
Multi-Level Implementation of Asynchronous Logic Using Two-Level Nodes

Igor Lemberski*, Petr Fišer**

* Baltic International Academy, Riga, Latvia (e-mail: Igor.Lemberski@bsa.edu.lv)
** Czech Technical University in Prague, FIT, Dept. of Digital Design, Prague, Czech Republic

(e-mail: fiserp@fit.cvut.cz)

Abstract. A novel synthesis method of a dual-rail asynchronous multi-level logic is proposed. The logic is
implemented as a monotonous multi-level network of minimized AND-OR nodes together with the
completion detection logic. Each node is a hazard-free structure. It is achieved based on the product term
minimization constraint that the authors have formulated and proved in their previous paper. The MCNC and
ISCAS benchmark sets were processed and the area overhead with respect to the synchronous
implementation was evaluated. Then the implementation complexity of the proposed method and a state-of-
the-art method based on the duplication of every gate was compared. A considerable improvement was
obtained.

Keywords: asynchronous logic, decomposition, multi-level implementation, Boolean network, node

1. INTRODUCTION

The asynchronous logic is classified depending on the mode
of interaction with the environment. In the input-output
mode, the environment is allowed to change the input state
once the new output state is produced. There is no
assumption about the internal signals and the environment is
allowed to change the input state before the circuit is
stabilized in response to the previous input state. In the
fundamental mode, the logic operates based on the following
discipline: the environment changes the input state once the
output state has changed in response to the current input state
and each gate inside the circuit is stable. Both design
methodologies assume either bounded (a maximal value is
known) or unbounded (a maximal value is unknown) gate
and wire delays.

In case of the fundamental mode (accepted in this paper) with
the bounded delays, the moment when the environment may
change the input state is estimated based on the worst case
propagation delay [Unger, 1969]. Within this model, only
one input signal can be changed at a time. In [Nowick, 1993],
the generalized fundamental mode was proposed where
multiple input changes are allowed during a narrow time
interval. For such a mode, the method of hazard-free two-
level implementation was proposed [Nowick, 1995]. The
multi-level (hazard not increasing) transformation is applied
to optimize the implementation [Unger, 1969 and Kung,
1992]. The methods of hazard-free technology mapping were
proposed in [Beerel, 1996 and Siegel, 1993].

In case of the unbounded delays, the circuit should be capable
to recognize the moment when input and output states have
changed. For this purpose, both inputs and outputs are
implemented using a dual-rail encoding. To change an input
state the environment should reset it first (change to so called

space state). The output state resets too, as a result. After that
the environment sets a new input state. It implies a new
output state. The multi-level implementations of the dual–rail
asynchronous logic were proposed in [Cortadella, 2004 and
Ligthart, 2000]. These methods are based on the initial circuit
decomposition into simple (OR, AND, NOR, NAND, etc.)
two-input gates. Further, each gate is mapped into DIMS
[Sparsø, 1992] or into a so called threshold gate [Ligthart,
2000]. As a result, the circuit total complexity is very high.
In [Cortadella, 2004], each simple gate is doubled to ensure
monotonicity and as a result a hazard-free implementation.
In [Lemberski, 2009], a two-level (NOR-NOR, NAND-
NAND) dual-rail asynchronous logic suitable for mapping
onto the conventional two-level structure was offered. Using
this result, we propose a method that is based on the initial
logic function decomposition into a single-rail Boolean
network, where each node is represented as a two-level logic
and the network is further transformation into a dual-rail one
to ensure monotonicity and hazard-free implementation.
Although our approach slightly increases the complexity
of the functional logic, the completion detection logic
complexity reduces significantly since the number of nodes
that should be supplied with the completion detection is less
than in [Cortadella, 2004]. As a result, considerable
improvement in the sense of the total complexity is obtained.

2. PRELIMINARIES

2.1. Input/Output Dual-Rail Encoding

Let F = {f1, f2, …, fq} be an asynchronous multi-output
function of n inputs X: X = {x1, x2, … , xn} and q outputs. Let
Y = {y1, y2, …, ym}, f1, f2, …, fq ∈ Y, m ≥ q, be a set
of single output Boolean nodes obtained as a result of a
decomposition. Each node function yc depends on given r or
less number on inputs: yc = {zc1, zc2 , … , zcr}, | yc | ≤ r, zc1,

zc2 , … , zcr ∈ {X ∪ Y} and can be implemented as a two-level
(AND-OR) complex gate (Fig. 1). We call it as a single-rail
multi-level representation

Generally, an asynchronous logic should be capable:
1) to recognize the moment when a new input state
(generated by the environment) appears on the inputs and the
moment when the circuit generates a new output state in the
response to the input one; 2) to notify the environment
on new input and output states. After receiving the
notification, the environment can generate the next input
state. To solve this problem, inputs/outputs are implemented
using a dual-rail encoding.

Fig. 1 Single–rail multi-level Boolean network

In dual-rail logic, it is supposed that each primary input from
the set X and output node from the set Y may be in one
of these three states: states 1, 0 (so called working states) or
undefined (space state). To implement a three-state input xi,
i = 1, 2, … , n, two signals xi

(1) and xi
(0) are introduced, where

xi
(1) =1 and xi

(0) = 0, if xi is in state 1, xi
(1) = 0 and xi

(0) = 1 if
xi is in state 0, xi

(1) = xi
(0) = 0 if xi is in the space state. The

combination xi
(1) = xi

(0) = 1 is not allowed. Similarly,
to implement a three-state node function, the function yc,
c = 1, 2 ,…, t should be represented in both positive yc

(1) and
negative yc

(0) forms. If yc
(1) = 1, yc

(0) = 0, then the function yc
is in state 1, if yc

(1) =0, yc
(0) = 1, then the function yc is

in state 0, if yc(1) = yc(0) = 0, then function yc is in the space
state. The combination yc(1) = yc(0) = 1 is not allowed.
To change the input state, the environment should reset it first
to the space state and after that set it to a proper working
state. In the reset phase, the output state changes from the
working state to the space one and in the set phase the new
output state is recognized.

As a result of the decomposition, each function yc is
represented as a pair: yc = (yc

(1), yc
(0)), where yc

(1), yc
(0) describe

ON-, OFF- sets (yc
(0) can be generated as a complement of the

ON-set). After that each node (both ON- and OFF- sets) can
be minimized to reduce the implementation cost.
In [Lemberski, 2009], we formulated a minimization
constraint that the two–level logic should satisfy, to ensure a

hazard-free implementation. Namely, each function yc should
be represented as a pair of minimized Sum-of-Products
(SOP) forms: yc = (Yc

(1), Yc
(0)), where Yc

(1), Yc
(0) are ON- ,

OFF- sets of product terms, ti ∩ tj = Ø, for ∀(ti, tj): ti,
tj ∈ Yc

(1), and ti, t j ∈ Yc
(0). A sum of the orthogonal products

is called a Disjoint-Sum-Of-Products (DSOP). In [Cortadella,
2004], conditions are formulated under which a Boolean
network can be implemented as hazard-free logic. The
conditions are based on each node monotonicity and hazard-
free implementation.

3. STRUCTURE OF MULTI-LEVEL IMPLEMENTATION USING

COMPLEX NODES

3.1. Monotonicity and Hazard-Free

Our structure is based on the concept of the monotonicity
of the nodes introduced in [Cortadella, 2004] and the
condition of each two-level (AND-OR) node hazard-free
implementation proposed in [Lemberski, 2009].

Monotonicity. A node Nc generating the function yc is positive
if for each input zc in its local fan-in it holds the following: if
the input zc is positive (negative) then the function yc is
positive (negative). A node Nc generating function yc is
negative if for each input zc in its local fan-in it holds the
following: if the input zc is positive (negative) then the
function yc is negative (positive). The node Nc is monotonic if
it is either positive or negative.

The node monotonicity is easily achieved by the dual-rail
encoding.

Hazard-free implementation. The Boolean network is hazard-
free if each node is hazard-free.

The hazard-free implementation of the two-level positive
dual-rail structures based on the formulated minimization
condition: product terms implementing two-level AND-OR
logic should be mutually orthogonal [Lemberski, 2009].

Note that in [Cortadella, 2004], the Boolean network with
simple nodes (AND, OR, NAND gates, etc.) was considered.
For such a network, the node monotonicity is the one
requirement that guarantees its (and as a result, of the whole
network) hazard-free implementation. However, it is not the
case for the network with complex AND-OR nodes, where
the additional condition (to ensure the node hazard-free
implementation) should be formulated.

3.2. Basic Structure for Node Implementation

The implementation was proposed in [Lemberski, 2009]
for multi-output logic (in our case, it should be
reduced to a single-output one). It consists of two blocks
(Fig. 2): a two-level AND-OR and the completion detection
logic. Each AND gate implements a product term obtained
after the minimization (remember, only the minimization that

produces mutually orthogonal terms is allowed). Each
product term is described by the set S(tk), |S(tk)| ≤ n, where
S(tk) is a set of term tk literals (input signals), k = 1, 2 ,…, p.
Since logic with the unbounded delays is supposed, one
needs a signal to indicate the moment when both inputs and
outputs are in the proper (working or space) state. For this
purpose, the completion detection logic is introduced. Once
all inputs and outputs are in the working state (means: either
xi

(1) or xi
(0) and fc

(1) or fc
(0) are in the state 1, i = 1, 2, … , n,

c = 1, 2, …, q) then the signal D is going up too. To change
the input state, both inputs and outputs should go to the space
state (xi

(1) = xi
(0) = fc

(1) = fc
(0) = 0). It results in the signal D

going down. Once D = 0, then the new input can be set up.

Fig. 2. Dual-rail two-level node

3.3. Multi–Level Network

Given an arbitrary multi-level Boolean network (Fig. 1). The
network is transformed into the dual-rail one based on the
rules described in Section 2. Then, each pair of nodes
representing a function in both its positive and negative form
is mapped into the structure depicted in Fig. 2. The multi-
level structure consists of two blocks (Fig. 3): the functional
one implemented as a multi-level logic with two-level AND-
OR single-output nodes with a fan-in limited to 2k
(remember, once given a single–rail node, then in dual-rail
each input is represented as two signals) and the completion
detection logic that is obtained by merging the completion
detection logic of all two-level nodes. The completion
detection should indicate the proper state (working or space)
of not only the network primary inputs and outputs but node

outputs as well. The logic is based on (n+m) C-elements
together with (n+m) two-input OR gates, where n is number
of primary inputs and m the number of nodes (including the
ones generating q primary outputs). The completion detection
signal D (Fig. 3) is going up, when both primary inputs and
node outputs are all in a working state and going down when
the signals mentioned are all in a space state.

Fig. 3. Dual-rail multi-level network

4. SYNTHESIS PROCEDURE

The process of the synthesis of the multi-level dual-rail logic
with AND-OR nodes is based on the tools ABC [Berkeley],
Espresso [Brayton, 1984] and DSOP [Bernasconi, 2008].
First, an ABC script is applied to the initial circuit
representation to obtain a multi-level single-rail Boolean
network with the fan-in of each node limited to k. For this,
we have decided to employ a LUT mapping synthesis
process, since each LUT is actually represented as a single-
output AND-OR node with a limited number of inputs (in the
ABC output format).

We have used a sequence of ABC commands recommended
for the LUT synthesis in the ABC reference guide. This
command sequence was repeated 4-times, to obtain better
results.

strash
balance
fpga –K k

Fig. 4. The LUT decomposition script. Substitute k for the
maximum node fan-in

Then, the network is transformed into the dual–rail
representation, by computing a complement of each node
(using the “sharp” operator [Brayton, 1984]). As a result, the
number of nodes is doubled, while now the node functions
may depend on 2k inputs or less (since a positive and

negative signal is represented as a separate rail). Next, the
minimization is performed (using Espresso) for the OFF–set
nodes to obtain the minimized function: yc = (Yc

(1), Yc
(0)),

yc
(1) ⊆ Yc

(1), yc
(0) ⊆ Yc

(0). Finally, we run DSOP [Bernasconi,
2008] for all the nodes, to obtain mutually orthogonal terms.

5. EXPERIMENTAL RESULTS

5.1. Experimental background

We have processed the MCNC [Yang, 1991] and ISCAS
[Brglez, 1985, 1989] sets of benchmarks, 228 circuits
altogether. We evaluate the complexity (expressed as the gate
equivalents (GEs) number [De Micheli, 1994]) of the
proposed asynchronous implementation of these circuits.

For the structure proposed, we estimate the complexity of the
functional network and the completion detection logic
separately. Then, the total complexity is calculated. To avoid
additional inverters and therefore decrease the
implementation complexity, we use negative (NAND-
NAND) gates instead of AND-OR ones in the functional
block and NOR gates instead of OR ones in the completion
detection logic. As a result, the signal D = 1 (D = 0), when all
inputs and outputs are in the space (working) state.
Duplicated terms are implemented only once. We suppose a
technology independent synthesis (fan-ins of negative gates
and C-element are not limited). The gate complexity is
estimated as follows: an n-input NAND or NOR gate requires
0.5n GEs [Sparsø, 2001]. To implement an (n+m)-input
C-element, (n+m+1) GEs are required. To implement n+m
two-input NOR gates, 0.5(n+m) GEs are required. Totally,
(1.5n+1.5m+1) GEs are required to implement the
completion detection logic for an n-input multi-level logic
with m nodes.

Note, that the complexity of the sequential logic memory
(flip-flops, latches) is not included in the results.

5.2. Selection of k

The first issue addressed in the experiments is a proper
selection of k (maximum node fan-in). For large k’s, there
often arise problems with computing complements of the
nodes, for an exponential complexity of the operation. More
importantly, nodes with a high fan-in are difficult to be
implemented in technology. On the other hand, small k’s
induce more nodes, which makes the completion detection
logic more complex.

A similar problem has been encountered in the design of the
FPGA fabrics, when deciding for the optimum look-up tables
(LUT) size [Gao, 2005]. It has been found that implementing
the design using 4- or 5- input LUTs brings most benefits.
We have also reproduced this observation by performing
numerous experiments. An example is shown in Fig. 5, for
the 9sym MCNC benchmark circuit. We have synthesized
this circuit using the LUT-decomposition script (see Fig. 4),

for k varying from 2 to 20. The total complexity of the
asynchronous logic (i.e., the functional logic with the
completion detection) was measured. A deep global
minimum can be observed for k = 4. Very similar results are
obtained from a vast majority of other benchmark circuits, for
both decomposition scripts. For this reason, all the following
experiments will be performed for k = 4.

Fig. 5. Influence of k on the size of the resulting logic

5.3. Standard Benchmarks Results

Results obtained for selected MCNC [Yang, 1991] and
ISCAS [Brglez, 1985, 1989] benchmark circuits are
presented in the summary Table 1. We have evaluated the
area overhead of our proposed asynchronous logic design
method w.r.t. a conventional synchronous design. Then, we
have compared our method with a state-of-the-art
asynchronous logic design method proposed in [Cortadella,
2004]. In all the cases, 4-input AND-OR nodes are
considered.

In Table 1, first, the benchmark name and numbers of its
primary inputs and outputs (n, q) are given. Synthesis results
obtained by decomposing the original circuit into a network
of 4-input AND-OR nodes are shown in the following triplet
of columns “Synchronous”. The first column indicates the
number of network levels (critical path), the number
of decomposed circuit nodes follows, the last column shows
the complexity of the circuit’s synchronous implementation,
in terms of GEs.

The complexity of the proposed asynchronous multi-level
implementation of the circuits is shown next. Complexities
of the functional logic (“Funct. GEs”) and the completion
detection logic (“CD GEs”) are shown first, then the values
are summed together to obtain the final asynchronous logic
complexity (“Total GEs”). The area increase of the
asynchronous logic w.r.t. the synchronous implementation is
shown in the next column (“Over.”).

 Complexities of the asynchronous multi-level

implementation proposed in [Cortadella, 2004] are shown
in the next triplet of columns. Again, the functional,
completion detection and total complexities are given. The
area reduction obtained by our method, w.r.t. [Cortadella,
2004], is shown in the last table column (“Impr”).

5.4. Summary of the Experiments

We have processed 228 benchmark circuits altogether. The
area overhead of the asynchronous implementation,
compared to the synchronous implementation is increased
by 64% in the average. When compared to the state-of-the-
art approach, we have obtained an average improvement
of 17%. However, for some circuits, the improvement
reaches up to 40%.

6. CONCLUSION

A novel synthesis method of a dual-rail asynchronous multi-
level logic is proposed. The logic is implemented as a
monotonous multi-level network of minimized AND-OR
nodes together with the completion detection logic. Each
node is a hazard-free structure. It is achieved based on the
product term minimization constraint (product terms must be
mutually orthogonal) that the authors have formulated and
proved in [Lemberski, 2009]. The MCNC and ISCAS
benchmarks were processed and the complexity of the
synchronous and asynchronous implementations was
compared. For the asynchronous logic, the area overhead is
64% in the average. In comparison with the state-of-the-art
approach, we reached a 17% area improvement in the
average.

ACKNOWLEDGMENT

For the second author, this research has been supported
by MSMT under research program MSM6840770014 and
GA102/09/1668.

REFERENCES

Beerel, P., Yun, K.Y., and Chou, W.C. (1996). Opimizing
Average-Case Delay in Technology Mapping of Burst-
Mode Circuits, IEEE Int. Symp. on Advanced Research
in Asynchronous Circuits and Systems, pp. 244-259.

Berkeley Logic Synthesis and Verification Group, ABC: A
System for Sequential Synthesis and Verification'.
http://www.eecs.berkeley.edu/~alanmi/abc/.

Bernasconi, A., Ciriani, V., Luccio, F., and Pagli, L. (2008).
A New Heuristic for DSOP Minimization, Proc. 8th Int.
Workshop on Boolean Problems (IWSBP'08), Freiberg,
Germany, 18.-19.9.2008, pp. 169-174.

Brayton, R.K., et al. (1984). Logic minimization algorithms
for VLSI synthesis, Boston, MA, Kluwer Academic
Publishers, 192 pp.

Brglez, F. and Fujiwara, H. (1985). A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortan, Proc. of ISCAS 1985, pp. 663-698.

Brglez, F., Bryan, D., and Kozminski, K. (1989).
Combinational Profiles of Sequential Benchmark
Circuits, Proc. of ISCAS, pp. 1929-1934.

Cortadella, J., Kondratyev, A., Lavagno, L., and Sotiriou, C.
(2004). Coping with the Variability of Combinational
Logic Delays, IEEE Int. Conf. On Computer Design, pp.
505-508.

De Micheli, G. (1994). Synthesis and Optimization of Digital
Circuits. McGraw-Hill.

Gao, H., Yang, Y., Ma, X., and Dong, G. (2005). Analysis
of the effect of LUT size on FPGA area and delay using
theoretical derivations, Proc. of the Sixth International
Symposium on Quality of Electronic Design”, 21.-23. 3,
pp. 370-374.

Kung, D. (1992). Hazard-Non-Increasing Gate–Level
Optimization Algorithm, IEEE Int. Conf. On Computer–
Aided Design, pp. 631-634.

Lemberski, I. and Fišer, P. (2009). Asynchronous Two-Level
Logic of Reduced Cost, IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems, April
15-17, 2009, Liberec, Czech Republic, pp. 68-73.

Ligthart, M., Fant, K., Smith, R., Taubin, A., and
Kondratyev, A. (2000). Asynchronous Design Using
Commercial HDL Synthesis Tools, 6-th Int. Symp. on
Advanced Research in Asynchronous Circuits and
Systems, pp. 114-125.

Nowick, S.M. (1993). Automatic Synthesis of Burst-Mode
Asynchronous Controllers, Ph.D. thesis, Stanfort
University, March 193.

Nowick, S.M. and Dill, D.L. (1995). Exact Two-Level
Minimization of Hazard-Free Logic with Multiple-Input
Changes, IEEE CAD, vol. 14, August 1995, pp. 986-997.

Siegel, P., Micheli, G.D., and Dill, D. (1993). Automatic
Technology Mapping for Generalized Fundamental
Mode Asynchronous Designs, IEEE Design Automation
Conference, pp. 61-67.

Sparsø, E.J., Staunstrup, J., and M. Dantzer-Sørensen (1992)
Design of delay insensitive circuits using multi-ring
structures, In Prc. of the Conference on European Design
Automation, pp. 15-20.

Sparsø, E.J. and Furber, S. (2001). Principles
of Asynchronous Circuit Design, Kluwer Academic
Publishers, 337 p.

Unger, S.H. (1969). Asynchronous Sequential Switching
Circuits, John Wiley & Sons, Inc.

Yang, S. (1991). Logic Synthesis and Optimization
Benchmarks User Guide, Technical Report 1991-IWLS-
UG-Saeyang, MCNC, Research Triangle Park, NC.

Table 1. Comparison results

Benchmark circuit Synchronous Proposed asynchronous Cortadella, 2004

Name n q Lev. Nodes GEs
Funct.
GEs

CD
GEs

Total
GEs

Over.
Funct.
GEs

CD
GEs

Total
GEs

Impr.

al2 16 47 2 62 140.5 297 118 415 66% 281 170.5 451.5 8%
alcom 15 38 2 50 87.5 179 98.5 277.5 68% 175 107.5 282.5 2%
alu1 12 8 1 8 27.5 62.5 31 93.5 71% 55 58 113 17%
b2 16 17 7 643 2038.5 4348 989.5 5337.5 62% 4077 2536 6613 19%
b9 41 21 3 49 130 273 136 409 68% 260 226 486 16%
bc0 26 11 7 510 1683.5 3534.5 805 4339.5 61% 3367 2105.5 5472.5 21%
c1355 41 32 4 74 751 1595 173.5 1768.5 58% 1502 674.5 2176.5 19%
c2670 233 140 7 300 936 1831 659.5 2490.5 62% 1872 1346.5 3218.5 23%
c7552 207 108 8 600 3110.5 6329.5 1142.5 7472 58% 6221 3443.5 9664.5 23%
c8 28 18 3 69 211 419.5 145 564.5 63% 422 313 735 23%
c880 60 26 8 122 562.5 1186.5 274 1460.5 61% 1125 700 1825 20%
cc 21 20 2 25 51 105.5 61 166.5 69% 102 89.5 191.5 13%
chkn 29 7 8 158 497 1068 281.5 1349.5 63% 994 640 1634 17%
cht 47 36 3 46 165.5 358 140.5 498.5 67% 331 262 593 16%
cordic 23 2 8 614 1801 3926.5 956.5 4883 63% 3602 2254 5856 17%
count 35 16 4 46 169 388 122.5 510.5 67% 338 263.5 601.5 15%
cps 24 109 5 701 1676.5 3628 1076.5 4704.5 64% 3353 1984 5337 12%
cu 14 11 3 20 53.5 110.5 52 162.5 67% 107 80.5 187.5 13%
dalu 75 16 11 466 1971 4226.5 812.5 5039 61% 3942 2437 6379 21%
dc1 4 7 1 7 48 73 17.5 90.5 47% 96 55 151 40%
dc2 8 7 4 36 130.5 275 65.5 340.5 62% 261 173.5 434.5 22%
duke2 22 29 5 238 478 983 391 1374 65% 956 524.5 1480.5 7%
e64 65 65 4 332 559.5 1119 595 1714 67% 1119 595 1714 0%
ex4 128 28 6 206 673.5 1501 481 1982 66% 1347 1060 2407 18%
ex5p 8 63 6 1132 2487 5219.5 1711 6930.5 64% 4974 2804.5 7778.5 11%
ex7 16 5 4 38 147.5 327 82 409 64% 295 197.5 492.5 17%
example2 85 66 4 132 395.5 893.5 326.5 1220 68% 791 625 1416 14%
f51m 8 8 4 80 233 486 131.5 617.5 62% 466 292 758 19%
frg1 28 3 6 209 485.5 1020.5 356.5 1377 65% 971 560.5 1531.5 10%
frg2 143 139 6 524 1339 3084 986.5 4070.5 67% 2678 1876 4554 11%
i10 257 224 12 871 3034.5 6335.5 1676.5 8012 62% 6069 3842.5 9911.5 19%
i2 201 1 5 75 171.5 356.5 415 771.5 78% 343 455.5 798.5 3%
i3 132 6 3 46 214 492 268 760 72% 428 460 888 14%
ibm 48 17 5 87 275 649.5 203.5 853 68% 550 434.5 984.5 13%
misex2 25 18 3 45 86.5 215 106 321 73% 173 139 312 -3%
s1196 32 32 7 220 672.5 1467.5 376 1843.5 64% 1345 868 2213 17%
s15850.1 611 684 13 1293 3997.5 8498 2609.5 11107.5 64% 7995 5500 13495 18%
s35932 1763 2048 4 3200 10658 22676 7013.5 29689.5 64% 21316 14150.5 35466.5 16%
s382 24 27 3 55 165 359 110.5 469.5 65% 330 229 559 16%
s38417 1664 1742 9 3610 12308 26197 7144 33341 63% 24616 17528.5 42144.5 21%
s9234.1 247 250 8 681 2202.5 4664 1262.5 5926.5 63% 4405 2933.5 7338.5 19%
s953 45 52 4 197 447.5 950.5 329.5 1280 65% 895 590.5 1485.5 14%
too_large 38 3 7 2707 6017 12586.5 4118.5 16705 64% 12034 6151 18185 8%
ts10 22 16 3 48 256 528 106 634 60% 512 346 858 26%
ttt2 24 21 5 152 404 929.5 265 1194.5 66% 808 550 1358 12%
unreg 36 16 2 48 136 305 127 432 69% 272 247 519 17%
vda 17 39 5 413 835 1637.5 646 2283.5 63% 1670 887.5 2557.5 11%
x2dn 82 56 4 95 218 438 236.5 674.5 68% 436 371.5 807.5 16%
x3 135 99 5 333 1073.5 2299 703 3002 64% 2147 1550.5 3697.5 19%
x4 94 71 5 210 542 1232.5 448 1680.5 68% 1084 830.5 1914.5 12%
x6dn 39 5 6 172 552.5 1204.5 317.5 1522 64% 1105 731.5 1836.5 17%
xparc 41 73 12 1530 4804.5 9986 2351.5 12337.5 61% 9609 5777.5 15386.5 20%
Total 64% 17%

