they are not valid.
In this case there is no solution, particularly, it is
impossible to find implicants for the computed cover.
Therefore, the cover must be recomputed somehow. One
possibility is to try to split the cover in order to make
supercubes of fewer terms. This approach leads to a rapid
growth of the number of terms in the final solution. The
other possibility is to recompute the whole cover, thus
repeat the phases until a solution is found. Such an
approach causes a great growth of the run-time and also
the algorithm often gets into an insolvable state.

We have found that the best way how to solve this
problem is an incremental implicant generation. In this
approach the two main phases are not separated; firstly
one coverage element is generated, then immediately its
minimum implicant is created and, if it is not valid (it
covers some zeroes), just the last coverage element is
discarded and a different one is found. This approach is
very fast and produces best results. It can be proved that
this approach always yields a solution; there is never a
chance to reach an insolvable state.

The whole algorithm can be described by the following
pseudo-code. The inputs of the algorithm are the input
matrix I and the output matrix O, the output is a PLA
matrix G.

FC_Minimize(I, O) {

G = ∅;
do {

do {
c = FindOneCoverElement(O);
t = GenerateMinimumTerm(I,

c);
} while !IsValid(t, I);
G = G ∪ t;

} while !AllCovered();
return G;

}
Algorithm 2. The minimization algorithm

3.3. Influence of DF on the Solution

Since the depth factor DF significantly drives the
generation of the cover, it is important to choose a proper
value to obtain a desirable solution. Bigger values of DF
force the algorithm to generate “deeper” terms, i.e., terms
that cover many on-set terms. These terms are then
implicants of a smaller number of output variables, since
the cardinality of the coverage mask of a term tends to
decrease with an increasing cardinality of its respective
coverage set (see Alg. 1). Unfortunately, these covers
often are not be valid (see the previous Subsection), thus
they have to be often recomputed (see Alg. 2). This means
a rapid increase of a runtime. The ratio of the total number
of cover computations (tries) to the number of valid
coverage elements (hits) as a function of DF is shown in
Fig. 2, Fig. 3 depicts the total runtime as a function of DF.
The problem solved was a 20-input, 20-output function
with 500 care terms. In both the input and output matrices,
10% of explicit don’t cares were included.

For a low value of DF, implicants that cover a small
number of terms are more likely produced, however they
are implicants of a large number of outputs. In a trivial
case, solution of a problem with p terms could consist of p
implicants created just by an expansion of the input terms,
while the coverage masks of the terms would be equal to
the output vectors of the respective source terms. Here the
Find Cover phase is, de facto, omitted, the minimization
consists just of the input expansion phase (see [11]).

In general, a low value of DF generates a solution in an
extremely short time, but the cost of the solution is high.
High values of DF produce solutions having a low number
of implicants (product terms) and literals as well, for a
cost of slightly longer runtimes. These dependencies are
shown in Figures 4 and 5. The same problem as in Fig. 2
and 3 was solved. Figure 4 shows the dependence of the
number of terms in a solution on DF, Fig. 5 shows the
total cost of the solution, measured as a sum of the
number of literals and the output cost (the output cost is
the number of inputs into the OR-gates, if the circuit is
implemented as an AND-OR net).

1:51 1:1 1:50 1:100
0

10

20

30

40

T
rie

s
/ h

its

DF ratio

 Figure 2. Ratio of the tries to the hits

51:1 1:1 1:50 1:100

5

10

15

20

25

T
im

e
[s

]

DF ratio

 Figure 3. FC-Min runtime

51:1 1:1 1:50 1:100

420

440

460

480

500

T
e

rm
s

DF ratio

Figure 4. Number of terms

51:1 1:1 1:50 1:100
4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

S
ol

u
tio

n
 c

os
t

DF ratio

Figure 5. Total solution cost

We have concluded from our experiments that the most

efficient value of DF is about 10:1. Higher values mean
just the growth of a runtime, while the improvement of the
quality of the solution is negligible.

3.4. Iterative FC-Min

In most cases the FC-Min algorithm is not
deterministic – the progress of the Find Coverage phase is
controlled by a random number generator when deciding
whether to continue the "prolongation" of the processed
cover element or not. Secondly, when two or more equally
advantageous steps are possible, one is chosen at random.
Thus, repeated run of FC-Min could produce different

results. The idea of an Iterative FC-Min consists in
repeating the FC-Min several times, while all the different
implicants are put together and stored. At the end the final
solution is constructed by solving the covering problem
using all the implicants. Even if each of the single FC-Min
runs produces a valid solution, a properly selected
combination of the implicants obtained from different
iterations might produce a better solution. It is paid by a
longer runtime.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Im
pl

ic
an

ts
Iteration

3200

3250

3300

3350

3400

3450

3500

G
E

s

Figure 6. Iterative minimization example

An example of an iterative FC-Min run is shown in

Fig. 6. The sample problem solved was a randomly
generated function of 20 input and 20 output variables,
with 200 terms defined. The input matrix contained 10%
of explicit don't cares. The depth factor was set to 2:1. The
thin line indicates the growth of the number of implicants.
We can observe that in 10000 iterations the total number
of different implicants increased from 200 to 4000. The
thick line shows the quality of the result after each
iteration. It is measured in gate equivalents (GEs), which
is a good approximation of a complexity of the physical
implementation of the circuit [16]. The number GEs for an
n input NAND or NOR gate is computed as n/2.

The number of GEs was reduced by 8% in 4000
iterations, and then it remains unchanged, even if the
number of implicants is still increasing.

Figure 7 illustrates the influence of the depth factor DF
on the implicant growth rate. For an extremely low DF
(1:100) the number of implicants remains almost
unchanged. On the other hand, many different implicants
are being generated when increasing DF. This allows us to
reach a better result in a shorter time. However, with
increasing DF also the runtime grows rapidly. Thus, some
kind of a tradeoff must be found to achieve the fastest
implicant growth. It is illustrated by Fig. 8. Here the same
problem was solved and the increase of the number of
implicants was measured as a function of a time. We can
observe that the fastest growth was achieved for
DF = 10:1. For higher DF the seemingly faster implicant
production is suppressed by longer runtimes.

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

100:1
10:1

2:1

1:1

1:2

1:10

1:100

Im
pl

ic
an

ts

Iteration

Figure 7. Influence of DF on the number of

iterations

0 5000 10000 15000 20000
0

1000

2000

3000

4000
10:1
100:1 !

2:1
1:1

1:2

1:10

1:100

Im
pl

ic
an

ts

Time[s]

Figure 8. Influence of DF - growth of the number

of implicants with time

4. Experimental Results

Many experiments have been performed in order to
evaluate the performance of the method and to compare
the results with other up-to-date two-level minimization
tools. The algorithm was programmed in C++ Builder
under Windows XP, the computer used for tests was
Athlon 900 MHz with 256 MB RAM.

We have tested the algorithm on standard MCNC
benchmarks [15] and compared the results and runtimes
with ESPRESSO v2.3. Since the benchmark functions
were originally specified by their on-sets and don’t care
sets (PLA type fd), the sources had to be converted by
ESPRESSO into a format where the function is specified
by its on-set and off-set. The time needed for the
conversion was not included in the runtimes.

There was 120 benchmark problems solved, plus 19
so-called “hard” MCNC benchmarks. The 86 (72%) from
120 of them were solved by FC-Min in a shorter time than
by ESPRESSO. For 103 cases (86%) FC-Min reached the
same or better result (in 8 cases the result was better) and
in 80 cases (67%) the same or better result was reached in
a shorter time than by ESPRESSO. For more detail
information see [11].

4.1. Randomly Generated Problems – One
Iteration

The second set of problems on which we have tested
FC-Min were randomly generated functions, functions
with no special properties (no aggregated ones in the
output matrix, etc.). With a help of such problems we can
easily observe the properties and scalability of the
algorithm. One of the reasons why FC-Min was developed
was a need to synthesize the combinational logic for
BIST, namely the output decoder transforming the LFSR
patterns into test patterns pre-generated by an ATPG tool.
Both the LFSR and ATPG patterns mostly have a random
nature, and thus the randomly generated benchmarks
simulate these practical problems very well [12-14].

We have generated problems with a varying number of
input variables and terms, the number of outputs was fixed
to 15. These artificial benchmarks were solved by
FC-Min, BOOM [9, 10] and ESPRESSO [6] to compare
the performance. Here only one iteration of BOOM and
FC-Min was performed, the FC-Min depth factor was set
to 10:1.

The results of the minimization are shown in Table 2.
The number of inputs increases in the horizontal direction
(i), the number of care terms in the vertical direction (p).
Each of the cells contains average values of ten problems
of the same size that were solved, to ensure steady
statistical values. The first row of each cell in the table
contains results obtained by ESPRESSO, the second one
the result obtained by BOOM and the third by FC-Min.
The first number in each line indicates the runtime, the
second one the number of literals in the SOP form, the
output cost follows and last number indicates the number
of terms. We can see that in all the cases FC-Min
completed the minimization in a significantly shorter time
than ESPRESSO and BOOM, while the result quality is
comparable.

4.2. Randomly Generated Problems – Same
Time

Next, we have solved the same set of problems, but
taking advantage of the iterative minimization this time.
The functions were minimized by ESPRESSO first, and
then both by BOOM and FC-Min, while the runtime was
set to meet the runtime that ESPRESSO needed to reach a
solution.

The results are shown in Table 3. The format of the
table is retained from the previous example, except of that
only the ESPRESSO runtime is shown, while the number
of iterations (to meet that time) is given in the parentheses
for BOOM and FC-Min.

Here FC-Min gives much better results than
ESPRESSO, especially for problems with many input
variables. For most of these problems FC-Min
outperforms BOOM as well. However, for problems with

a low number of output variables BOOM is faster and the
result quality is better too. Thus, for an efficient
minimization we have to decide whether to use BOOM or
FC-Min, judging by the number of outputs.

4.3. Time Complexity Evaluation

Since FC-Min is a heuristic method, it is difficult to
determine its time complexity exactly. In order to estimate
the time complexity of the method FC-Min was run on a
large number of randomly generated problems with one
parameter varying each time, while the minimization
times were recorded.

Figures 9-11 show the time dependencies on the
number of input variables (Fig. 9), output variables
(Fig. 10) and the number of care terms (Fig. 11). The
values of the fixed parameters are indicated in the figures,
the depth factor was set to 10:1. No exponential growth of
time can be observed in any of the curves, thus the method
can be scaled to very large problems while the runtime
remains minimal.

0 100 200 300 400 500

0

2

4

6

8

10

12

14

16

18

Outputs: 15
Terms: 200

T
im

e
 [s

]

Inputs

Figure 9. Time complexity as a function of the

number of inputs

0 20 4 0 60 80 100 120 140 160 180

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Inputs: 20
Terms: 200

T
im

e
 [s

]

Outputs

Figure 10. Time complexity as a function of the

number of outputs

0 200 400 600 800 1000 1200

0

10

20

30

40 Inputs: 20
Outputs: 20

T
im

e
 [s

]

Terms

Figure 11. Time complexity as a function of the

number of the care terms

5. Conclusions

We have presented a new two-level Boolean
minimization method called FC-Min. It is based on the
idea that the coverage of the output matrix is found at
first, and then the structure of implicants is derived from
this cover. The algorithm is extremely fast and it is very
efficient, especially for functions with a large number of
outputs. Particularly, the Find Coverage phase, which is
essential for the algorithm, is more thoroughly described
in this paper. The influence of the Depth Factor on the
runtime and the quality of the solution was studied here.

The method was tested on the MCNC benchmarks and
randomly generated problems. We have shown that for
problems with higher number of output variables it is
faster than both ESPRESSO and BOOM and gives better
results as well. The algorithm was tested on randomly
generated problems in order to estimate the statistical
properties and scalability of the method. We have found
that the method can be easily applied to very large
problems without a significant growth of a runtime.

Acknowledgement
This research was supported by a grant

GA 102/04/2137 and MSM 212300014

References
[1] S. Hassoun and T. Sasao, „Logic Synthesis and Verification",

Boston, MA, Kluwer Academic Publishers, 2002, 454 pp.
[2] Agarwal, Kime, Saluja: A tutorial on BIST, part 1:

Principles. IEEE Design & Test of Computers, vol. 10, No.1
March 1993, pp.73-83, part 2: Applications, No.2 June 1993,
pp.69-77

[3] W.V. Quine, “The problem of simplifying truth functions”,
Amer. Math. Monthly, 59, No.8, 1952, pp. 521-531

[4] E.J. McCluskey, “Minimization of Boolean functions”, The
Bell System Technical Journal, 35, No. 5, Nov. 1956,
pp. 1417-1444

[5] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINI: A heuristic
approach for logic minimization”, IBM Journal of Res. &
Dev., Sept. 1974, pp.443-458

[6] R.K. Brayton et al., “Logic minimization algorithms for
VLSI synthesis”, Boston, MA, Kluwer Academic Publishers,
1984, 192 pp.

[7] P. McGeer et al., “ESPRESSO-SIGNATURE: A new exact
minimizer for logic functions”, Proc. DAC’93

[8] O. Coudert, “Doing two-level logic minimization 100 times
faster”, Proc. of the sixth annual ACM-SIAM symposium on
Discrete algorithms, 1995, pp.112-121

[9] J. Hlavi�ka and P. Fišer, „BOOM - a Heuristic Boolean
Minimizer”, Proc. ICCAD-2001, San Jose, Cal. (USA), 4.-
8.11.2001, 439-442

[10] P. Fišer and J. Hlavi�ka, „BOOM - A Heuristic Boolean
Minimizer“, Computers and Informatics, Vol. 22, 2003, No.
1, pp. 19-51

[11] P. Fišer, J. Hlavi�ka and H. Kubátová, „FC-Min: A Fast
Multi-Output Boolean Minimizer“, Proc. Euromicro

Symposium on Digital Systems Design (DSD'03), Antalya
(TR), 3.-5.9.2003

[12] M. Chatterjee and D.J. Pradhan, “A novel pattern generator
for near-perfect fault coverage”, Proc. of VLSI Test
Symposium 1995, pp. 417-425

[13] N.A. Touba and E.J. McCluskey, “Transformed Pseudo-
Random Patterns for BIST”, CRC Technical Report No. 94-
10, 1994

[14] P. Fišer, J. Hlavi�ka and H. Kubátová, „Column-
Matching BIST Exploiting Test Don't-Cares“. Proc.
8th IEEE Europian Test Workshop (ETW'03),
Maastricht (NL), 25.-28.5.2003, pp. 215-216

[15] S. Yang, „Logic Synthesis and Optimization Benchmarks
User Guide“, Technical Report 1991-IWLS-UG-Saeyang,
MCNC, Research Triangle Park, NC, January 1991

[16] G. De Micheli, “Synthesis and Optimization of Digital
Circuits”. McGraw-Hill, 1994

Table 2. Randomly generated problems – one iteratio n

p / i 25 50 100 150
50 2.27/232/341/49

1.30/413/220/87
0.27/315/305/59

11.34/219/318/48
1.40/428/156/94
0.29/304/241/58

46.35/202/301/46
1.59/412/121/90
0.34/293/195/56

94.64/203/303/47
1.73/371/96/84
0.41/283/181/54

100 10.22/577/687/98
2.59/998/506/168
0.50/716/648/110

100.14/537/576/91
2.56/1103/342/190
0.51/718/491/113

369.45/510/569/90
3.02/1050/244/186
0.64/676/413/106

883.24/488/554/88
3.53/943/186/168
0.79/647/372/102

125 14.44/772/849/123
3.51/1333/650/211
0.66/952/846/137

148.96/710/728/114
3.49/1468/449/237
0.65/927/642/137

756.21/666/704/110
4.23/1408/317/231
0.86/880/519/131

2146.03/652/674/108
4.82/1252/243/211
1.09/829/473/124

150 23.35/973/1005/147
4.71/1691/785/255
0.86/1182/1007/163

283.88/892/869/136
4.63/1849/563/285
0.84/1164/779/164

1111.23/833/800/129
4.72/1761/378/278
1.04/1098/638/157

3422.94/798/773/126
5.65/1613/295/256
1.33/1039/573/148

Entry format: time [s] / # of literals / output cost / # of implicants

Table 3. Randomly generated problems – same time as ESPRESSO
p/n 25 50 100

50
2.15/233/346/49
340/246/70(2)
290/264/58(8)

10.80/218/324/48
294/189/61(7)
252/185/50(28)

51.96/204/309/47
247/139/53(27)
214/150/43(81)

75
5.62/400/513/74
525/381/95(3)
465/394/83(13)

34.37/370/463/70
466/276/86(12)
404/279/71(47)

154.71/357/438/68
423/218/79(35)
357/223/62(99)

100
11.24/581/673/99
768/528/127(4)
659/543/110(19)

84.48/546/586/92
665/358/111(16)
571/365/92(63)

416.29/520/564/90
600/287/102(44)
498/301/80(118)

125
17.75/773/845/123
1010/616/160(4)
868/674/138(22)

157.19/706/722/113
872/459/137(17)
745/456/115(71)

895.25/657/700/110
765/359/122(52)
650/374/99(137)

Entry format: ESPRESSO: time [s] / # of literals / output cost / # of implicants
 next lines: # of literals / output cost / # of implicants (iterations)

