
978-1-4799-4558-0/14/$31.00 ©2014 IEEE

Sources of Bias in EDA Tools and Its Influence

Petr Fišer, Jan Schmidt, Jiří Balcárek

Faculty of Information Technology

Czech Technical University in Prague

Prague, Czech Republic

fiserp@fit.cvut.cz, schmidt@fit.cvut.cz; balcaji2@fit.cvut.cz

Abstract— In this paper we present an experimental analysis

of robustness of Electronic Design Automation (EDA) tools, with

respect to different seemingly unimportant aspects (bias)

introduced by the designer, “from outside”. The algorithms

employed in EDA tools should be immune to these completely,

since such aspects do not carry any useful information – source

files differing in these aspects are semantically equivalent.

However, we show that most of the studied tools are seriously

sensitive here, much more than ever reported. The results indicate,

that experiments conducted to evaluate the performance of EDA

tools must take such behavior into consideration. Also the notion

of a benchmark is questioned.

Keywords- logic synthesis, EDA tools, randomness, robustness

I. INTRODUCTION

Because of high complexities of present designs, using exact

(optimum) logic synthesis and optimization algorithms

in Electronic Design Automation (EDA) tools is not feasible.

Therefore, approximate heuristic algorithms must be used

in practice [1]. These heuristics can be influenced by many

external aspects and results of different quality can be produced

under different circumstances. In this paper we will show an

experimental evaluation of several tools, to illustrate that the

situation is much more severe than previously reported [2], [3].

To cover maximum of the EDA design flow, we will examine

several logic design and optimization tools, both academic [4],

[5], [6], [7] and commercial ones, one Automated Test Patterns

Generation (ATPG) algorithm [8], and two test compression

tools [9], [10].

To give an example of the studied phenomenon, it has been

shown that many synthesis processes are not immune to the

structure of the source file, like the ordering of variables in the

file header [11] or small modifications in RTL statements [2].

Results of different quality were obtained by only modifying the

source file header or renaming variables.

Actually, the source data for the tools (be it source circuit

descriptions, test vectors, etc.) carry additional information, like

the ordering of coordinate statements, that should not be

respected by the algorithms, in sense of invariance of results.

Source files carrying different pieces of information of such a

kind are semantically equivalent, e.g., they represent equally

described circuits, or equal sets of test vectors. Clearly enough,

the result quality should not be influenced by such information.

Unfortunately, this is far from true in practice.

From the practical point of view, the designer (RTL code

programmer) should not care about this information. Therefore,

the designer generates such pieces of code unconsciously

randomly, because of he/she considers this information

completely unimportant. We will refer to this phenomenon as

unpredictable external bias. As a result, deterministic

algorithms used in logic design (which they typically are) may

become stochastic, with respect to that external bias.

II. SOURCES OF EXTERNAL BIAS

In most of (inexact) algorithms employed in EDA tools some

heuristic function is typically used to guide the search. Even

though the heuristics are deterministic, there can appear multiple

equally valued choices. In such situations, the first occurrence is

typically taken. Note that these choices are equally valued just

at the point of decision, however, they will most likely influence

the subsequent decisions. Therefore, different results

could be produced, if different decisions were taken in any step,

without affecting the principles of the algorithms. In other

words, the results obtained by one single deterministic algorithm

heavily depend on its software implementation.

Authors of [3] also noticed the fact, that algorithms used

in synthesis tools (particularly ABC [5], [6]) can have such

multiple decisions and aptly call this phenomenon “CAD

algorithm noise”. They have modified some basic ABC

algorithms to perform equally valued decisions randomly,

to achieve possibly different solutions. As expected, these

solutions were also differing in quality, in units of percent.

Although these two notions – randomness introduced

externally and internally – seem to be different problems, they

have equal consequences.

Several means of external bias (perturbations) were described

in [2]. Essentially, two kinds of external bias can be identified:

ordering of coordinate statements and names of identifiers

(variables). The coordinate statements could be the port

definitions, instantiations of gates, test vectors, fault list, etc.

Depending on these, heuristics perform differently, producing

different results. Also the variables names impact some

algorithms.

III. EXPERIMENTAL OBSERVATIONS

The first experimental evaluation of the influence

of perturbations in the source file has been presented in [2]. The

authors have shown that modifying the source Verilog file, so

that its functional equivalence is preserved, but some constructs

are changed, yields synthesis results differing in units of percent

(2.5% in area and 4% in slack on average, 13% at most). This is

approximately what the contemporary progress in improving the

synthesis tools is. Therefore, they have rendered the

experimental evaluation of tools inadequate, when performed

in the form it has been performed until now. They also offered a

tool introducing these perturbations into the source files, to help

to perform relevant experimental evaluations.

For the experimental evaluation in [2], only two commercial

tools and only a small number of benchmark circuits (33) were

used. We have performed a much more exhaustive evaluation,

and we will show in this section, that the reality is much worse

than as reported in [2] and [3].

A. ESPRESSO

First, we have investigated an impact of external bias to the

state-of-the-art SOP (sum-of-products) minimizer Espresso [4].

We have processed 148 MCNC benchmark circuits [12]

by Espresso and Espresso-Exact, 10,000-times each, while the

input/output variables were randomly permuted in the source

PLA matrix [4]. The numbers of literals in the minimized

solutions were measured. The average and maximum (over the

148 circuits) size differences between minimum and maximum

values are reported in TABLE I. Even though the average size

differences are acceptable, rather striking maximum size

differences (up to 43%) can be observed. Even the numbers of

literals obtained by Espresso-Exact differ, since Espresso-Exact

guarantees minimality of the number of terms only, nothing is

guaranteed for literals.

TABLE I. ESPRESSO RESULTS

 Espresso Espresso-Exact

Permuted inputs 1.51% (max. 34.90%) 0.02% (max. 0.63%)

Permuted outs. 1.04% (max. 11.82%) 0.23% (max. 6.06%)

Permuted both 2.11% (max. 42.95%) 0.24% (max. 6.06%)

B. ABC and SIS

ABC [5], [6] is the current state-of-the-art academic logic

synthesis and optimization tool, the follower of SIS [7]. It

comprises both combinational and sequential synthesis,

mapping to standard cells or FPGA look-up tables (LUTs),

verification, and many other features. It is controlled

by commands. A sequence of commands constitute a synthesis

script. Each command implements a particular algorithm.

For the purpose of this paper, we will present results of only

complete synthesis scripts, for standard cells mapping (“strash;

dch; map”) and 4-LUT mapping (“strash; dch; if; mfs”), since

they comprise of all the algorithms implemented for the

suggested state-of-the-art synthesis.

The same experiment was performed for two SIS [7] synthesis

scripts, “script.rugged” and “script.algebraic” followed by

mapping into standard cells, the MCNC library [7].

The experiments were conducted as follows: 228 circuits

from the IWLS and LGSynth benchmarks sets [12], [13] were

processed. Given a benchmark, its inputs and/or outputs were

randomly permuted in the source file, and the resulting design

size (gates, LUTs) was measured. This was conducted

1,000 times for each circuit. The average and maximum size

differences are reported in TABLE II. and TABLE III.

We can see that almost all the average size differences are

higher than 10% and that maximum values reach impressive

values. This is much worse than reported in [2]; the result quality

fluctuations caused by external bias surpass anything expected.

TABLE II. ABC RESULTS

 strash; dch; map strash; dch; if; mfs

Permuted inputs 8.67% (max. 74.38%) 11.50% (max. 92.14%)

Permuted outs. 10.52% (max. 70.47%) 12.60% (max. 85.42%)

Permuted both 13.40% (max. 86.27%) 14.81% (max. 95.07%)

TABLE III. SIS RESULTS

 script_rugged; map script_algebraic; map

Permuted inputs 7.50% (max. 50.19%) 5.25% (max. 30.77%)

Permuted outs. 3.48% (max. 22.03%) 1.83% (max. 14.29%)

Permuted both 8.34% (max. 50.19%) 6.21% (max. 30.77%)

In order to emphasize how serious the lack of robustness

of ABC is, we will thoroughly analyze the most striking

example, the cordic circuit [13], the one responsible for the

95.07% maximum size difference in the LUT mapping script.

Particularly, the solutions spun from 27 to 687 LUTs.

For higher precision, we have synthesized the circuit using

100,000 different random orderings of variables (both input and

output) and measured the frequencies of occurrence of solutions

of different quality (number of LUTs). The histogram is shown

in Figure 1.

Figure 1. Distribution of solutions – cordic

We can observe two completely isolated regions. There are

apparently two or more classes of similar implementations

(similar in size, probably similar in structure too), which

synthesis produces depending on the ordering of variables.

C. Commercial FPGA Synthesis Tools

Dependency of the result quality on the ordering of variables

was observed in commercial FPGA design tools too. Two tools

were studied and both were found to be very sensitive to the

structure of the RTL statements. Surprisingly enough, the tools

were also sensitive to a mere reordering of the gates

instantiation, i.e., coordinate statements in the VHDL code,

which was not the case of any examined process in ABC and

SIS. One of the tools was also really seriously sensitive

to altering signal names.

The experiment started with netlist descriptions and after

permuting the variables and nodes (and randomly renaming

0 50 100 150 200 250 300 350 400 450 500 550 600 650

0

200

400

600

800

1000

1200 cordic

F
re

q
u

e
n

c
y

LUTs

Original ordering

(178 LUTs)

signals) in the source file, each benchmark was converted

to VHDL and submitted to synthesis and mapping. The numbers

of 4-LUTs in the results were measured. Summary results of the

228 benchmarks [12], [13] are shown in TABLE IV. Again,

average and maximum differences in the obtained LUT counts

are shown, 1,000 random permutations were measured.

We can see that the average differences are up to 9%, whereas

the maximum reaches 66.6%.

TABLE IV. COMMERCIAL FPGA SYNTHESIS TOOLS

 Tool #1 Tool #2

Permuted inputs 0.0% (max. 0.0%) 4.7% (max. 43.6%)

Permuted outs. 0.0% (max. 0.0%) 5.6% (max. 52.2%)

Permuted nodes 0.2% (max. 15.8%) 3.4% (max. 38.8%)

Permuted all 0.2% (max. 17.3%) 9.2% (max. 66.6%)

Renamed signals 9.6% (max. 50.92%) 0.0% (max. 0.0%)

D. Atalanta ATPG Tool

As for test generation, we have exercised an academic ATPG

tool Atalanta from Virginia Tech [8]. The source file to Atalanta

is a circuit netlist description. In this file, we have reordered the

input and output ports definitions, permuted nodes (gate

definitions) and also renamed the signals. The resulting test

(both compacted and non-compacted) lengths were measured.

The results are shown in TABLE V. The experiment was

performed on a subset of 37 ISCAS benchmarks [14], [15],

1,000 random permutations for each.

A significant dependency of the resulting test size on the

ordering of all the statements has been observed. Only the non-

compacted test generation was surprisingly not sensitive

to ordering of input variables. No sensitivity to signal names was

observed, therefore this record is not present in the table.

TABLE V. ATALANTA ATPG

 Compacted Non-compacted

Permuted inputs 17.6% (max. 35.9%) 0.0% (max. 0.0%)

Permuted outs. 2.1% (max. 11.4%) 3.7% (max. 35.9%)

Permuted nodes 2.9% (max. 16.24%) 4.1% (max. 17.7%)

Permuted all 18.0% (max. 34.6%) 6.0% (max. 32.8%)

E. Test Compression: RESPIN

The RESPIN algorithm [9] will be the first representative

of test compression algorithms in this study. It accepts a set

of test patterns as input and produces the compressed test

sequence. The compression is achieved by patterns overlapping.

For details see [9].

There are two aspects influencing the algorithm run: the order

of test vectors submitted as input and the initial test pattern (see

[9]). In our implementation the initial pattern is set as the first

test pattern. Therefore, reordering of test patterns also simulates

the influence of the initial pattern. Hence, we will study only the

influence of permutation of test patterns. Non-compacted test

patterns obtained by Atalanta [8] were used, 52 ISCAS [14], [15]

and ITC’99 [16] benchmarks were processed, with 10,000

random permutations of test vectors.

As a result, a significant sensitivity to test patterns ordering

was observed. Particularly, the average difference of the

compressed bitstream length was 28%, with the maximum

of 54%.

F. SAT-Compress Test Compression Tool

The second tested test compression tool was SAT-Compress

[10]. The input to SAT-Compress is the circuit description

(netlist) and it directly generates the compressed test sequence.

SAT-Compress does not operate with pre-computed test

patterns; the test is stored implicitly, as a set of SAT instances.

The compression principles are similar to RESPIN, only it

sequentially processes faults instead of test vectors.

Basically, there are three aspects that may theoretically bias

the algorithm progress: 1) the ordering of the fault-list, 2) the

initial test pattern, 3) the structure of the netlist, even together

with the variables ordering. The latter aspect comes from the

fact, that SAT instances are generated from the netlist, and these

are then submitted to a SAT solver [17]. Different netlist

structures directly induce different SAT instances, which may

influence the SAT-solver execution and different SAT solutions

(used as test vectors) may be obtained.

The results of the experiment are shown in TABLE VI.

ISCAS [14], [15] and ITC’99 [16] benchmarks were processed.

TABLE VI. SAT-COMPRESS TEST COMPRESSION

 Test sequence

Permuted inputs 59.8% (max. 73.7%)

Permuted outputs 33.8% (max. 64.5%)

Permuted nodes 23.7% (max. 45.8%)

Permuted faults 37.1% (max. 64.2%)

Random init. vect. 38.0% (max. 65.7%)

Permuted all 60.3% (max. 76.4%)

IV. SIGNIFICANCE

EDA tools are heuristics with enormous search space.

Although some of the numbers in previous tables are alarming,

sub-optimal performance could be considered natural for them.

Yet benchmarking is the principal process in their

development, to the extent that they can be considered social

constructs. Let us return to the idea expressed in [2] and see how

the observed irregularities influence benchmark comparison.

The tables below give the number of benchmarks where the

tool in question can deviate by given amount with given

probability, with respect to the initial ordering of variables. For

example, ABC with the “strash; dch; if; mfs” (LUT-mapping)

script gives results worse by at least 5% with 20% probability

on 40 benchmarks, when input and output variables are

randomly permuted (when compared to the initial ordering).

In the TABLE VII. and TABLE VIII. experiments, both input

and output variables were randomly permuted, in the TABLE

IX. case test vectors were reordered.

The results show variance exceeding the accuracy required

to compare EDA algorithms. Most alarmingly, there seems to be

no universal countermeasure. The sources of bias differ from

tool to tool; in some cases (commercial Tool #1), new and

unexpected sources appear. Even with all sources detected,

a humble comparison requires an effort 3-4 orders of magnitude

greater than practiced today.

TABLE VII. BENCHMARKS WITH GIVEN DEVIATION, ABC LUT

Probability < -20% < -5% > +5% > +20%

5% 7 72 73 8

10% 4 56 58 7

20% 2 38 40 4

50% 1 15 17 1

TABLE VIII. BENCHMARKS WITH GIVEN DEVIATION, TOOL #1

Probability < -20% < -5% > +5% > +20%

5% 131 146 43 4

10% 9 45 34 4

20% 4 30 25 3

50% 3 15 11 0

TABLE IX. BENCHMARKS WITH GIVEN DEVIATION, RESPIN

Probability < -20% < -5% > +5% > +20%

5% 2 30 30 2

10% 1 28 24 1

20% 1 18 16 1

50% 0 8 8 1

Although we can measure circuits by a number of metrics, we

still do not know what “practical circuit” means. We have to rely

on “genuine” benchmarks. It can be argued that the tools have

adapted to the declaration ordering, signal names etc. used by

real designers.

Further, more thorough experiments have shown that the

initial ordering is perfectly random when the whole benchmark

set is considered, for all the tested tools – average result size

differences over random permutations and all the measured

benchmarks in a given benchmark set differed from results

obtained using the initial ordering no more than by units per

thousand.

TABLE X. shows this in more detail. Although there are

circuits where better but not worse results can be obtained (and

vice versa), the benchmark set as a whole seems to be balanced

in this respect.

TABLE X. OPPORTUNITIES FOR BETTER AND WORSE RESULTS

< -5%
@ 10% prob.

> +5%
@ 10% prob.

Tool#1 Tool#2 ABC LUT

no no 115 187 128

no yes 25 3 42

yes no 36 0 40

yes yes 9 0 16

V. CONCLUSIONS

We have presented an experimental evaluation of robustness

of several EDA tools, both academic and commercial. As

robustness we understand the sensitivity to outer aspects that

theoretically should not influence the result, like the source file

statements ordering and variable names. We call it external bias.

We have shown that the lack of robustness is much more

severe than previously reported, and thus we emphasize the fact

that the quality of EDA tools should be judged with respect

to the external bias, otherwise any reported qualitative

improvement/deterioration can be caused just by random bias.

Since experimental evaluations of EDA algorithms and tools

rely mostly on benchmarks, we may also question the

benchmark notion: is a circuit modified in the above-mentioned

way still the same benchmark circuit? If so, experimental

evaluation must be performed with respect to random bias.

ACKNOWLEDGMENT

This research has been supported by the grant of the Czech

Technical University in Prague, SGS14/105/OHK3/1T/18.

REFERENCES

[1] S. Hassoun and T. Sasao, Logic Synthesis and Verification, Boston, MA,
Kluwer Academic Publishers, 2002, 454 p.

[2] A. Puggelli, T. Welp, A. Kuehlmann, and A. Sangiovanni-Vincentelli,
“Are Logic Synthesis Tools Robust?,” in Proc. of the 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), 5-9 June
2011, pp. 633-638.

[3] W. Shum and J. H. Anderson, “Analyzing and predicting the impact of
CAD algorithm noise on FPGA speed performance and power,” in
Proceedings of the ACM/SIGDA international symposium on Field
Programmable Gate Arrays (FPGA'12), pp. 107-110.

[4] R.K. Brayton et al., Logic Minimization Algorithms for VLSI Synthesis,
Boston, MA, Kluwer Academic Publishers, 1984, 192 p.

[5] Berkeley Logic Synthesis and Verification Group, “ABC: A System for
Sequential Synthesis and Verification”,
http://www.eecs.berkeley.edu/~alanmi/abc/

[6] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial Strength
Verification Tool,” in Proc. of the 22nd Intl. Conference on Computer
Aided Verification, Edinburgh, July 15-19, 2010, pp. 24-40.

[7] E.M. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis,”
Electronics Research Laboratory Memorandum No. UCB/ERL M92/41,
University of California, Berkeley, CA 94720, 1992, p. 52.

[8] H.K. Lee and D.S. Ha, “Atalanta: an Efficient ATPG for Combinational
Circuits,” Technical Report, 93-12, Dep't of Electrical Eng., Virginia
Polytechnic Institute and State University, Blacksburg, Virginia, 1999.

[9] R. Dorsch and H.-J. Wunderlich, “Reusing Scan Chains for Test Pattern
Decompression,” in Journal of Electronic Testing: Theory and
Applications (JETTA), Vol. 18, Issue 2, April 2002, pp. 231-240.

[10] J. Balcárek, P. Fišer, and J. Schmidt, “Techniques for SAT-based
Constrained Test Pattern Generation,“ in Microprocessors and
Microsystems, Vol. 37, Issue 2, March 2013, Elsevier, pp. 185-195.

[11] P. Fišer and J. Schmidt, “How Much Randomness Makes a Tool
Randomized?,” in Proc. of the 20th International Workshop on Logic and
Synthesis (IWLS), San Diego, California, USA, 3. 5.6.2011, pp. 136-143.

[12] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide,”
Technical Report 1991-IWLS-UG-Saeyang, MCNC, Research Triangle
Park, NC, January 1991, p. 45.

[13] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0“, Mentor
Graphics, May 1993.

[14] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortan,“ in Proc. of the
International Symposium on Circuits and Systems, 1985, pp. 663-698.

[15] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of Sequential
Benchmark Circuits,“ in Proc. of the International Symposium of Circuits
and Systems, 1989, pp. 1929-1934.

[16] F. Corno, M.S. Reorda, G. Squillero, “RT-level ITC`99 benchmarks and
first ATPG results,“ in: Proc. of the IEEE Design and Test of Computers
(2000), pp. 44-53.

[17] N. Éen, N. Sorensson, “An extensible SAT-solver,” in Lecture Notes in
Computer, Science 2919 - Theory and Applications of Satisability
Testing. Springer Verlag, Berlin Heidelberg New York (2004),
pp. 333-336.

http://www.eecs.berkeley.edu/~alanmi/abc/

