
Synthesis of Finite State Machines on Memristor
Crossbars

Umberto Ferrandino1, Marcello Traiola2, Mario Barbareschi1, Antonino Mazzeo1, Petr Fišer3, Alberto Bosio2

1DIETI - University of Naples Federico II - Italy
Email: u.ferrandino@studenti.unina.it, {mario.barbareschi, mazzeo}@unina.it

2LIRMM - University of Montpellier / CNRS - France
Email: {firstname.lastname}@lirmm.fr

3Dept. of Digital Design, Czech Technical University of Prague - Czech Republic
Email: fiserp@fit.cvut.cz

Abstract—Memristor device represents one of the most rel-
evant technologies to deal with CMOS technological issues.
In the scientific literature, a relevant amount of works have
discussed the memristor device, with a particular emphasis
on memristor-based crossbar architectures. However, while the
synthesis of combinational logic circuits is widely discussed,
the same cannot be said for sequential logic circuits. In this
work, we propose a new approach for synthesizing sequential
circuits based on memristor crossbar, by enhancing an existing
architecture. This approach only exploits memristors within the
crossbar for implementing the state feedback mechanism, with
the aim of advancing the integration process of memristor-based
circuits. Moreover, to provide an automated synthesis process
of memristor-based sequential circuits, we extend a pre-existing
automated synthesis framework so it can be integrated with
widely used tools and formats as register-transfer level (RTL) or
Berkeley Logic Interchange Format (BLIF) files. We performed
several experiments on publicly available benchmarks in order
to compare the proposed architecture against its predecessor
in terms of circuit integration and efficiency. Obtained results
highlight acceptable overheads (up to a maximum of 24%)
compared with the opportunity of integration offered by the
proposed architecture.

I. INTRODUCTION

Nowadays, in counterflow with the well-known Moore’s
law, the CMOS technology is starting to reach its physical
limits. Among the issues characterizing the latest CMOS
manufacturing process, we can cite performance reduction,
increasing leakage current, reduced production yield, costly
manufacturing and testing processes [1].

Many solutions have been studied for dealing with these
problems and, among the emerging technologies, the mem-
ristor is one of the most promising candidates due to high
integration factor, scalability, CMOS compatibility and non-
volatileness capability. The memristor device is inherently
both a computational and a memory element, and for these
reasons it is a subject of many scientific works in the literature:
Computing-in-Memory (CiM) architectures [2], non-volatile
memories [3], nanoscale and neuromorphic computing [4],
data-intensive applications [5].

Some memristor-based circuit architectures have been pro-
posed in the literature so far: Snider Boolean Logic Circuit
(SBLC) [6], Fast Boolean Logic Circuit (FBLC) [7], Implica-
tion Logic circuit [8], Threshold Logic Circuit [9] and others.

In particular, the FBLC enhances computing performance of
the crossbar connection used in SBLC for Boolean functions
computation with parallel evaluation of minterms in a constant
number of steps, regardless of the implemented Boolean
function [7].

Moreover, research efforts are focusing on synthesis ap-
proaches targeting the optimization of area, performance and
power consumption. Some frameworks have already been
proposed for memristor-based crossbars [10], [11]. However,
while a relevant number of works target the synthesis of
combinational logic circuits, only few works have been pro-
posed about the synthesis of sequential circuits on memristor
crossbars, so far. Moreover, such propositions are based on
combining memristor-based crossbars and intermediate regis-
ters [10], [12]. In this paper, we propose an enhancement of
the FBLC architecture to extend its capabilities to implement
Finite State Machines (FSMs). In particular, instead of us-
ing CMOS latches as storage element, we propose a novel
technique to exploit memristor devices within the crossbar
itself to realize a feedback mechanism. We called such new
architecture ”Stateful FBLC” (SFBLC). Moreover, we enhance
the XbarGen framework by Traiola et al. [11] in order to
extend the automated synthesis process to FSMs and increase
its integration with commonly used formats in digital circuit
design, as register transfer level (RTL) and Berkeley logic
interchange format (BLIF) [13]. We carried out some exper-
iments for comparing the classical FBLC approach with the
proposed architecture, by analyzing occupied area, dynamic
power consumption and delay.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of the FBLC and discusses the dif-
ferences introduced by our stateful implementation. Section III
explains the performed experiments and comparisons between
FBLC architecture and our stateful FBLC-based approach.
Section IV concludes the paper suggesting some reflections
and perspectives for future works.

II. FBLC-BASED FINITE STATE MACHINE
IMPLEMENTATION

In this section, we first describe the classical FBLC ar-
chitecture, then we present our FBLC extension in order to
implement a FSM as a memristor crossbar.



A. FBLC overview

The Fast Boolean Logic Circuit (FBLC) architecture was
originally proposed by Xie et al. in [7] to compute any Boolean
functions on memristor-based crossbars in a constant number
of steps by exploiting the SoP expression of minterms obtained
by means of De Morgan’s laws:

f = M1 + M2 + ... + Mn = M1 ·M2 · · ·Mn (1)

In Equation 1, Mi (where i ∈ {1, .., n}) represents the i-th
minterm of the Boolean function f . To allow the parallel
computation of the Boolean function minterms, a set of
primitive operations implemented in the crossbar is exploited
(i.e., COPY, NAND, AND, and NOT operations). A CMOS
Control Unit has to opportunely drive the control signals in
order to execute the primitive operations through the following
steps:

• INA: initializes all memristors to logical 1 (Reset);
• RIN: receives input values;
• CFM: provides configuration for all minterms, copying

the values stored on input memristors in parallel (COPY);
• EVM: evaluates all minterms in parallel (NAND);
• EVR: the results of minterms are used to generate f̄

(AND);
• INR: inverts f̄ to obtain f (NOT);
• SOU: sends out the obtained result.

Thanks to the crossbar configuration, all minterms of the
Boolean function can be computed in parallel, then only 7
steps are needed to evaluate the result of the Boolean function.
Clearly, each Boolean function has to be mapped in an ad-hoc
crossbar, placing memristors depending on the minterms to
be computed. While this approach perfectly fits a Boolean
function computation (i.e., a stateless logic), it requires some
additional components to implement a sequential circuit, such
as a mechanism for managing and computing the state.
Currently, only off-crossbar registers have been proposed as
storage mechanism for the state. To the best of our knowledge,
no memristor-based crossbar circuits provide an internal state-
propagation logic neither a state storage element.

In the next subsection, we present how we enhance the
FBLC architecture for implementing sequential circuits.

B. Stateful FBLC (SFBLC)

In order to implement a sequential circuit by means of a
memristor-based crossbar, we extend the FBLC architecture
introducing the Stateful FBLC (SFBLC). The main idea is that
we can compute the next-state as a classic output, since we
can express it as a function of inputs and current state. Conse-
quently, we need a feedback mechanism which allows to use
the calculated state as an input for the subsequent computation.
Figure 1-a) shows the SFBLC architecture. The Input Latch
(IL), the Logic Block (LB), and the Output Latch (OL) are
inherited from the classic FBLC. In order to implement the
next-state function, the so-called Feedback Latch (FBL) has
been introduced. Basically, such block performs two additional
actions, exploiting existing operations on which the FBLC is
based.

Fig. 1. State propagation logic between crossbar blocks. A 2-bit state is
supposed, as example.

• Next State Copy: uses the COPY operation to move the
computed next-state (treated as output) from the OL block
to the FBL block.

• Current State: leverages the NOT operation for correctly
set input memristors.

As explained in [7], for each input/output of the function,
the FBLC architecture requires two memristors: one for the
direct value and one for the inverse value of the function
input/output. Therefore, the next state copy operation saves
both the direct and inverse values of the next-state and the
Current State operation can correctly set the two state-input
memristors, which have been accordingly placed in the right
rows. In order to support the FBL, we modified the crossbar
topology, as shown in Figure 1-b. More in detail, for each
state variable - computed as an output - we add two columns
and one row with relative memristors, as required by FBLC
architecture [7]. Furthermore, two additional memristors are
placed within the FBL block for each state variable. State-
related input memristors are strategically placed to the FBL
- instead of being within the IL block like other inputs - for
simplifying the feedback mechanism of the state value. The
user inputs are normally received by memristors in the IL. To
summarize, for each state variable, two additional rows and
two memristors (one per row) are introduced within the FBL.

Accordingly, the control unit of the crossbar has to be
extended in order to manage the FBL. Figure 1-a traces the
path followed by state-related information. The associated
control unit is specified In Figure 2. Compared to the classical

Fig. 2. Modified CMOS Control Logic with the additional state SS.

FBLC control unit, some steps are enriched by new operations



and a new one has been introduced: the Saving Step (SS).
Below, we detail the modifications. In the INR, the next-state
is computed as a normal FBLC output. Then, in the SS, it
is stored with a vertical copy, as previously described. If
the feedback mechanism is enabled, the RIN step transfers
the saved state value to the current-state input memristors.
This operation takes place on the FBL rows. In the INA, all
memristors of the crossbar are reset except for the FBL ones,
when feedback is required. State-related memristors are then
reset in the CFM and EVR for letting them receive new state
values computed in the INR. Reset operations do not interfere
with normal controller operations (minterms configuration and
results evaluation).

C. Case Study

To show a significant case study, we take into consideration
a Mealy machine that implements a simple 2-bit binary
counter. Such machine exhibits one-bit input, two-bits output
and four internal states. The transition graph is shown in
Figure 3. For the sake of simplicity, a two-bits encoding
scheme was used for state variables.

Fig. 3. Transition Graph for considered Mealy Machine with states encoding
and per-state output values (Z).

Equations 2 and 3 describe circuit output and next-state,
respectively. {

Z0 = Y1X + Y1X = Y1 ⊕X

Z1 = Y0X + Y0Y1 + Y0Y1X
(2)

{
Y

′

0 = Z1

Y
′

1 = Z0

(3)

Figure 4 depicts the FBLC architecture with feedback CMOS
registers, while Figure 5 reports the memristor crossbar of the
above mentioned circuit (i.e., Mealy Machine) implemented
by using the FBLC architecture.

On the other hand, Figure 6 shows the crossbar obtained by
exploiting the proposed SFBLC architecture.

As can be remarked in Figures 5 and 6, resulting memristor
crossbars have different dimensions. The FBLC implementa-
tion exploits a 10 rows 14 columns crossbar. On the other
hand, the SFBLC uses a 14 rows 14 columns crossbar. Since
both FBLC and SFBLC compute the next-state as a primary
output, both have 4 columns and 2 rows dedicated to the

Fig. 4. FBLC with feedback registers.

Fig. 5. FBLC memristor-based crossbar for considered Mealy Machine.

state. In addition, for the FBLC architecture, obtained next-
state values are copied to classic registers (whether CMOS
or memristor-based) and, for the SFBLC, to the FBL block
which adds 4 rows and 4 memristors. This is in line with
what has been previously described: for each state variable,
the SFBLC approach requires two additional rows and two
memristors within the crossbar. Finally, the 4 state-related
input memristors - that we find in the IL block of the FBLC
- are moved to the FBL block, in the SFBLC.

In order to compare the SFBLC architecture against the
classic FBLC architecture, leveraging an automated approach
allows a rapid and significant experiment campaign. In the
next section, we introduce the framework that we extended in
order to achieve such goal: XbarGen.

D. Extending the XbarGen framework

XbarGen is an automated framework by Traiola et al. [11]
for memristor-based crossbars synthesis. It executes a trans-
lation of a Boolean function into a simulable digital circuit,
targeting the FBLC architecture. XbarGen takes as input the
high level description of a Boolean function (i.e., its Boolean
expression), and then it executes the mapping to one (or more,
if needed) memristor-based crossbars.

Nevertheless, XbarGen is only capable of dealing with
combinational circuits. In order to meet the requirements for
synthesizing sequential circuits, we enhanced XbarGen. It
has remained backward-compatible being able to target both



Fig. 6. SFBLC memristor-based crossbar for considered Mealy Machine.

FBLC and SFBLC architectures, and to estimate the related
parameters.

More in detail, we embedded in XbarGen the support for the
Berkeley logic interchange format (BLIF) [13], which has the
required semantic power for stateful elements representation.
Several tools, such as Yosys by Clifford Wolf [14], can be
used to obtain a BLIF representation of finite state machines,
given RTL Verilog files. In this way, XbarGen can be easily
integrated in the classic digital circuit design flow and adds a
significant contribution to the automated design of memristor-
based circuits.

III. EVALUATION

This section presents the experimental evaluation of the
proposed SFBLC architecture against the classical FBLC. In
order to investigate challenges and opportunities of using the
internal feedback mechanism or external registers, we used the
same crossbar structure for both architectures. All circuits were
synthesized as a single-crossbar. For achieving an optimized
2-levels form we exploited the ABC tool from Berkeley [15].
Specifically, we used the ABC command collapse. A set
of nine different sequential circuits from the ITC’99 Bench-
marks [16] was used for mapping both architectures (i.e.,
SFBLC and FBLC with feedback registers). In particular, we
implemented the feedback registers for the FBLC architecture
with the CMOS technology. The XbarGen framework [11] was
exploited to automatically generate both architectures. Inves-
tigated circuit attributes include occupied area, circuit delay
(for the computation of a single state of the sequential circuit,
e.g., transition from state S0 to state S1 in Figure 3) and
power consumption. For studying the latter precisely, the two
architectures were compared across a 1000 ns-long simulation,
and stimulated by using the same randomly-generated inputs,
for a given circuit. The input patterns were randomly generated
by means of ModelSim ensuring a 100% state coverage and
about 50% transition coverage.

A. Experimental setup

The above described configurations (i.e., FBLC and SF-
BLC) are compared in terms of area, power consumption and
delay. To extract these characteristics, we examined the control
unit and the memristor crossbar in different manners. The
former one (i.e., the control unit) is a standard CMOS circuit.
Thus, we performed a classical synthesis using a 65nm CMOS
technology library and we extracted the desired attributes.

On the other hand, we resorted to the Equations proposed
in [12] to characterize the memristor-based crossbars.
Power consumption:Pxbar =

∑
all devices

PR

PR =
V 2
R

R

(4)

where VR is the voltage applied to the memristor terminals
and R depends on the actual resistance value of the memristor
(RON or ROFF ). In this study, we focus on the dynamic
power consumption (memristor switching activity) which is
very fast and simple to obtain exploiting the VHDL description
provided by the XbarGen framework.
Occupied area:{

Axbar = (NR + 1) · (NC + 1) ·Am

Am = 4F 2
(5)

where NR and NC respectively are the number of rows and
columns in the crossbar, Am is the memristor area and F is
the feature size of the technology.
Delay for each computing step (a single step of figure Fig-
ure 2):

Dxbar = Tsw + Dnw (6)

where: Tsw is the memristor switching time and Dnw is the
Resistive-capacitive delay due to the propagation of the signal
from the voltage driver to the nth memristor.

By leveraging XbarGen, we obtained information on the
memristor-based crossbars such as NR and NC . Moreover,
we retrieved the VHDL descriptions of the circuits. By sim-
ulating the VHDL models, we were able to calculate the
total number of switching memristors during the 1000ns, in
order to compute the dynamic power consumption. Finally,
by integrating technological parameters (i.e., Tsw, Am, VR,
RON and ROFF ), circuit attributes were properly determined.
Combining results for both CMOS and memristor portions, we
compared the two different architectures for each circuit.

B. Results

In Table I, we report data obtained exploiting XbarGen
(rows are sorted by crossbar-size). The columns report in
order: number of rows (NR) and columns (NC) in the crossbar,
number of memristors(Nm), number of latches (NLatch) used
in circuit description. The Table II shows the switching activity
of the crossbar for the given input patterns. Data was obtained
by simulating the VHDL models of the circuits. In detail,
SwOff→On and SwOn→Off are the number of memristors
switching from ROFF to RON and vice-versa, respectively.

Furthermore, in Table III, we list the adopted memristor
technological parameters. Such parameters refer to those used



TABLE I
MEMRISTOR-BASED CROSSBAR ATTRIBUTES

Exp NR NC Nm NLatch

FBLC SFBLC FBLC SFBLC FBLC SFBLC -
B02 16 22 16 16 57 63 3
B01 30 36 20 20 136 142 3
B06 37 43 28 28 132 138 3
B08 125 167 110 110 564 606 21
B10 182 216 102 102 856 890 17
B03 309 369 136 136 1712 1772 30
B13 357 461 248 248 1768 1872 52
B09 1537 1593 116 116 25633 25689 28
B07 8377 8475 214 214 112812 112910 49

TABLE II
CROSSBAR SWITCHING ACTIVITY

Exp Swoff→on Swon→off

FBLC SFBLC FBLC SFBLC
B02 900 1008 874 998
B01 4026 4256 3966 4246
B06 3647 3841 3592 3819
B08 24801 27349 24573 27270
B10 36587 39288 36212 39225
B03 69722 71054 68869 70979
B13 67402 74702 66742 74554
B09 526058 543686 513427 543621
B07 2312480 2513730 2252030 2513603

by authors of [12]. In Table IV and Table V the obtained
results for occupied Area and Dynamic Power Consumption
of both CMOS and Crossbar circuits are reported. Finally,
in Table VI we report the overhead percentage of the SFBLC
compared to the FBLC. Reported values were obtained by
using above discussed equations (4, 5 and 6) combined with
results in Table I and technological parameters in Table III.
Moreover, data in Table V were obtained by combining the
switching activity of Table II with equation 4 and power-
related technological parameter in Table III (i.e., Ron, Roff

Ron

and VR).
The experimental data show that having an integrated

mechanism for state propagation (i.e., SFBLC approach)
implies some costs in terms of crossbar size, memristors
number and power consumption. Some interesting
observations can be made. Having an increased crossbar
dimension implies an increased area, both for the crossbar
and the CMOS Controller, which has to drive a bigger circuit.
The number of additional FBL lines is totally predictable,
as well as the number of memristors, since the number of
required latches is known. These SFBLC parameters can be
expressed as:

N
(SFBLC)
R = N

(FBLC)
R + 2 ·NLatch

N
(SFBLC)
M = N

(FBLC)
M + 2 ·NLatch

The controller area overhead can be simply computed by
means of synthesis tools. Concerning the FBLC, it always has
a smaller memristor crossbar but it needs off-crossbar state-
latches that lead the CMOS part of the circuit to increase as the
number of latches grows. For this reason, concerning the area
consumption, the SFBLC approach rarely results in a smaller
area. This could happen only if the FBLC external registers

TABLE III
TECHNOLOGICAL PARAMETERS

F (nm) Am(µm2) Ron(MΩ)
Roff

Ron
VR(V ) Tsw(ns) Dnw

65 0.0169 100 7k 2.1 1.71 NEGL

TABLE IV
AREA COMPARISON (µm2)

Exp FBLC SFBLC
CMOS XBAR TOTAL CMOS XBAR TOTAL

B02 577.19 4.88 582.08 635.96 6.61 642.57
B01 892.32 11 903.32 970.84 13.13 983.97
B06 1024.92 18.62 1043.54 1179.36 21.56 1200.92
B08 4115.28 236.36 4351.64 4296.76 315.15 4611.91
B10 5181.28 318.55 5499.83 5374.72 377.73 5752.45
B03 8158.8 717.74 8876.54 8368.88 856.66 9225.54
B13 10794.16 1506.5 12300.66 11040.64 1944.14 12984.78
B09 32773.52 3041.09 35814.6 32924.32 3151.82 36076.13
B07 171488.19 30441.46 201929.66 171846.99 30797.55 202644.54

TABLE V
DYNAMIC POWER CONSUMPTION COMPARISON(µW )

Exp FBLC SFBLC
CMOS XBAR TOTAL CMOS XBAR TOTAL

B02 346.19 0.04 346.23 429.26 0.04 429.31
B01 592.55 0.17 592.72 673.25 0.19 673.44
B06 684.61 0.16 684.76 817.78 0.17 817.95
B08 2537.73 1.08 2538.81 2952.40 1.20 2953.60
B10 2900.57 1.60 2902.17 3441.20 1.73 3442.93
B03 4484.68 3.04 4487.72 5337.00 3.13 5340.13
B13 5821.45 2.94 5824.39 7068.60 3.29 7071.89
B09 19409.70 22.65 19432.35 21739.90 23.98 21763.88
B07 107645.13 99.33 107744.46 118182.00 110.87 118292.87

were so many, so that their overhead exceeds the SFBLC over-
head. Dynamic power consumption follows a similar trend:
both a bigger crossbar and a bigger CMOS-Controller for the
SFBLC architecture result in higher consumption, as expected.
While the CMOS Controller power consumption overhead is
caused by the additional voltage drivers, the crossbar overhead
is due to the memristors used for the next-state copy within the
FBL. The other crossbar memristors exhibit the same activity
for both FBLC and SFBLC. Another important factor is the
time delay. Both FBLC and SFBLC need a constant number
of computation steps, but, due to the additional state (SS), the
SFBLC architecture has an overhead of about 14.2% compared
to FBLC, as shown in Table VII. Contrary to area and power
consumption, there is no compromise: the SFBLC always has
a higher delay. Please note that for the delay comparison we
only report data for the crossbars.
Reported experiments only target circuit with simple/medium
logical complexity because of the limited scalability of the
single-crossbar approach. In fact, for bigger circuits (i.e., b07
and b09) the crossbar begins to be remarkably large for both
the architectures. It is worth to remark that this phenomenon
is due to the SOP implementation and not to the proposed
approach. Besides, such issue can be mitigated by using
decomposition.

IV. CONCLUSION AND FUTURE DIRECTION

Several memristor-based architectures have been proposed
in the literature. None of these were focused on the realization
of sequential circuits with an integrated state feedback mecha-
nism entirely based on memristor-based crossbars. Therefore,



TABLE VI
OVERHEAD PERCENTAGE FOR AREA AND POWER CONSUMPTION

Exp Area Overhead Power Overhead
CMOS XBAR TOTAL CMOS XBAR TOTAL

B02 10.18% 35.29% 10.39% 24.00% 14.19% 23.99%
B01 8.80% 19.35% 8.93% 13.62% 7.06% 13.62%
B06 15.07% 15.79% 15.08% 19.45% 6.32% 19.45%
B08 4.41% 33.33% 5.98% 16.34% 10.98% 16.34%
B10 3.73% 18.58% 4.59% 18.64% 8.32% 18.63%
B03 2.57% 19.35% 3.93% 19.01% 3.06% 18.99%
B13 2.28% 29.05% 5.56% 21.42% 11.70% 21.42%
B09 0.46% 3.64% 0.73% 12.01% 5.88% 12.00%
B07 0.21% 1.17% 0.35% 9.79% 11.61% 9.79%

TABLE VII
DELAY COMPARISON (NS)

FBLC SFBLC Overhead
Xbar 11.97 13.68 14.29%

in this work, we proposed the Stateful Fast Boolean Logic
Circuit (SFBLC), as an extension of the FBLC memristor-
based crossbar architecture [7], to implement Finite State
Machines. We extended the XbarGen framework [11], by
adding sequential circuits synthesis capability and BLIF file
management, for obtaining an automated and integrated frame-
work which adds a significant contribution to the design
of memristor-based circuits. We performed experiments on
publicly available benchmarks for comparing the proposed
architecture against its predecessor, the FBLC. Experiments
show acceptable overheads (up to 15% for the area and up
to 24% for the dynamic power consumption and 14% for the
delay) compared to the opportunity of advancing the migration
process towards new integrated memristive architectures with
the aim of exploiting such promising technology to cope
with CMOS related issues. Finally, we remarked that complex
logic circuits turn out to be not manageable with a single-
crossbar-based circuit. Therefore, as a future work, we want
to extend the presented methodology by investigating possible
hierarchical synthesis solutions and identifying benefits and
challenges.

REFERENCES

[1] S. Lloyd, “Ultimate physical limits to computation,” Nature, vol.
406, no. 6799, pp. 1047–1054, Aug 2000. [Online]. Available:
http://dx.doi.org/10.1038/35023282

[2] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nat Nano, vol. 8, no. 1, pp. 13–24, Jan 2013. [Online].
Available: http://dx.doi.org/10.1038/nnano.2012.240

[3] S. S. Sarwar, S. A. N. Saqueb, F. Quaiyum, and A. B. M. H. U.
Rashid, “Memristor-based nonvolatile random access memory: Hybrid
architecture for low power compact memory design,” IEEE Access,
vol. 1, pp. 29–34, 2013.

[4] G. Indiveri, B. Linares-Barranco, R. A. Legenstein, G. Deligeorgis,
and T. Prodromakis, “Integration of nanoscale memristor synapses
in neuromorphic computing architectures,” CoRR, vol. abs/1302.7007,
2013. [Online]. Available: http://arxiv.org/abs/1302.7007

[5] S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels,
H. Corporaal, H. Jiao, F. Catthoor, D. Wouters, L. Eike, and J. van
Lunteren, “Memristor based computation-in-memory architecture for
data-intensive applications,” in 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2015, pp. 1718–1725.

[6] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, no. 6, pp. 1165–1172, Mar 2005. [Online].
Available: https://doi.org/10.1007/s00339-004-3149-1

[7] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels,
“Fast boolean logic mapped on memristor crossbar,” in Computer Design
(ICCD), 2015 33rd IEEE International Conference on. IEEE, 2015,
pp. 335–342.

[8] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in 2009 IEEE/ACM International Symposium on Nanoscale Architec-
tures, July 2009, pp. 33–36.

[9] L. Gao, F. Alibart, and D. B. Strukov, “Programmable cmos/memristor
threshold logic,” IEEE Transactions on Nanotechnology, vol. 12, no. 2,
pp. 115–119, March 2013.

[10] H. A. D. Nguyen, L. Xie, M. Taouil, S. Hamdioui, and K. Bertels,
“Synthesizing hdl to memristor technology: A generic framework,” in
2016 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), July 2016, pp. 43–48.

[11] M. Traiola, M. Barbareschi, A. Mazzeo, and A. Bosio, “Xbargen:
A memristor based boolean logic synthesis tool,” in 2016 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC),
Sept 2016, pp. 1–6.

[12] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “A
mapping methodology of boolean logic circuits on memristor crossbar,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. PP, no. 99, pp. 1–1, 2017.

[13] U. of California Berkeley, “Berkeley logic interchange format (blif),”
https://www.cse.iitb.ac.in/ supratik/courses/cs226/spr16/blif.pdf.

[14] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[15] Abc User Guide. [Online]. Available:

http://www.eecs.berkeley.edu/ alanmi/abc/
[16] F. Corno, M. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks and

first atpg results,” Design Test of Computers, IEEE, vol. 17, no. 3, pp.
44–53, Jul 2000.


