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Abstract. A novel synthesis method of a dual-rail asynchronous multi-level logic is proposed.  The logic is 
implemented as a monotonous multi-level network of minimized AND-OR nodes together with the 
completion detection logic. Each node is a hazard-free structure. It is achieved based on the product term 
minimization constraint that the authors have formulated and proved in their previous paper.  The MCNC and 
ISCAS benchmark sets were processed and the area overhead with respect to the synchronous 
implementation was evaluated. Then the implementation complexity of the proposed method and a state-of-
the-art method based on the duplication of every gate was compared. A considerable improvement was 
obtained. 
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1. INTRODUCTION  

The asynchronous logic is classified depending on the mode 
of interaction with the environment. In the input-output 
mode, the environment is allowed to change the input state 
once the new output state is produced. There is no 
assumption about the internal signals and the environment is 
allowed to change the input state before the circuit is 
stabilized in response to the previous input state. In the 
fundamental mode, the logic operates based on the following 
discipline: the environment changes the input state once the 
output state has changed in response to the current input state 
and each gate inside the circuit is stable. Both design 
methodologies assume either bounded (a maximal value is 
known) or unbounded (a maximal value is unknown) gate 
and wire delays.  

In case of the fundamental mode (accepted in this paper) with 
the bounded delays, the moment when the environment may 
change the input state is estimated based on the worst case 
propagation delay [Unger, 1969]. Within this model, only 
one input signal can be changed at a time. In [Nowick, 1993], 
the generalized fundamental mode was proposed where 
multiple input changes are allowed during a narrow time 
interval. For such a mode, the method of hazard-free two-
level implementation was proposed [Nowick, 1995]. The 
multi-level (hazard not increasing) transformation is applied 
to optimize the implementation [Unger, 1969 and Kung, 
1992]. The methods of hazard-free technology mapping were 
proposed in [Beerel, 1996 and Siegel, 1993].  

In case of the unbounded delays, the circuit should be capable 
to recognize the moment when input and output states have 
changed. For this purpose, both inputs and outputs are 
implemented using a dual-rail encoding. To change an input 
state the environment should reset it first (change to so called 

space state). The output state resets too, as a result. After that 
the environment sets a new input state. It implies a new 
output state. The multi-level implementations of the dual–rail 
asynchronous logic were proposed in [Cortadella, 2004 and 
Ligthart, 2000]. These methods are based on the initial circuit 
decomposition into simple (OR, AND, NOR, NAND, etc.) 
two-input gates. Further, each gate is mapped into DIMS 
[Sparsø, 1992] or into a so called threshold gate [Ligthart, 
2000]. As a result, the circuit total complexity is very high. 
In [Cortadella, 2004], each simple gate is doubled to ensure 
monotonicity and as a result a hazard-free implementation. 
In [Lemberski, 2009], a two-level (NOR-NOR, NAND-
NAND) dual-rail asynchronous logic suitable for mapping 
onto the conventional two-level structure was offered. Using 
this result, we propose a method that is based on the initial 
logic function decomposition into a single-rail Boolean 
network, where each node is represented as a two-level logic 
and the network is further transformation into a dual-rail one 
to ensure monotonicity and hazard-free implementation. 
Although our approach slightly increases the complexity 
of the functional logic, the completion detection logic 
complexity reduces significantly since the number of nodes 
that should be supplied with the completion detection is less 
than in [Cortadella, 2004]. As a result, considerable 
improvement in the sense of the total complexity is obtained. 

2. PRELIMINARIES 

2.1. Input/Output Dual-Rail Encoding 

Let F = {f1, f2, …, fq} be an asynchronous multi-output 
function of n inputs X: X = {x1, x2, … , xn} and q outputs. Let 
Y = {y1, y2, …, ym},  f1, f2, …, fq  ∈ Y,  m  ≥  q, be a set 
of single output Boolean nodes obtained as a result of a 
decomposition. Each node function yc depends on given r or 
less number on inputs: yc = {zc1, zc2 , … , zcr}, | yc | ≤ r,  zc1, 



zc2 , … , zcr ∈ {X ∪ Y} and can be implemented as a two-level 
(AND-OR) complex gate (Fig. 1). We call it as a single-rail 
multi-level representation 

Generally, an asynchronous logic should be capable: 
1) to recognize the moment when a new input state 
(generated by the environment) appears on the inputs and the 
moment when the circuit generates a new output state in the 
response to the input one; 2) to notify the environment 
on new input and output states. After receiving the 
notification, the environment can generate the next input 
state. To solve this problem, inputs/outputs are implemented 
using a dual-rail encoding.  

 

Fig. 1 Single–rail multi-level Boolean network  
 

In dual-rail logic, it is supposed that each primary input from 
the set X and output node from the set Y may be in one 
of these three states: states 1, 0 (so called working states) or 
undefined (space state). To implement a three-state input xi, 
i = 1, 2, … , n, two signals xi

(1) and xi
(0) are introduced, where 

xi
(1) =1 and xi

(0) = 0, if xi is in state 1, xi
(1) = 0 and xi

(0) = 1 if 
xi is in state 0, xi

(1) = xi
(0) = 0 if xi is in the space state. The 

combination xi
(1) = xi

(0) = 1 is not allowed. Similarly, 
to implement a three-state node function, the function yc, 
c = 1, 2 ,…, t should be represented in both positive yc

(1) and 
negative yc

(0) forms. If yc
(1) = 1, yc

(0) = 0, then the function yc 
is in state 1, if yc

(1)  =0, yc
(0) = 1, then the function yc is 

in state 0, if yc(1) = yc(0) = 0, then function yc is in the space 
state. The combination yc(1) = yc(0) = 1 is not allowed. 
To change the input state, the environment should reset it first 
to the space state and after that set it to a proper working 
state. In the reset phase, the output state changes from the 
working state to the space one and in the set phase the new 
output state is recognized. 

As a result of the decomposition, each function yc is 
represented as a pair:  yc = (yc

(1), yc
(0)), where yc

(1), yc
(0) describe 

ON-, OFF- sets (yc
(0) can be generated as a complement of the 

ON-set).  After that each node (both ON- and OFF- sets) can 
be minimized to reduce the implementation cost. 
In [Lemberski, 2009], we formulated a minimization 
constraint that the two–level logic should satisfy, to ensure a 

hazard-free implementation. Namely, each function yc should 
be represented as a pair of minimized Sum-of-Products 
(SOP) forms: yc = (Yc

(1), Yc
(0)), where Yc

(1), Yc
(0) are ON- , 

OFF- sets of product terms,  ti ∩ tj = Ø, for ∀(ti,  tj): ti, 
tj ∈ Yc

(1), and  ti, t j ∈ Yc
(0). A sum of the orthogonal products 

is called a Disjoint-Sum-Of-Products (DSOP). In [Cortadella, 
2004], conditions are formulated under which a Boolean 
network can be implemented as hazard-free logic. The 
conditions are based on each node monotonicity and hazard-
free implementation.   

3. STRUCTURE OF MULTI-LEVEL IMPLEMENTATION USING 

COMPLEX NODES 

3.1. Monotonicity and Hazard-Free 

Our structure is based on the concept of the monotonicity 
of the nodes introduced in [Cortadella, 2004] and the 
condition of each two-level (AND-OR) node hazard-free 
implementation proposed in [Lemberski, 2009]. 

Monotonicity. A node Nc generating the function yc is positive 
if for each input zc in its local fan-in it holds the following: if 
the input zc is positive (negative) then the function yc is 
positive (negative). A node Nc generating function yc is 
negative if for each input zc in its local fan-in it holds the 
following: if the input zc is positive (negative) then the 
function yc is negative (positive). The node Nc is monotonic if 
it is either positive or negative. 

The node monotonicity is easily achieved by the dual-rail 
encoding. 

Hazard-free implementation. The Boolean network is hazard-
free if each node is hazard-free. 

The hazard-free implementation of the two-level positive 
dual-rail structures based on the formulated minimization 
condition: product terms implementing two-level AND-OR 
logic should be mutually orthogonal [Lemberski, 2009].  

Note that in [Cortadella, 2004], the Boolean network with 
simple nodes (AND, OR, NAND gates, etc.) was considered. 
For such a network, the node monotonicity is the one 
requirement that guarantees its (and as a result, of the whole 
network) hazard-free implementation. However, it is not the 
case for the network with complex AND-OR nodes, where 
the additional condition (to ensure the node hazard-free 
implementation) should be formulated. 

3.2. Basic Structure for Node Implementation 

The implementation was proposed in [Lemberski, 2009] 
for multi-output logic (in our case, it should be 
reduced to a single-output one). It consists of two blocks 
(Fig. 2): a two-level AND-OR and the completion detection 
logic. Each AND gate implements a product term obtained 
after the minimization (remember, only the minimization that 



produces mutually orthogonal terms is allowed). Each 
product term is described by the set S(tk), |S(tk)| ≤ n, where 
S(tk) is a set of term tk literals (input signals), k = 1, 2 ,…, p. 
Since logic with the unbounded delays is supposed, one 
needs a signal to indicate the moment when both inputs and 
outputs are in the proper (working or space) state. For this 
purpose, the completion detection logic is introduced. Once 
all inputs and outputs are in the working state (means: either 
xi

(1) or  xi
(0) and fc

(1)  or fc
(0) are in the state 1, i = 1, 2, … , n, 

c = 1, 2, …, q) then the signal D is going up  too. To change 
the input state, both inputs and outputs should go to the space 
state (xi

(1) =  xi
(0) =  fc

(1)  = fc
(0) = 0). It results in the signal D 

going down. Once D = 0, then the new input can be set up.  

 

 

Fig. 2. Dual-rail two-level node 

3.3. Multi–Level Network 

Given an arbitrary multi-level Boolean network (Fig. 1). The 
network is transformed into the dual-rail one based on the 
rules described in Section 2. Then, each pair of nodes 
representing a function in both its positive and negative form 
is mapped into the structure depicted in Fig. 2. The multi-
level structure consists of two blocks (Fig. 3): the functional 
one implemented as a multi-level logic with two-level AND-
OR single-output nodes with a fan-in limited to 2k 
(remember, once given a single–rail node, then in dual-rail 
each input is represented as two signals) and the completion 
detection logic that is obtained by merging the completion 
detection logic of all two-level nodes. The completion 
detection should indicate the proper state (working or space) 
of not only the network primary inputs and outputs but node 

outputs as well. The logic is based on (n+m) C-elements 
together with (n+m) two-input OR gates, where n is number 
of primary inputs and m the number of nodes (including the 
ones generating q primary outputs). The completion detection 
signal D (Fig. 3) is going up, when both primary inputs and 
node outputs are all in a working state and going down when 
the signals mentioned are all in a space state. 

 

Fig. 3. Dual-rail multi-level network 

4. SYNTHESIS PROCEDURE 

The process of the synthesis of the multi-level dual-rail logic 
with AND-OR nodes is based on the tools ABC [Berkeley], 
Espresso [Brayton, 1984] and DSOP [Bernasconi, 2008]. 
First, an ABC script is applied to the initial circuit 
representation to obtain a multi-level single-rail Boolean 
network with the fan-in of each node limited to k. For this, 
we have decided to employ a LUT mapping synthesis 
process, since each LUT is actually represented as a single-
output AND-OR node with a limited number of inputs (in the 
ABC output format). 

We have used a sequence of ABC commands recommended 
for the LUT synthesis in the ABC reference guide. This 
command sequence was repeated 4-times, to obtain better 
results. 

 
strash 
balance 
fpga –K k 
 

Fig. 4. The LUT decomposition script. Substitute k for the 
maximum node fan-in 
 
Then, the network is transformed into the dual–rail 
representation, by computing a complement of each node 
(using the “sharp” operator [Brayton, 1984]). As a result, the 
number of nodes is doubled, while now the node functions 
may depend on 2k inputs or less (since a positive and 



negative signal is represented as a separate rail). Next, the 
minimization is performed (using Espresso) for the OFF–set 
nodes to obtain the minimized function: yc = (Yc

(1), Yc
(0)), 

yc
(1) ⊆  Yc

(1), yc
(0) ⊆ Yc

(0). Finally, we run DSOP [Bernasconi, 
2008] for all the nodes, to obtain mutually orthogonal terms.  

5. EXPERIMENTAL RESULTS 

5.1. Experimental background 

We have processed the MCNC [Yang, 1991] and ISCAS 
[Brglez, 1985, 1989] sets of benchmarks, 228 circuits 
altogether. We evaluate the complexity (expressed as the gate 
equivalents (GEs) number [De Micheli, 1994]) of the 
proposed asynchronous implementation of these circuits.  

For the structure proposed, we estimate the complexity of the 
functional network and the completion detection logic 
separately. Then, the total complexity is calculated. To avoid 
additional inverters and therefore decrease the 
implementation complexity, we use negative (NAND-
NAND) gates instead of AND-OR ones in the functional 
block and NOR gates instead of OR ones in the completion 
detection logic. As a result, the signal D = 1 (D = 0), when all 
inputs and outputs are in the space (working) state. 
Duplicated terms are implemented only once. We suppose a 
technology independent synthesis (fan-ins of negative gates 
and C-element are not limited). The gate complexity is 
estimated as follows: an n-input NAND or NOR gate requires 
0.5n GEs [Sparsø, 2001]. To implement an (n+m)-input 
C-element, (n+m+1) GEs are required. To implement n+m 
two-input NOR gates, 0.5(n+m) GEs are required. Totally, 
(1.5n+1.5m+1) GEs are required to implement the 
completion detection logic for an n-input multi-level logic 
with m nodes. 

Note, that the complexity of the sequential logic memory 
(flip-flops, latches) is not included in the results. 

5.2.  Selection of  k 

The first issue addressed in the experiments is a proper 
selection of k (maximum node fan-in). For large k’s, there 
often arise problems with computing complements of the 
nodes, for an exponential complexity of the operation. More 
importantly, nodes with a high fan-in are difficult to be 
implemented in technology. On the other hand, small k’s 
induce more nodes, which makes the completion detection 
logic more complex. 

A similar problem has been encountered in the design of the 
FPGA fabrics, when deciding for the optimum look-up tables 
(LUT) size [Gao, 2005]. It has been found that implementing 
the design using 4- or 5- input LUTs brings most benefits. 
We have also reproduced this observation by performing 
numerous experiments. An example is shown in Fig. 5, for 
the 9sym MCNC benchmark circuit. We have synthesized 
this circuit using the LUT-decomposition script (see Fig. 4), 

for k varying from 2 to 20. The total complexity of the 
asynchronous logic (i.e., the functional logic with the 
completion detection) was measured. A deep global 
minimum can be observed for k = 4. Very similar results are 
obtained from a vast majority of other benchmark circuits, for 
both decomposition scripts. For this reason, all the following 
experiments will be performed for k = 4. 

 

 

Fig. 5. Influence of k on the size of the resulting logic 

5.3. Standard Benchmarks Results 

Results obtained for selected MCNC [Yang, 1991] and 
ISCAS [Brglez, 1985, 1989] benchmark circuits are 
presented in the summary Table 1. We have evaluated the 
area overhead of our proposed asynchronous logic design 
method w.r.t. a conventional synchronous design. Then, we 
have compared our method with a state-of-the-art 
asynchronous logic design method proposed in [Cortadella, 
2004]. In all the cases, 4-input AND-OR nodes are 
considered.  

In Table 1, first, the benchmark name and numbers of its 
primary inputs and outputs (n, q) are given. Synthesis results 
obtained by decomposing the original circuit into a network 
of 4-input AND-OR nodes are shown in the following triplet 
of columns “Synchronous”. The first column indicates the 
number of network levels (critical path), the number 
of decomposed circuit nodes follows, the last column shows 
the complexity of the circuit’s synchronous implementation, 
in terms of GEs. 

The complexity of the proposed asynchronous multi-level 
implementation of the circuits is shown next. Complexities 
of the functional logic (“Funct. GEs”) and the completion 
detection logic (“CD GEs”) are shown first, then the values 
are summed together to obtain the final asynchronous logic 
complexity (“Total GEs”). The area increase of the 
asynchronous logic w.r.t. the synchronous implementation is 
shown in the next column (“Over.”). 

 Complexities of the asynchronous multi-level 



implementation proposed in [Cortadella, 2004] are shown 
in the next triplet of columns. Again, the functional, 
completion detection and total complexities are given. The 
area reduction obtained by our method, w.r.t. [Cortadella, 
2004], is shown in the last table column (“Impr” ). 

5.4. Summary of the Experiments 

We have processed 228 benchmark circuits altogether.  The 
area overhead of the asynchronous implementation, 
compared to the synchronous implementation is increased 
by 64% in the average.  When compared to the state-of-the-
art approach, we have obtained an average improvement 
of 17%. However, for some circuits, the improvement 
reaches up to 40%. 

6. CONCLUSION 

A novel synthesis method of a dual-rail asynchronous multi-
level logic is proposed.  The logic is implemented as a 
monotonous multi-level network of minimized AND-OR 
nodes together with the completion detection logic. Each 
node is a hazard-free structure. It is achieved based on the 
product term minimization constraint (product terms must be 
mutually orthogonal) that the authors have formulated and 
proved in [Lemberski, 2009]. The MCNC and ISCAS 
benchmarks were processed and the complexity of the 
synchronous and asynchronous implementations was 
compared. For the asynchronous logic, the area overhead is 
64% in the average. In comparison with the state-of-the-art 
approach, we reached a 17% area improvement in the 
average. 
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Table 1. Comparison results 
 

Benchmark circuit Synchronous Proposed asynchronous Cortadella, 2004 

Name n q Lev. Nodes GEs 
Funct. 
GEs 

CD 
GEs 

Total 
GEs 

Over. 
Funct. 
GEs 

CD 
GEs 

Total 
GEs 

Impr. 

al2 16 47 2 62 140.5 297 118 415 66% 281 170.5 451.5 8% 
alcom 15 38 2 50 87.5 179 98.5 277.5 68% 175 107.5 282.5 2% 
alu1 12 8 1 8 27.5 62.5 31 93.5 71% 55 58 113 17% 
b2 16 17 7 643 2038.5 4348 989.5 5337.5 62% 4077 2536 6613 19% 
b9 41 21 3 49 130 273 136 409 68% 260 226 486 16% 
bc0 26 11 7 510 1683.5 3534.5 805 4339.5 61% 3367 2105.5 5472.5 21% 
c1355 41 32 4 74 751 1595 173.5 1768.5 58% 1502 674.5 2176.5 19% 
c2670 233 140 7 300 936 1831 659.5 2490.5 62% 1872 1346.5 3218.5 23% 
c7552 207 108 8 600 3110.5 6329.5 1142.5 7472 58% 6221 3443.5 9664.5 23% 
c8 28 18 3 69 211 419.5 145 564.5 63% 422 313 735 23% 
c880 60 26 8 122 562.5 1186.5 274 1460.5 61% 1125 700 1825 20% 
cc 21 20 2 25 51 105.5 61 166.5 69% 102 89.5 191.5 13% 
chkn 29 7 8 158 497 1068 281.5 1349.5 63% 994 640 1634 17% 
cht 47 36 3 46 165.5 358 140.5 498.5 67% 331 262 593 16% 
cordic 23 2 8 614 1801 3926.5 956.5 4883 63% 3602 2254 5856 17% 
count 35 16 4 46 169 388 122.5 510.5 67% 338 263.5 601.5 15% 
cps 24 109 5 701 1676.5 3628 1076.5 4704.5 64% 3353 1984 5337 12% 
cu 14 11 3 20 53.5 110.5 52 162.5 67% 107 80.5 187.5 13% 
dalu 75 16 11 466 1971 4226.5 812.5 5039 61% 3942 2437 6379 21% 
dc1 4 7 1 7 48 73 17.5 90.5 47% 96 55 151 40% 
dc2 8 7 4 36 130.5 275 65.5 340.5 62% 261 173.5 434.5 22% 
duke2 22 29 5 238 478 983 391 1374 65% 956 524.5 1480.5 7% 
e64 65 65 4 332 559.5 1119 595 1714 67% 1119 595 1714 0% 
ex4 128 28 6 206 673.5 1501 481 1982 66% 1347 1060 2407 18% 
ex5p 8 63 6 1132 2487 5219.5 1711 6930.5 64% 4974 2804.5 7778.5 11% 
ex7 16 5 4 38 147.5 327 82 409 64% 295 197.5 492.5 17% 
example2 85 66 4 132 395.5 893.5 326.5 1220 68% 791 625 1416 14% 
f51m 8 8 4 80 233 486 131.5 617.5 62% 466 292 758 19% 
frg1 28 3 6 209 485.5 1020.5 356.5 1377 65% 971 560.5 1531.5 10% 
frg2 143 139 6 524 1339 3084 986.5 4070.5 67% 2678 1876 4554 11% 
i10 257 224 12 871 3034.5 6335.5 1676.5 8012 62% 6069 3842.5 9911.5 19% 
i2 201 1 5 75 171.5 356.5 415 771.5 78% 343 455.5 798.5 3% 
i3 132 6 3 46 214 492 268 760 72% 428 460 888 14% 
ibm 48 17 5 87 275 649.5 203.5 853 68% 550 434.5 984.5 13% 
misex2 25 18 3 45 86.5 215 106 321 73% 173 139 312 -3% 
s1196 32 32 7 220 672.5 1467.5 376 1843.5 64% 1345 868 2213 17% 
s15850.1 611 684 13 1293 3997.5 8498 2609.5 11107.5 64% 7995 5500 13495 18% 
s35932 1763 2048 4 3200 10658 22676 7013.5 29689.5 64% 21316 14150.5 35466.5 16% 
s382 24 27 3 55 165 359 110.5 469.5 65% 330 229 559 16% 
s38417 1664 1742 9 3610 12308 26197 7144 33341 63% 24616 17528.5 42144.5 21% 
s9234.1 247 250 8 681 2202.5 4664 1262.5 5926.5 63% 4405 2933.5 7338.5 19% 
s953 45 52 4 197 447.5 950.5 329.5 1280 65% 895 590.5 1485.5 14% 
too_large 38 3 7 2707 6017 12586.5 4118.5 16705 64% 12034 6151 18185 8% 
ts10 22 16 3 48 256 528 106 634 60% 512 346 858 26% 
ttt2 24 21 5 152 404 929.5 265 1194.5 66% 808 550 1358 12% 
unreg 36 16 2 48 136 305 127 432 69% 272 247 519 17% 
vda 17 39 5 413 835 1637.5 646 2283.5 63% 1670 887.5 2557.5 11% 
x2dn 82 56 4 95 218 438 236.5 674.5 68% 436 371.5 807.5 16% 
x3 135 99 5 333 1073.5 2299 703 3002 64% 2147 1550.5 3697.5 19% 
x4 94 71 5 210 542 1232.5 448 1680.5 68% 1084 830.5 1914.5 12% 
x6dn 39 5 6 172 552.5 1204.5 317.5 1522 64% 1105 731.5 1836.5 17% 
xparc 41 73 12 1530 4804.5 9986 2351.5 12337.5 61% 9609 5777.5 15386.5 20% 
Total         64%    17% 

 


