FC-Min: A Fast Multi-Output Boolean Minimizer

Petr Fiser, Jan HlavickaHana Kubatova
Department of Computer Science and Engineering
Czech Technical University
Karlovo nam. 13, 121 35 Prague 2
e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract the generation of implicants of a function and the

o) subsequent covering problem (CP) solution, where the
We present a novel heuristic algorithm for two-level pecessary irredundant set of implicants is found. Such an
Boolean minimization. In contrast to the_ other approach may be very demanding (in time and space) for
approaches, the proposed method firstly finds thefnctions with a large number of input and output
coverage of the on-sets and from that it derives the groufyariables, as the number of both the prime and group

implicants. No prime implicants of the single functions implicants is often extremely large.

are being computed; only the necessary implicants needed Tpe process of generating implicants can be also
to cover the on-sets are produced. This reverse approackgonducted in the reverse way, as it is being done in our
makes the algorithm extremely fast and minimizes they|gorithm. Firstly the cover of the on-sets independent on
memory demands. It is most efficient for functions with aine source terms is found, and then the implicants
large number of output variables, where the other corresponding to this cover are looked for. This reverse
minimization algorithms (e.g. ESPRESSO) are too slow. ltapproach allowed us to make a fast Boolean minimizer
is also very efficient for highly unspecified functions, i.e it extremely low memory demands. The main part of

functions with only few terms defined. our algorithm is a “Find Coverage” procedure, therefore
_ our algorithm was name€iC-Min.
1. Introduction Our algorithm does not produce any prime implicants

(Pls), since the necessary group implicants are directly

The problem of two-level Boolean minimization is R . .
quite old but surely not dead. It is encountered in manygenerated. As the group implicants are highly important

. : : especially for problems with many outputs, this makes our
areas of logic design, e.g. the design of control systems . .
design of bguild-in gelf-tegt for VLSIgcircuits and ir>1/ the algorithm superior to j[he other; for such problems. @n th
VLS| synthesis in general [1]. Many Boolean other hand, FC-Min is not suitable for problems with a
minimization tools were developed. e.g. the classicalsma" number of output variables. It is due to the cover of
Quine-McCluskey [2, 3] algorithrﬁ, MIi\II [4] and the on-set is being generated partially ad-hoc and beus t

ESPRESSO [5, 6] with its modifications [7, 8], lately ProPer implicants often cannot be found. For such
Boom [9], Scherzo [10] and Rondo [11]. The major functions our algorithm mostly cannot outperform the

. . S . thers (ESPRESSO, BOOM).
drawback of these algorithms is the limited size of the © J L . ,
problems they can solve in a reasonable time. When the Another feature of FC-Min is that it needs not the'don

number of input variables grows to hundreds (Suchcare set of the functions to be specified. Thus, tluece

. : function is given by its on-set and off-set only.
problems occur, e.g., in the BIST design), the . .
minimization times are extremely long. This problenswa The algorithm was thoroughly tested on many kinds of

: roblems and the results and runtimes were compared
partially solved by Boom. However, the same problem pr
can be encountered for functions with many outputs — theWlth ESPRESSO. The MCNC [10] benchmarks were

group minimization is quite a demanding problem and theSOIVed in order to test the .z_ilgorlthm on practical
runtimes grow with the number of output variables problems, as well as a set of artificial randomly gatesl

rapidly as well. The need of a minimization of function problems were solved to estimate the scalability of the

with a large number of input and output variables forced algorithm.

us to develop a fast heuristic algorithm that can handled f‘!’he S]aper Qlas th[et fOIIOV;"r][ﬁ structure: .ST’;:O? 2
very complex problems in a reasonable time while the efines the problem statement, the main principiesne

result is near by the optimum method are described in Section 3, Section 4 shows the

The classical minimization algorithms consist of two experimental results, Section 5 contains conclusions.
major phases (or they are combined somehow):

2. Problem Statement The output matrix corresponds to a function with
)) 5 output variables and 10 care terms defined. The
Let us have a set afi Boolean functions ofi input hntential { — terms cover all the “1” values in the output
variablesFi(xy, X, ... %), Fo(X1, X, ... %), - FinlXa, X, .. matrix and no zero. For example, ttwroup term
%n); the output values of the care terms (both mintermsimpjicant) covers “1”s of the fourth and fifth output
and terms of a higher dimensions may be used) argariable in the vectore, gandi. Let us note that the
defined by the truth table. Thus, each function is specifiedsirycture of the terms is not known yet; only the afet
by its on-set fxi, %, ... %) and off-set Rx, %, ... %) covered “1’s is known. Now it is apparent, that if we
To the minterms that are not present in the truth @fe g;cceed in finding the implicants having the properties of
implicitly assigned don’t care values. The part ofht _ ¢ (j.e., the terms cover the appropriate “1’s), the
table representing the terms will be denoted ampot solution will consist of six implicants.
matrix, the rows of the input matrix will be denoted as Finding the optimum cover is a NP-hard problem so
input vectors The part defining the output values of the the covers are looked for by a heuristic. It is based on a
functions will be called amutput matrix,similarly, the gradual search for rectangle covers consisting of the
rows of this matriboutput vectorsEach row of the output aximum number of “1’s. Firstly the output vector

matrix defines the values of the output variables fer th containing the most not yet covered ones is selected as

valugs of [nput varie}bles specified by the correspondingpasis for a new cover - in our example it is itew with

row in the input matrix. _ _ four ones. Now we continue to search for the next mw t
Specifying a Boolean function by its on-set and off-set, 54d in order to increase the number of the covered ones.

rather by its on-set and don't care set is advantageoug, gur example when the rogis added, the number of

especially for highly unspecified functions, i.e., funo8 covered ones will not increase (because the first laad t

that have the defined values of only few terms. Theirq variable cannot be covered after that), however it

typical example of the use of such a function can begpes not decrease either. After adding the mwhe

found, e.g., in the build-in self-test (BIST) design [12, 13, yumber of covered ones increases to Six.

14], for which the method was originally designed. The agter finding the cover the “1’s that are included in it

use of BIST in the nowadays circuits is becoming gre marked as “covered” and we continue the search for
inevitable, since their external testing is extremtélye other covers until all the ones in the output matrix are
demanding. Another application of BIST is the design of o5y ered.

highly reliable circuits. _ ~ Finding the coverage consisting of many “1”s in the

_ Our task is to synthesize a two-level circuit ourput matrix is advantageous indeed, however it often
implementing the multi-output Boolean function means that it contains many vectors. This fact coraigic
described by the truth table, whereas the implementatio e succeeding phase — finding the structure of the term.
of the circuit should be as small as possible. The resulty term whose cover consists of fewer vectors iseedsi

will be in a form of a set afn SOP (sum-of-the-product) fing, Thus, the heuristic algorithm is driven bydepth

forms implementing then output functions. factor DF. Since each of the rectangle covers is being

produced by a successive addition of vectors into it, we
3. Principlesof the M ethod can decide after every addition whether to extend the
3.1. Find Coverage cover to more vectors, or to terminate its generaggan

if it could grow bigger. The decision is made at random

As it was stated in the introduction, the method firstly with a probability given by DF. For instance, when

tries to find a coverage of the on-set by finding aaregie DF = 1, there is an equal probability that the seavith

e oo iplconts i T pripriee g 6 XINUE when DF = 15, hers s rceilty 15
this coverage. An example of the coverage of an outputcommual’ and thus_terms that cover less vectorsvaore
Matrix is shoWn in Fig. 1: outputs are more likely gengrated. In general: wh_en the

o depth factor is low, the runtimes are shorter, while th
complexity of the result is slightly higher.

Such a heuristic approach, where the implicants are
@-f“ looked for independently on the input matrix (source
te terms), explains why the algorithm is advantageous for
functions with many outputs: the group implicants of
many output functions are very easy to find by this.way
On the other hand when it is used for single-output
functions, the algorithm cannot find the primes — it
3 generates the implicants entirely ad-hoc. So using the

algorithm for few-output functions is disadvantageous.

a
b
L]
e
£

-
l'FOO
= =]
=3
Sk

Figure 1. Coverage of the output matrix

3.2. Finding the Implicants improve the quality of the result. The final resulthewn

in Fig. 5; the literal d by th i
When the cover is generated, we have to find thelr?ighlligghte,d. © lterals removed by the expansion are

implicants corresponding to the cover. The information

about the output variables included in the cover is t,: -01-- 00011 t, ---11 01010
insignificant in this phase; the implicants are derivedfro t, --00- 01100 ts: 1-0-- 10000
the information about the covered vectors only. tg: --10- 10100 te: 00--- 00101

Obviously, when a term (cube) should cover a particular
output vector, the corresponding input vector must be
contained in this cube, since the input vector imphes t 3.3, |ncremental | mplicant Gener ation

output. From this results that thenimumterm satisfying])) o)

the particular cover can be constructed as a minimum Until now the algorithm was strictly divided into three
supercubeof all the input vectors in the same lines as areSuccessive phases: finding the coverage, generating the
the output vectors included in the cover. implicants and their expansion. However, finding the

Let us assume our leading example. Fig. 2 shows botfimplicants with the properties of the particular coverage

Figure 5. The expanded implicants

the input and output matrix. often may not be possible, since some of the minimum

implicants may cover some zeroes. In this case ther cov

a 11010 10000 must be recomputed somehow. The best way how to solve

b 10000 11100 this problem is aimcremental implicant generatioiere

c 01001 01100 the first two phases are not separated,; firstly onerdsve

d 01111 01010 generated, then immediately the minimum implicant is

e 00110 00111 created and, if it is not valid (it covers some zexoest

g %ﬂg 88822 the last cover is regomputed. _ _

h 00001 01101 The whole algorithm can be described by the following

i 10101 10111 pseudo-code. The inputs of the algorithm are the input

j 11100 10100 matrix | and the output matri©, the output is the PLA
matrix G.

Figure 2. The input and output matrices

The term covers vectors, gandi — see Fig. 1. Thus, =~ Mnimze(l, O {

the minimum term that can be a candidate fantist be dG =0
constructed as a minimum supercube of the terngand 0 {do {
i in the input matrix, thus: ¢ = Fi ndOneCover (O ;
t = Ceneratelnplicant(l, t);
00110 } while !'lsvalid(O t);
10110 G=GOt;
10101 } while !'Al'l Covered();
-01-- Expand(G ;
. . . return G
Figure 3. The implicant t; }
The term(-01--) was found as a candidate for an Algorithm 1. The minimization algorithm

implicant §. However, since it has to covemly the
vectors listed above, the term must not intersedt mity 4. Experimental Results
of the other terms. We can find that it is a valid iicgoht
by comparing the term with the other terms.

Similarly, we can obtain the minimum implicanidgt

Many experiments have been performed in order to
evaluate the performance of the method and to compare

. L S : the results with other up-to-date two-level minimization
Figure 4 shows all the minimum implicants obtained by i« The algorithm was programmed in C++ Builder

finding the corresponding supercubes of the source terms,nder Windows XP. the computer used for tests was
together with the output part of the resulting PLA matrix: Athlon 900 MHz with’ 256 MB RAM

t; -01-- 00011 t, 01111 01010 We have tested the algorithm on the MCNC

t, --00- 01100 te 1-0-0 10000 benc_:hmark_s [15, 16] and compared the results and
ty 1-10- 10100 te 00--- 00101 runtimes with ESPRESSO v2.3 [17]. As the benchmark
) o)) functions were originally specified by their on-sets and
Figure 4. The minimum implicants don’t care sets (PLA type fd), the sources had to be

The implicants obtained in this phase could form the converted by ESPRESSO into the format where the
final solution. However, they can be further expanded tofunction is specified by its on-set and off-set. Theetim

needed for the conversion was not included in theresult obtained. FC-Min was also tested on randomly
runtimes. generated problems in order to estimate the staliistic
There was 120 benchmark problems solved, plus 19roperties and scalability of the method. The detailed
so-called “hard” MCNC benchmarks. The 86 (72%) description of these experiments exceeds the scope of this
“non-hard” benchmarks were solved by FC-Min in a paper, however we have found that it can be easily
shorter time than by ESPRESSO. For 103 cases (86%applied to very large problems without a rapid growth of
FC-Min reached the same or better result (in 8 cdses t runtime.
result was better) and in 80 cases (67%) the sameter bet
result was reached in a shorter time than by ESPRESSO. Acknowledgement
From the 19 “hard” benchmarks five were solved in a __ . .
shorter time by FC-Min, in 14 cases we obtained theesam 11iS_research has been in part supported by the
or better result (better in one case). GA102/03/0672 grant and MSM 212300014, 1999 -
Table 1 shows the results of the “suggested” MCNC 2003.
benchmarks [16] and those where FC-Min has reached a
better result than ESPRESSO (the bottom part of theR€ferences
table). The COIUmni/O/p describes the number of [1] S. Hassoun and T. SasaO, ,’Logic Synthesis and
input/output variables and the number of defined terms of verification”, Boston, MA, Kluwer Academic Publishers,
the particular benchmark. The ESPRESSO and FC-Min 2002, 454 pp.
columns contain the runtimes in seconds and the numbel2] E.J. McCluskey, “Minimization of Boolean functionsh&
of literals of the resulting SOP form, the output cosd an Bell System Technical Journal, 35, No. 5, Nov. 1956,
the number of group terms. The shadowed cells indicate[S] pp. 1417-1444

shorter runtime or the equal result respectively. VXr'XérQl\le'gﬁ]’ “';r;it?]rlsbgegm’\?(f)Sémlpgggng;rlggf_usrécltlons”,

[4] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINI: A heticis
approach for logic minimization”, IBM Journal of Res. &

Table 1. MCNC benchmarks

ESPRESSO FC-Min Dev., Sept. 1974, pp.443-458

bench ifo/p timeg _liVoutiterms | time _litloutitermy 5] R.K. Brayton et al., “Logic minimization algorithnfer
b12 15/9/72 0.0§ 149/59/42] 0.01 | 148/58/43 VLSI synthesis”, Boston, MA, Kluwer Academic
cordic 23/2/2105 | 1.86 13825/914/9114 8. 13825/914/914 Publishers, 1984, 192 pp.
cps 24/100/855| 038 1890/946/169 _ 1[1890/946/163 | (6] G.D. Hachtel and F. Somenzi, “Logic synthesis and
duke2 22/29/404)| 0.0p 751/245/86 0.] 751/245/86 verification algorithms”, Boston, MA, Kluwer Academic
ex1010 10/10/1304] 0.5p 1974/746/2840.44 | 1976/742/284 Publishers, 1996, 564 pp.
exd 128/28/654] 0.6¢ 1649/279/279 2. 1649/279/279 [71R.L RudellyandA’L Sangiovanni-Vincentelli, “Multiple
misex2 25/18/101 | 0.0y 183/30/28 | 0.01 | 183/30/28 L -l and A.L. i-vincentett,
misex3c | 14/14/1566] 0.98 1306/253/1970.61 | 1306/255/197 valued minimization for PLA optimization”, IEEE Trans) o
pdc 16/40/822 | 0.83 828/432/136 | 0.32 | 912/520/145 CAD, 6(5): 725-750, Sept.1987
rdg4 8/4/511 0.12 1774/296/255] 0.4 1774/296/255| [8] P. McGeer et al., "ESPRESSO-SIGNATURE: A new exact
spla 16/46/837 | 0.71 2558/643/25] 0.84 2648/749/2p0 minimizer for logic functions”, Proc. DAC'93
alud 14/8/1184 | 059 4445/644/575 1] 4443/644/575| [9]J. Hlavicka and P. Fiser, “BOOM - a Heuristic Bemh
clip 9/5/271 0.10| 630/162/120 | 0.05 | 621/162/120 Minimizer”, Proc. ICCAD-2001, San Jose, Cal. (USA), 4.-
dc2 8/7/101 0.0 207/52/39 | 0.01 | 206/51/39 8.11.2001, 439-442
in4 32/20/603 | 0.17 2151/411/212] 0.4 2145/411/212 [10] O. Coudert, “Doing two-level logic minimization 100 &
m4 8/16/329 0.1 640/518/105 | 0.06 | 640/509/105 faster”, Proc. of the sixth annual ACM-SIAM symposium o
newxcplal| 9/23/93 0.0f 197/86/39 | 0.01 | 196/86/39 Discrete algorithms, 1995, pp.112-121
opa 17/69/382 | 0.11 559/540/79 0.1560/524/79 [11] http://www.ee.pdx.edu/~alanmi/research/
x6dn 39/5/310 | 0.08 641/177/82 |0.04 | 640/177/82 Random Patterns for BIST”, CRC Technical Report No. 94-

5. Conclusions

A new two-level minimizer for a group of Boolean

10, 1994

[13] M. Chatterjee and D.J. Pradhan, “A novel pattern iggoe
for near-perfect fault coverage”, Proc. of VLSI Test
Symposium 1995, pp. 417-425

functions was presented. It is based on the idea lileat t [14] P. Fiser and J. Hlavicka, ,Column-Matching Based BIST

coverage of the output matrix is found firstly and then the
structure of implicants is derived from this coverage and

Design Method*, Proc. 7th IEEE European Test Workshop
(ETW'02), Corfu (Greece), 26.-29.5.2002, pp. 15-16

from the vectors in the input matrix. The algorithm is [15]S. Yang, ,Logic Synthesis and Optimization Benchmarks

extremely fast and it is very efficient especiallyr fo
functions with a large number of outputs.
The method was tested on MCNC benchmarks.

User Guide®, Technical Report 1991-IWLS-UG-Saeyang,
MCNC, Research Triangle Park, NC, January 1991

[16] ftp://ftp.mcnc.org/pub/benchmark/Benchmark_dirs/
LGSynth93/testcases/pla/

most cases |t was faster than ESPRESSO W|th the Samlq?] http//edaseoduCokr/—..chang/ download/espresso/

