Abstract—The security of many digital devices strongly depends on a secret value stored in them. To mitigate security threats, high protection of such a value must be provided. Many attacks against (cryptographic) hardware as well as attack countermeasures were presented recently. As new attacks are invented continuously, it is important to analyze even potential threats to mitigate device vulnerability during its lifetime. In this paper, we report a novel voter-related vulnerability, which can be potentially misused to compromise the secret value stored in an embedded device.

I. INTRODUCTION

Digital devices already became a natural part of human lives and they still continue to penetrate into new areas [1], [2]. The vital development driven by technology scaling opens novel reliability-related issues [3], [4]. Further, the security requirements are still rising with the number of digital devices deployed into critical application areas [2], [5]. This is the main reason why the research of security-reliability interplay is important. The secondary reason for this kind of research is that fault-tolerant approaches can be used to prevent certain security threats [6], [7].

In this paper we report a novel vulnerability originating in combinational logic, particularly in conventional voters. Hardware redundancy (e.g., triplication) with voters is used in digital designs to increase fault-tolerance or even to mitigate certain fault attacks (FA) [6], [8], [9], [10], [11].

Let us suppose that an invasive attack (e.g., optical – laser – attack) is directed against a single-bit voter logic with error-free inputs (that is, all-0 or all-1). In such a case, the voter’s fingerprint in the side channel (e.g., power trace) will differ depending on the voter state.

If the voter input is classified as a secret value, the presented vulnerability escalates into a real threat – the secret value may be compromised by combined attack mechanism [12]: an optical attack combined with simple power analysis. A successful attack requires precise control over an attack location, in particular, the laser beam positioning.

The requirement of a precise laser beam location control and also knowledge of circuit layout may appear strong, however, there is a long history of using lasers for diagnostic purposes in digital design [13] and since the vulnerable part (the voter) is large enough, its precise targeting is completely possible and proved [8], [14], [15], [16], [17]. For any serious worst case design security evaluation, one must assume a white box model: the potential attacker with knowledge of the circuit architecture. Anything else is called Security by Obscurity.

II. VOTER PROPERTIES ENABLING SECRET LEAKAGE

When analyzing the circuit security, it may be unclear, why a circuit like a voter deserves special attention, compared to the rest of the combinational logic. In fact, it is the voter’s dedicated structure, mission, and location in the circuit, which makes it the ideal target for a potential attacker, as explained below.

The majority voter is a compact digital circuit. In a fault-free environment, all voter inputs are equal and the voter’s output value matches the voter inputs. If any of the voter inputs is affected by a fault, the voter masks the fault and produces the majority of inputs at its output (the error-free output).

For the purpose of this paper and for simplicity, we use the conventional 3-input majority voter (TMR) design as shown in Figure 1a mapped to 2-input NAND gates (Figure 1b).

![Diagram of a 3-input NAND-based majority voter](image)

Fig. 1. 3-input NAND-based majority voter

A conventional voter has the number of properties, which make it simpler to extract the voter’s input value by combining fault injection and side channel emission measurement:

(i) Skorobogatov has shown, that reading individual bits from digital devices is possible when transistor sizes are large enough to allow precise laser beam localization on a single transistor [18]. However, transistor sizes in circuits manufactured in a recent CMOS process are too small. In contrast, the voter size for conventional technologies, e.g. for 180nm (and also for sub-100nm processes), is large enough for precise fault-injection into the voter area only [8]: the physical fault injection localization is possible, even with relatively cheap equipment [17], [18].

(ii) The voter depends on a single logic value represented by multiple bits (at all its inputs): the voter may be understood as the physical amplifier of the (side channel) emissions related to the single logic value.

(iii) The majority voter is designed to mask errors, thus if a subpart of the voter is affected by fault injection, the voter’s output tends to remain stable, limiting the fault-injection effect.
propagation: **fault injection side-effects tend to be localized to the voter area only** – fault propagation is suppressed.

The result of properties (i), (ii), and (iii) is as follows: if a voter is under attack, while the activity of the digital circuit is suppressed (stable clock signal and inputs), the side channel emissions of the circuit under attack are influenced only by a single logic value at all the voter inputs.

III. **Photoelectric Laser Stimulation (PLS) Modeling**

As a laser beam can be used for fault injection with precise location control [8], [19], it is a clear candidate for in-voter fault injection. We decided to use the electrical simulation of the circuit under a precise fault injection to demonstrate the vulnerability severity.

The principle behind the laser fault injection is a *photoelectric effect*. The laser beam passing through silicon creates, as a result of energy absorption, electron-hole pairs along its path. In *Space Charge Regions (SCR)* of PN junctions, the generated electron-hole pairs are separated by the internal electric field, generating the *Optical Beam Induced Current* [14], [20].

To perform accurate electrical simulation of the fault injection process, accurate models of the transistor under laser stimulation are required. Sarafianos et al. published a series of papers related to *Photoelectric Laser Stimulation (PLS)*, incrementally describing the electrical model of the pulsed photoelectric laser stimulation of an NMOS and PMOS respectively, e.g., [14], [15], [16].

In following paragraphs, the basic equations related to transistor models under PLS are presented. The in-depth description can be found in Sarafianos et al., e.g. [14], [15], [16].

![Figure 2. Current sources representing photocurrent induced in certain PN junctions as used in SPICE model [14], [15], [16]. Laser_trigger signal is used to turn the laser in the simulation environment on](image)

![Figure 3. CMOS cross-section showing the modeled PN junctions](image)

The modeled PN junctions – *p+/n-well, n+/p-sub* and *p-sub/n-well* – are shown in Figure 3 (for CMOS technology details refer to, e.g., [21]). The photocurrent induced by a laser beam in any PN junction was simulated by a voltage controlled current source – see Figure 2. The current amplitude is expressed by equation (1).

\[I_{\text{laser}} = (a \cdot V + b) \cdot \rho \cdot S, \]

where S is the surface of the sensitive zone (\(\mu m^2\)), a and b are fitting parameters expressing the laser power and technology parameters, V is the reversed bias voltage of the PN junction under laser illumination. Parameters a and b express the dependency on the laser power (\(mW\)) by using fitting parameters [14]:

\[a = p \cdot P_{\text{laser}}^2 + q \cdot P_{\text{laser}} \]

\[b = s \cdot P_{\text{laser}} \]

The parameter \(\rho\) is used to take into account the distance between the PN junction and the laser spot, as expressed in the following equation:

\[\rho = \beta \cdot exp(-\frac{d^2}{c_1}) + \gamma \cdot exp(-\frac{d^2}{c_2}), \]

where \(\beta\) and \(\gamma\) are the fitting parameters [14] and \(c_1\) and \(c_2\) express the influence of optical lens.

Note that the equations above contain parameters specific for each PN junction: the *p-sub/n-well* junction uses different parameters to express the photocurrent than *p+/n-well* or *p-sub/n+. The parameters are reported in the referenced papers.

IV. **Technology and Experiment Replicability**

Sarafianos et al. [14], [15], [16] used the STM 90nm technology for their experiments. As the STM’s technology details (SPICE models, cell libraries) are not publicly available, we decided to mount their models to publicly available technology node to increase the experiment replicability.

For simulations, we used primarily TSMC models for 180nm technology. The TSMC 180nm technology advantage is the availability of open standard cell library and SPICE models provided by Oklahoma State University (OSU)\(^1\). Thanks the availability of open SPICE models and standard cell library, it is possible to perform the simulation of a manufacturable circuit layout.

First of all, we replicated SPICE models and simulations presented by Sarafianos et al. by using TSMC transistor models\(^2\). By comparing our simulation outcomes with Sarafianos et al., we have confirmed that using different transistor models does not lead to unrealistic results. As the model parameters used for experiments in this paper were compiled from a number of publications, these are available for further experiments\(^3\).

For real layout simulation, shrinking transistor sizes in the model is necessary. For scaling to lower transistor dimensions, we simply used equation (1) following Roscian and Sarafianos et al. [19]. We used PN junction sizes coming from the layout under simulation.

1. https://vlsiarch.ecen.okstate.edu/flows/MOSIS_SCMOS
2. Note, that all parasitic parameters were not set precisely in our models, thus transients are poorly represented in simulation outputs
A. Voter Layout Synthesis

For the experiment replicability reasons, we choose a completely open toolchain to synthesize the voter layout for experiments. The used available open digital synthesis flow is called Qflow. Qflow incorporates well known open-source tools for different digital flow stages, notably GrayWolf for place&route and Magic as a VLSI layout tool.

Figure 5a presents the resulting voter layout in the TSMC 180nm technology (provided by OSU), which is distributed with Qflow. The SPICE netlist of the circuit layout (generated by Magic) was used for simulation, while the layout itself was used to obtain dimensions of PN junction areas.

V. EXPERIMENTAL EVALUATION

The area of the voter produced in TSMC 180nm technology by Qflow was 10 x 18μm. For experimental purposes, this area was divided into 12 rectangular areas (5 x 3μm), each containing half of a NAND gate (PMOS (n-well) or NMOS part).

![Voter layout and voter area partitioning](image)

(a) Voter layout produced by Magic
(b) PMOS – top/red and NMOS – bottom/green and laser position calculation

Fig. 5. Voter layout (a) and voter area partitioning (b). Gate numbers (#0 – #5) are used for reference

In our experimental setup, we assume that a 1250mW laser beam is focused to one of the 12 rectangular areas affecting all PN junctions in this area directly (the distance is equal to 0) – see equation (4) – the beam distance for PN junctions in other 11 areas is computed based on the actual laser beam position (Figure 5b). To be as close to our assumptions as possible, we choose equation parameters for 20X lens, which results in 3.25μm laser beam diameter, as reported in [16].

In the SPICE netlist produced by Qflow, the PMOS/NMOS transistor models were replaced by the sub-circuit representing the transistor under PLS, while preserving the geometry of the layout and other parameters like parasitics originating in the circuit layout. For the purpose of the simulation, the voter output is connected to a 10fF capacitance node.

For the final netlist, we performed the transient simulation with VDD at 1.2V and room temperature in ngSPICE for all 12 rectangular areas twice – for all-1 and for all-0 voter input. VDD and VSS current traces and gate-output voltage waveforms were recorded – as in Figure 4.

The average values of current peaks induced by the laser beam are shown in Figure 6a. For the NMOS part, the current is lower than for the PMOS part. This is caused by the presence of two PN junctions in the PMOS transistor (n-well/p-sub and P+/n-well), not by any difference the in parallel/serial geometry. The cause was confirmed by modified netlist resimulation.

The simulation has additionally shown (Figure 6a) that the induced current reaches its maximum, as the laser beam moves to the center of the circuit, where it influences most of the circuit area.

The most important lecture however comes from the difference for all-1 and all-0 input cases as shown in Figure 6b: the current peak for all-0 voter inputs is, independently of the laser beam position, significantly higher than the current peak for all-1 inputs, thus allowing determination of the voter state from the power trace.

Last but not least: we extended the diameter of the laser while fixing the laser beam position to the center of the majority voter. The power traces obtained from such simulation provided about 1mA difference in power peaks allowing to distinguish both voter states – see Figure 4.

VI. DISCUSSION

The current peak difference for all laser positions in Section V is in the order of hundreds of micro amps or even in milliamps, which supports the voter vulnerability statement.

The laser beam may cause the voltage drop at affected gate outputs, which is amplified by the subsequent logic. Thanks to the circuit nature, the absolute value of the induced current is lower for gates closer to the voter output (Figure 6a), but this behavior will differ in real circuits, where the voter output is connected to the subsequent logic.

The feasibility of the measurement in practice may be limited due to the presence of additional sources of photocurrent coming from voter-surrounding logic or simply by noise.

\(^4\)http://opencircuitdesign.com/
\(^5\)https://github.com/rubund/graywolf
\(^6\)http://opencircuitdesign.com/magic/
\(^7\)http://ngspice.sourceforge.net/
Although the simulations were currently not confirmed by real measurements, we believe that due to the significant difference in simulated currents, the presented threat requires attention.

Skorobogatov and Anderson have shown, that it is possible to perform optical attacks with very cheap equipment [17]. However, environment stability and replicability of the experiment may require relative costly equipment.

If the voter occupies a compact space, it is simple to target the laser beam on the voter logic only (even for sub-100nm process). In the case where the voter logic is dissolved in the other logic, precise fault injection will be more challenging, but still possible (for above 100nm process) – the fault injection into the voter subpart (gate) may still disclose the voter state.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we reported a novel potential threat endangering the security of digital circuits employing voters. The threat enables direct bit-value reading from the circuit.

We described the properties of a majority voter, that make this kind of circuit a source of the threat. SPICE simulations were used to demonstrate the potentially dangerous behaviour.

As only simulations were provided, measurements should be performed to confirm the severity of the reported threat. We used conventional voter design for demonstration, the influence of voter architectures should be studied.

ACKNOWLEDGMENT

The authors acknowledge the support of the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics” and grants GA16-05179S of the Czech Grant Agency and the CTU grant SGS17/213/OHK3/3T/18.

REFERENCES