
FC-Min: A Fast Multi-Output Boolean Minimizer

Petr Fiser, Jan Hlavicka†, Hana Kubatova
Department of Computer Science and Engineering

Czech Technical University
Karlovo nam. 13, 121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

We present a novel heuristic algorithm for two-level
Boolean minimization. In contrast to the other
approaches, the proposed method firstly finds the
coverage of the on-sets and from that it derives the group
implicants. No prime implicants of the single functions
are being computed; only the necessary implicants needed
to cover the on-sets are produced. This reverse approach
makes the algorithm extremely fast and minimizes the
memory demands. It is most efficient for functions with a
large number of output variables, where the other
minimization algorithms (e.g. ESPRESSO) are too slow. It
is also very efficient for highly unspecified functions, i.e.
functions with only few terms defined.

1. Introduction

The problem of two-level Boolean minimization is
quite old but surely not dead. It is encountered in many
areas of logic design, e.g. the design of control systems,
design of build-in self-test for VLSI circuits and in the
VLSI synthesis in general [1]. Many Boolean
minimization tools were developed, e.g., the classical
Quine-McCluskey [2, 3] algorithm, MINI [4] and
ESPRESSO [5, 6] with its modifications [7, 8], lately
Boom [9], Scherzo [10] and Rondo [11]. The major
drawback of these algorithms is the limited size of the
problems they can solve in a reasonable time. When the
number of input variables grows to hundreds (such
problems occur, e.g., in the BIST design), the
minimization times are extremely long. This problem was
partially solved by Boom. However, the same problem
can be encountered for functions with many outputs – the
group minimization is quite a demanding problem and the
runtimes grow with the number of output variables
rapidly as well. The need of a minimization of functions
with a large number of input and output variables forced
us to develop a fast heuristic algorithm that can handle
very complex problems in a reasonable time while the
result is near by the optimum.

The classical minimization algorithms consist of two
major phases (or they are combined somehow):

the generation of implicants of a function and the
subsequent covering problem (CP) solution, where the
necessary irredundant set of implicants is found. Such an
approach may be very demanding (in time and space) for
functions with a large number of input and output
variables, as the number of both the prime and group
implicants is often extremely large.

The process of generating implicants can be also
conducted in the reverse way, as it is being done in our
algorithm. Firstly the cover of the on-sets independent on
the source terms is found, and then the implicants
corresponding to this cover are looked for. This reverse
approach allowed us to make a fast Boolean minimizer
with extremely low memory demands. The main part of
our algorithm is a “Find Coverage” procedure, therefore
our algorithm was named FC-Min.

Our algorithm does not produce any prime implicants
(PIs), since the necessary group implicants are directly
generated. As the group implicants are highly important
especially for problems with many outputs, this makes our
algorithm superior to the others for such problems. On the
other hand, FC-Min is not suitable for problems with a
small number of output variables. It is due to the cover of
the on-set is being generated partially ad-hoc and thus the
proper implicants often cannot be found. For such
functions our algorithm mostly cannot outperform the
others (ESPRESSO, BOOM).

Another feature of FC-Min is that it needs not the don’t
care set of the functions to be specified. Thus, the source
function is given by its on-set and off-set only.

The algorithm was thoroughly tested on many kinds of
problems and the results and runtimes were compared
with ESPRESSO. The MCNC [10] benchmarks were
solved in order to test the algorithm on practical
problems, as well as a set of artificial randomly generated
problems were solved to estimate the scalability of the
algorithm.

The paper has the following structure: Section 2
defines the problem statement, the main principles of the
method are described in Section 3, Section 4 shows the
experimental results, Section 5 contains conclusions.

2. Problem Statement

Let us have a set of m Boolean functions of n input
variables

�
1(x1, x2, … xn),

�
2(x1, x2, … xn), …

�
m(x1, x2, …

xn); the output values of the care terms (both minterms
and terms of a higher dimensions may be used) are
defined by the truth table. Thus, each function is specified
by its on-set Fi(x1, x2, … xn) and off-set Ri(x1, x2, … xn).
To the minterms that are not present in the truth table are
implicitly assigned don’t care values. The part of a truth
table representing the terms will be denoted as an input
matrix, the rows of the input matrix will be denoted as
input vectors. The part defining the output values of the
functions will be called an output matrix, similarly, the
rows of this matrix output vectors. Each row of the output
matrix defines the values of the output variables for the
values of input variables specified by the corresponding
row in the input matrix.

Specifying a Boolean function by its on-set and off-set,
rather by its on-set and don’t care set is advantageous
especially for highly unspecified functions, i.e., functions
that have the defined values of only few terms. The
typical example of the use of such a function can be
found, e.g., in the build-in self-test (BIST) design [12, 13,
14], for which the method was originally designed. The
use of BIST in the nowadays circuits is becoming
inevitable, since their external testing is extremely time
demanding. Another application of BIST is the design of
highly reliable circuits.

Our task is to synthesize a two-level circuit
implementing the multi-output Boolean function
described by the truth table, whereas the implementation
of the circuit should be as small as possible. The result
will be in a form of a set of m SOP (sum-of-the-product)
forms implementing the m output functions.

3. Principles of the Method
3.1. Find Coverage

As it was stated in the introduction, the method firstly
tries to find a coverage of the on-set by finding a rectangle
cover [1] of all the “1” values in the output matrix and
then generates implicants having the properties given by
this coverage. An example of the coverage of an output
matrix is shown in Fig. 1:

Figure 1. Coverage of the output matrix

The output matrix corresponds to a function with
5 output variables and 10 care terms defined. The
potential t1 – t6 terms cover all the “1” values in the output
matrix and no zero. For example, the group term
(implicant) t1 covers “1”s of the fourth and fifth output
variable in the vectors e, g and i. Let us note that the
structure of the terms is not known yet; only the set of
covered “1”s is known. Now it is apparent, that if we
succeed in finding the implicants having the properties of
t1 – t6 (i.e., the terms cover the appropriate “1”s), the
solution will consist of six implicants.

Finding the optimum cover is a NP-hard problem so
the covers are looked for by a heuristic. It is based on a
gradual search for rectangle covers consisting of the
maximum number of “1”s. Firstly the output vector
containing the most not yet covered ones is selected as a
basis for a new cover - in our example it is the i row with
four ones. Now we continue to search for the next row to
add in order to increase the number of the covered ones.
In our example when the row g is added, the number of
covered ones will not increase (because the first and the
third variable cannot be covered after that), however it
does not decrease either. After adding the row e, the
number of covered ones increases to six.

After finding the cover the “1”s that are included in it
are marked as “covered” and we continue the search for
other covers until all the ones in the output matrix are
covered.

Finding the coverage consisting of many “1”s in the
output matrix is advantageous indeed, however it often
means that it contains many vectors. This fact complicates
the succeeding phase – finding the structure of the term.
A term whose cover consists of fewer vectors is easier to
find. Thus, the heuristic algorithm is driven by a depth
factor DF. Since each of the rectangle covers is being
produced by a successive addition of vectors into it, we
can decide after every addition whether to extend the
cover to more vectors, or to terminate its generation, even
if it could grow bigger. The decision is made at random
with a probability given by DF. For instance, when
DF = 1, there is an equal probability that the search will
continue; when DF = 1/5, there is a probability 1:5 for a
continual, and thus terms that cover less vectors and more
outputs are more likely generated. In general: when the
depth factor is low, the runtimes are shorter, while the
complexity of the result is slightly higher.

Such a heuristic approach, where the implicants are
looked for independently on the input matrix (source
terms), explains why the algorithm is advantageous for
functions with many outputs: the group implicants of
many output functions are very easy to find by this way.
On the other hand when it is used for single-output
functions, the algorithm cannot find the primes – it
generates the implicants entirely ad-hoc. So using the
algorithm for few-output functions is disadvantageous.

3.2. Finding the Implicants

When the cover is generated, we have to find the
implicants corresponding to the cover. The information
about the output variables included in the cover is
insignificant in this phase; the implicants are derived from
the information about the covered vectors only.
Obviously, when a term (cube) should cover a particular
output vector, the corresponding input vector must be
contained in this cube, since the input vector implies the
output. From this results that the minimum term satisfying
the particular cover can be constructed as a minimum
supercube of all the input vectors in the same lines as are
the output vectors included in the cover.

Let us assume our leading example. Fig. 2 shows both
the input and output matrix.

a 11010 10000
b 10000 11100
c 01001 01100
d 01111 01010
e 00110 00111
f 01110 00000
g 10110 00011
h 00001 01101
i 10101 10111
j 11100 10100

Figure 2. The input and output matrices

The term t1 covers vectors e, g and i – see Fig. 1. Thus,
the minimum term that can be a candidate for t1 must be
constructed as a minimum supercube of the terms e, g and
i in the input matrix, thus:

00110
10110
10101
-01--

Figure 3. The implicant t1

The term (-01--) was found as a candidate for an
implicant t1. However, since it has to cover only the
vectors listed above, the term must not intersect with any
of the other terms. We can find that it is a valid implicant
by comparing the term with the other terms.

Similarly, we can obtain the minimum implicants t1-t6.
Figure 4 shows all the minimum implicants obtained by
finding the corresponding supercubes of the source terms,
together with the output part of the resulting PLA matrix:

t1: -01-- 00011 t4: 01111 01010
t2: --00- 01100 t5: 1-0-0 10000
t3: 1-10- 10100 t6: 00--- 00101

Figure 4. The minimum implicants

The implicants obtained in this phase could form the
final solution. However, they can be further expanded to

improve the quality of the result. The final result is shown
in Fig. 5; the literals removed by the expansion are
highlighted.

t1: -01-- 00011 t4: ---11 01010
t2: --00- 01100 t5: 1-0-- 10000
t3: --10- 10100 t6: 00--- 00101

Figure 5. The expanded implicants

3.3. Incremental Implicant Generation

Until now the algorithm was strictly divided into three
successive phases: finding the coverage, generating the
implicants and their expansion. However, finding the
implicants with the properties of the particular coverage
often may not be possible, since some of the minimum
implicants may cover some zeroes. In this case the cover
must be recomputed somehow. The best way how to solve
this problem is an incremental implicant generation. Here
the first two phases are not separated; firstly one cover is
generated, then immediately the minimum implicant is
created and, if it is not valid (it covers some zeroes), just
the last cover is recomputed.

The whole algorithm can be described by the following
pseudo-code. The inputs of the algorithm are the input
matrix I and the output matrix O, the output is the PLA
matrix G.

Minimize(I, O) {
G = ∅;
do {

do {
c = FindOneCover(O);
t = GenerateImplicant(I, t);

} while !IsValid(O, t);
G = G ∪ t;

} while !AllCovered();
Expand(G);
return G;

}

Algorithm 1. The minimization algorithm

4. Experimental Results

Many experiments have been performed in order to
evaluate the performance of the method and to compare
the results with other up-to-date two-level minimization
tools. The algorithm was programmed in C++ Builder
under Windows XP, the computer used for tests was
Athlon 900 MHz with 256 MB RAM.

We have tested the algorithm on the MCNC
benchmarks [15, 16] and compared the results and
runtimes with ESPRESSO v2.3 [17]. As the benchmark
functions were originally specified by their on-sets and
don’t care sets (PLA type fd), the sources had to be
converted by ESPRESSO into the format where the
function is specified by its on-set and off-set. The time

needed for the conversion was not included in the
runtimes.

There was 120 benchmark problems solved, plus 19
so-called “hard” MCNC benchmarks. The 86 (72%)
“non-hard” benchmarks were solved by FC-Min in a
shorter time than by ESPRESSO. For 103 cases (86%)
FC-Min reached the same or better result (in 8 cases the
result was better) and in 80 cases (67%) the same or better
result was reached in a shorter time than by ESPRESSO.

From the 19 “hard” benchmarks five were solved in a
shorter time by FC-Min, in 14 cases we obtained the same
or better result (better in one case).

Table 1 shows the results of the “suggested” MCNC
benchmarks [16] and those where FC-Min has reached a
better result than ESPRESSO (the bottom part of the
table). The column i/o/p describes the number of
input/output variables and the number of defined terms of
the particular benchmark. The ESPRESSO and FC-Min
columns contain the runtimes in seconds and the number
of literals of the resulting SOP form, the output cost and
the number of group terms. The shadowed cells indicate
shorter runtime or the equal result respectively.

Table 1. MCNC benchmarks

ESPRESSO FC-Min
bench i/o/p time lit/out/terms time lit/out/terms

b12 15/9/72 0.08 149/59/42 0.01 148/58/43
cordic 23/2/2105 1.86 13825/914/914 8.0813825/914/914
cps 24/109/855 0.33 1890/946/163 1.301890/946/163
duke2 22/29/404 0.09 751/245/86 0.14751/245/86
ex1010 10/10/1304 0.50 1974/746/284 0.44 1976/742/284
ex4 128/28/654 0.62 1649/279/279 2.981649/279/279
misex2 25/18/101 0.07 183/30/28 0.01 183/30/28
misex3c 14/14/1566 0.98 1306/253/197 0.61 1306/255/197
pdc 16/40/822 0.83 828/432/136 0.32 912/520/145
rd84 8/4/511 0.12 1774/296/255 0.151774/296/255
spla 16/46/837 0.71 2558/643/251 0.84 2648/749/260
alu4 14/8/1184 0.59 4445/644/575 1.494443/644/575
clip 9/5/271 0.10 630/162/120 0.05 621/162/120
dc2 8/7/101 0.05 207/52/39 0.01 206/51/39
in4 32/20/603 0.17 2151/411/212 0.612145/411/212
m4 8/16/329 0.16 640/518/105 0.06 640/509/105
newxcpla1 9/23/93 0.07 197/86/39 0.01 196/86/39
opa 17/69/382 0.11 559/540/79 0.17560/524/79
soar 83/94/779 0.94 2454/549/353 8.012445/549/353
x6dn 39/5/310 0.08 641/177/82 0.04 640/177/82

5. Conclusions

A new two-level minimizer for a group of Boolean
functions was presented. It is based on the idea that the
coverage of the output matrix is found firstly and then the
structure of implicants is derived from this coverage and
from the vectors in the input matrix. The algorithm is
extremely fast and it is very efficient especially for
functions with a large number of outputs.

The method was tested on MCNC benchmarks. In
most cases it was faster than ESPRESSO with the same

result obtained. FC-Min was also tested on randomly
generated problems in order to estimate the statistical
properties and scalability of the method. The detailed
description of these experiments exceeds the scope of this
paper, however we have found that it can be easily
applied to very large problems without a rapid growth of a
runtime.

Acknowledgement

This research has been in part supported by the
GA102/03/0672 grant and MSM 212300014, 1999 –
2003.

References

[1] S. Hassoun and T. Sasao, „Logic Synthesis and
Verification", Boston, MA, Kluwer Academic Publishers,
2002, 454 pp.

[2] E.J. McCluskey, “Minimization of Boolean functions”, The
Bell System Technical Journal, 35, No. 5, Nov. 1956,
pp. 1417-1444

[3] W.V. Quine, “The problem of simplifying truth functions”,
Amer. Math. Monthly, 59, No.8, 1952, pp. 521-531

[4] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINI: A heuristic
approach for logic minimization”, IBM Journal of Res. &
Dev., Sept. 1974, pp.443-458

[5] R.K. Brayton et al., “Logic minimization algorithms for
VLSI synthesis”, Boston, MA, Kluwer Academic
Publishers, 1984, 192 pp.

[6] G.D. Hachtel and F. Somenzi, “Logic synthesis and
verification algorithms”, Boston, MA, Kluwer Academic
Publishers, 1996, 564 pp.

[7] R.L. Rudell and A.L. Sangiovanni-Vincentelli, “Multiple-
valued minimization for PLA optimization”, IEEE Trans. on
CAD, 6(5): 725-750, Sept.1987

[8] P. McGeer et al., “ESPRESSO-SIGNATURE: A new exact
minimizer for logic functions”, Proc. DAC’93

[9] J. Hlavicka and P. Fiser, “BOOM - a Heuristic Boolean
Minimizer”, Proc. ICCAD-2001, San Jose, Cal. (USA), 4.-
8.11.2001, 439-442

[10] O. Coudert, “Doing two-level logic minimization 100 times
faster”, Proc. of the sixth annual ACM-SIAM symposium on
Discrete algorithms, 1995, pp.112-121

[11] http://www.ee.pdx.edu/~alanmi/research/
[12] N.A. Touba and E.J. McCluskey, “Transformed Pseudo-

Random Patterns for BIST”, CRC Technical Report No. 94-
10, 1994

[13] M. Chatterjee and D.J. Pradhan, “A novel pattern generator
for near-perfect fault coverage”, Proc. of VLSI Test
Symposium 1995, pp. 417-425

[14] P. Fiser and J. Hlavicka, „Column-Matching Based BIST
Design Method“, Proc. 7th IEEE European Test Workshop
(ETW'02), Corfu (Greece), 26.-29.5.2002, pp. 15-16

[15] S. Yang, „Logic Synthesis and Optimization Benchmarks
User Guide“, Technical Report 1991-IWLS-UG-Saeyang,
MCNC, Research Triangle Park, NC, January 1991

[16] ftp://ftp.mcnc.org/pub/benchmark/Benchmark_dirs/
LGSynth93/testcases/pla/

[17] http://eda.seodu.co.kr/~chang/ download/espresso/

