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Abstract— In this paper we present an experimental analysis 

of robustness of Electronic Design Automation (EDA) tools, with 

respect to different seemingly unimportant aspects (bias) 

introduced by the designer, “from outside”. The algorithms 

employed in EDA tools should be immune to these completely, 

since such aspects do not carry any useful information – source 

files differing in these aspects are semantically equivalent. 

However, we show that most of the studied tools are seriously 

sensitive here, much more than ever reported. The results indicate, 

that experiments conducted to evaluate the performance of EDA 

tools must take such behavior into consideration. Also the notion 

of a benchmark is questioned. 
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I. INTRODUCTION 

Because of high complexities of present designs, using exact 

(optimum) logic synthesis and optimization algorithms 

in Electronic Design Automation (EDA) tools is not feasible. 

Therefore, approximate heuristic algorithms must be used 

in practice [1]. These heuristics can be influenced by many 

external aspects and results of different quality can be produced 

under different circumstances. In this paper we will show an 

experimental evaluation of several tools, to illustrate that the 

situation is much more severe than previously reported [2], [3]. 

To cover maximum of the EDA design flow, we will examine 

several logic design and optimization tools, both academic [4], 

[5], [6], [7] and commercial ones, one Automated Test Patterns 

Generation (ATPG) algorithm [8], and two test compression 

tools [9], [10]. 

To give an example of the studied phenomenon, it has been 

shown that many synthesis processes are not immune to the 

structure of the source file, like the ordering of variables in the 

file header [11] or small modifications in RTL statements [2]. 

Results of different quality were obtained by only modifying the 

source file header or renaming variables. 

Actually, the source data for the tools (be it source circuit 

descriptions, test vectors, etc.) carry additional information, like 

the ordering of coordinate statements, that should not be 

respected by the algorithms, in sense of invariance of results. 

Source files carrying different pieces of information of such a 

kind are semantically equivalent, e.g., they represent equally 

described circuits, or equal sets of test vectors. Clearly enough, 

the result quality should not be influenced by such information. 

Unfortunately, this is far from true in practice. 

From the practical point of view, the designer (RTL code 

programmer) should not care about this information. Therefore, 

the designer generates such pieces of code unconsciously 

randomly, because of he/she considers this information 

completely unimportant. We will refer to this phenomenon as 

unpredictable external bias. As a result, deterministic 

algorithms used in logic design (which they typically are) may 

become stochastic, with respect to that external bias. 

II. SOURCES OF EXTERNAL BIAS 

In most of (inexact) algorithms employed in EDA tools some 

heuristic function is typically used to guide the search. Even 

though the heuristics are deterministic, there can appear multiple 

equally valued choices. In such situations, the first occurrence is 

typically taken. Note that these choices are equally valued just 

at the point of decision, however, they will most likely influence 

the subsequent decisions. Therefore, different results 

could be produced, if different decisions were taken in any step, 

without affecting the principles of the algorithms. In other 

words, the results obtained by one single deterministic algorithm 

heavily depend on its software implementation. 

Authors of [3] also noticed the fact, that algorithms used 

in synthesis tools (particularly ABC [5], [6]) can have such 

multiple decisions and aptly call this phenomenon “CAD 

algorithm noise”. They have modified some basic ABC 

algorithms to perform equally valued decisions randomly, 

to achieve possibly different solutions. As expected, these 

solutions were also differing in quality, in units of percent.  

Although these two notions – randomness introduced 

externally and internally – seem to be different problems, they 

have equal consequences. 

Several means of external bias (perturbations) were described 

in [2]. Essentially, two kinds of external bias can be identified: 

ordering of coordinate statements and names of identifiers 

(variables). The coordinate statements could be the port 

definitions, instantiations of gates, test vectors, fault list, etc. 

Depending on these, heuristics perform differently, producing 

different results. Also the variables names impact some 

algorithms. 

III. EXPERIMENTAL OBSERVATIONS 

The first experimental evaluation of the influence 

of perturbations in the source file has been presented in [2]. The 

authors have shown that modifying the source Verilog file, so 

that its functional equivalence is preserved, but some constructs 

are changed, yields synthesis results differing in units of percent 

(2.5% in area and 4% in slack on average, 13% at most). This is 

approximately what the contemporary progress in improving the 

synthesis tools is. Therefore, they have rendered the 

experimental evaluation of tools inadequate, when performed 



in the form it has been performed until now. They also offered a 

tool introducing these perturbations into the source files, to help 

to perform relevant experimental evaluations. 

For the experimental evaluation in [2], only two commercial 

tools and only a small number of benchmark circuits (33) were 

used. We have performed a much more exhaustive evaluation, 

and we will show in this section, that the reality is much worse 

than as reported in [2] and [3]. 

A. ESPRESSO 

First, we have investigated an impact of external bias to the 

state-of-the-art SOP (sum-of-products) minimizer Espresso [4]. 

We have processed 148 MCNC benchmark circuits [12] 

by Espresso and Espresso-Exact, 10,000-times each, while the 

input/output variables were randomly permuted in the source 

PLA matrix [4]. The numbers of literals in the minimized 

solutions were measured. The average and maximum (over the 

148 circuits) size differences between minimum and maximum 

values are reported in TABLE I. Even though the average size 

differences are acceptable, rather striking maximum size 

differences (up to 43%) can be observed. Even the numbers of 

literals obtained by Espresso-Exact differ, since Espresso-Exact 

guarantees minimality of the number of terms only, nothing is 

guaranteed for literals. 

TABLE I.  ESPRESSO RESULTS 

 Espresso Espresso-Exact 

Permuted inputs 1.51% (max. 34.90%) 0.02% (max. 0.63%) 

Permuted outs. 1.04% (max. 11.82%) 0.23% (max. 6.06%) 

Permuted both 2.11% (max. 42.95%) 0.24% (max. 6.06%) 

B. ABC and SIS 

ABC [5], [6] is the current state-of-the-art academic logic 

synthesis and optimization tool, the follower of SIS [7]. It 

comprises both combinational and sequential synthesis, 

mapping to standard cells or FPGA look-up tables (LUTs), 

verification, and many other features. It is controlled 

by commands. A sequence of commands constitute a synthesis 

script. Each command implements a particular algorithm. 

For the purpose of this paper, we will present results of only 

complete synthesis scripts, for standard cells mapping (“strash; 

dch; map”) and 4-LUT mapping (“strash; dch; if; mfs”), since 

they comprise of all the algorithms implemented for the 

suggested state-of-the-art synthesis.  

The same experiment was performed for two SIS [7] synthesis 

scripts, “script.rugged” and “script.algebraic” followed by 

mapping into standard cells, the MCNC library [7]. 

The experiments were conducted as follows: 228 circuits 

from the IWLS and LGSynth benchmarks sets [12], [13] were 

processed. Given a benchmark, its inputs and/or outputs were 

randomly permuted in the source file, and the resulting design 

size (gates, LUTs) was measured. This was conducted 

1,000 times for each circuit. The average and maximum size 

differences are reported in TABLE II. and TABLE III.  

We can see that almost all the average size differences are 

higher than 10% and that maximum values reach impressive 

values. This is much worse than reported in [2]; the result quality 

fluctuations caused by external bias surpass anything expected. 

TABLE II.  ABC RESULTS 

 strash; dch; map strash; dch; if; mfs 

Permuted inputs 8.67% (max. 74.38%) 11.50% (max. 92.14%) 

Permuted outs. 10.52% (max. 70.47%) 12.60% (max. 85.42%) 

Permuted both 13.40% (max. 86.27%) 14.81% (max. 95.07%) 

TABLE III.  SIS RESULTS 

 script_rugged; map script_algebraic; map 

Permuted inputs 7.50% (max. 50.19%) 5.25% (max. 30.77%) 

Permuted outs. 3.48% (max. 22.03%) 1.83% (max. 14.29%) 

Permuted both 8.34% (max. 50.19%) 6.21% (max. 30.77%) 

 

In order to emphasize how serious the lack of robustness 

of ABC is, we will thoroughly analyze the most striking 

example, the cordic circuit [13], the one responsible for the 

95.07% maximum size difference in the LUT mapping script. 

Particularly, the solutions spun from 27 to 687 LUTs. 

For higher precision, we have synthesized the circuit using 

100,000 different random orderings of variables (both input and 

output) and measured the frequencies of occurrence of solutions 

of different quality (number of LUTs). The histogram is shown 

in Figure 1.  

 

Figure 1.  Distribution of solutions – cordic 

We can observe two completely isolated regions. There are 

apparently two or more classes of similar implementations 

(similar in size, probably similar in structure too), which 

synthesis produces depending on the ordering of variables. 

C. Commercial FPGA Synthesis Tools 

Dependency of the result quality on the ordering of variables 

was observed in commercial FPGA design tools too. Two tools 

were studied and both were found to be very sensitive to the 

structure of the RTL statements. Surprisingly enough, the tools 

were also sensitive to a mere reordering of the gates 

instantiation, i.e., coordinate statements in the VHDL code, 

which was not the case of any examined process in ABC and 

SIS. One of the tools was also really seriously sensitive 

to altering signal names.  

The experiment started with netlist descriptions and after 

permuting the variables and nodes (and randomly renaming 
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signals) in the source file, each benchmark was converted 

to VHDL and submitted to synthesis and mapping. The numbers 

of 4-LUTs in the results were measured. Summary results of the 

228 benchmarks [12], [13] are shown in TABLE IV. Again, 

average and maximum differences in the obtained LUT counts 

are shown, 1,000 random permutations were measured. 

We can see that the average differences are up to 9%, whereas 

the maximum reaches 66.6%. 

TABLE IV.  COMMERCIAL FPGA SYNTHESIS TOOLS 

 Tool #1 Tool #2 

Permuted inputs 0.0% (max. 0.0%) 4.7% (max. 43.6%) 

Permuted outs. 0.0% (max. 0.0%) 5.6% (max. 52.2%) 

Permuted nodes 0.2% (max. 15.8%) 3.4% (max. 38.8%) 

Permuted all 0.2% (max. 17.3%) 9.2% (max. 66.6%) 

Renamed signals 9.6% (max. 50.92%) 0.0% (max. 0.0%) 

D. Atalanta ATPG Tool 

As for test generation, we have exercised an academic ATPG 

tool Atalanta from Virginia Tech [8]. The source file to Atalanta 

is a circuit netlist description. In this file, we have reordered the 

input and output ports definitions, permuted nodes (gate 

definitions) and also renamed the signals. The resulting test 

(both compacted and non-compacted) lengths were measured. 

The results are shown in TABLE V. The experiment was 

performed on a subset of 37 ISCAS benchmarks [14], [15], 

1,000 random permutations for each. 

A significant dependency of the resulting test size on the 

ordering of all the statements has been observed. Only the non-

compacted test generation was surprisingly not sensitive 

to ordering of input variables. No sensitivity to signal names was 

observed, therefore this record is not present in the table. 

TABLE V.  ATALANTA ATPG 

 Compacted Non-compacted 

Permuted inputs 17.6% (max. 35.9%) 0.0% (max. 0.0%) 

Permuted outs. 2.1% (max. 11.4%) 3.7% (max. 35.9%) 

Permuted nodes 2.9% (max. 16.24%) 4.1% (max. 17.7%) 

Permuted all 18.0% (max. 34.6%) 6.0% (max. 32.8%) 

E.  Test Compression: RESPIN 

The RESPIN algorithm [9] will be the first representative 

of test compression algorithms in this study. It accepts a set 

of test patterns as input and produces the compressed test 

sequence. The compression is achieved by patterns overlapping. 

For details see [9]. 

There are two aspects influencing the algorithm run: the order 

of test vectors submitted as input and the initial test pattern (see 

[9]). In our implementation the initial pattern is set as the first 

test pattern. Therefore, reordering of test patterns also simulates 

the influence of the initial pattern. Hence, we will study only the 

influence of permutation of test patterns. Non-compacted test 

patterns obtained by Atalanta [8] were used, 52 ISCAS [14], [15] 

and ITC’99 [16] benchmarks were processed, with 10,000 

random permutations of test vectors. 

As a result, a significant sensitivity to test patterns ordering 

was observed. Particularly, the average difference of the 

compressed bitstream length was 28%, with the maximum 

of 54%. 

F. SAT-Compress Test Compression Tool 

The second tested test compression tool was SAT-Compress 

[10]. The input to SAT-Compress is the circuit description 

(netlist) and it directly generates the compressed test sequence. 

SAT-Compress does not operate with pre-computed test 

patterns; the test is stored implicitly, as a set of SAT instances. 

The compression principles are similar to RESPIN, only it 

sequentially processes faults instead of test vectors. 

Basically, there are three aspects that may theoretically bias 

the algorithm progress: 1) the ordering of the fault-list, 2) the 

initial test pattern, 3) the structure of the netlist, even together 

with the variables ordering. The latter aspect comes from the 

fact, that SAT instances are generated from the netlist, and these 

are then submitted to a SAT solver [17]. Different netlist 

structures directly induce different SAT instances, which may 

influence the SAT-solver execution and different SAT solutions 

(used as test vectors) may be obtained. 

The results of the experiment are shown in TABLE VI.  

ISCAS [14], [15] and ITC’99 [16] benchmarks were processed. 

TABLE VI.  SAT-COMPRESS TEST COMPRESSION 

 Test sequence 

Permuted inputs 59.8% (max. 73.7%) 

Permuted outputs 33.8% (max. 64.5%) 

Permuted nodes 23.7% (max. 45.8%) 

Permuted faults 37.1% (max. 64.2%) 

Random init. vect. 38.0% (max. 65.7%) 

Permuted all 60.3% (max. 76.4%) 

IV. SIGNIFICANCE 

EDA tools are heuristics with enormous search space. 

Although some of the numbers in previous tables are alarming, 

sub-optimal performance could be considered natural for them. 

Yet benchmarking is the principal process in their 

development, to the extent that they can be considered social 

constructs. Let us return to the idea expressed in [2] and see how 

the observed irregularities influence benchmark comparison. 

The tables below give the number of benchmarks where the 

tool in question can deviate by given amount with given 

probability, with respect to the initial ordering of variables. For 

example, ABC with the “strash; dch; if; mfs” (LUT-mapping) 

script gives results worse by at least 5% with 20% probability 

on 40 benchmarks, when input and output variables are 

randomly permuted (when compared to the initial ordering). 

In the TABLE VII. and TABLE VIII. experiments, both input 

and output variables were randomly permuted, in the TABLE 

IX. case test vectors were reordered. 

The results show variance exceeding the accuracy required 

to compare EDA algorithms. Most alarmingly, there seems to be 

no universal countermeasure. The sources of bias differ from 

tool to tool; in some cases (commercial Tool #1), new and 

unexpected sources appear. Even with all sources detected, 

a humble comparison requires an effort 3-4 orders of magnitude 

greater than practiced today. 



TABLE VII.  BENCHMARKS WITH GIVEN DEVIATION, ABC LUT 

Probability < -20% < -5% > +5% > +20% 

5% 7 72 73 8 

10% 4 56 58 7 

20% 2 38 40 4 

50% 1 15 17 1 

TABLE VIII.  BENCHMARKS WITH GIVEN DEVIATION, TOOL #1 

Probability < -20% < -5% > +5% > +20% 

5% 131 146 43 4 

10% 9 45 34 4 

20% 4 30 25 3 

50% 3 15 11 0 

TABLE IX.  BENCHMARKS WITH GIVEN DEVIATION, RESPIN 

Probability < -20% < -5% > +5% > +20% 

5% 2 30 30 2 

10% 1 28 24 1 

20% 1 18 16 1 

50% 0 8 8 1 

 

Although we can measure circuits by a number of metrics, we 

still do not know what “practical circuit” means. We have to rely 

on “genuine” benchmarks.  It can be argued that the tools have 

adapted to the declaration ordering, signal names etc. used by 

real designers.  

Further, more thorough experiments have shown that the 

initial ordering is perfectly random when the whole benchmark 

set is considered, for all the tested tools – average result size 

differences over random permutations and all the measured 

benchmarks in a given benchmark set differed from results 

obtained using the initial ordering no more than by units per 

thousand. 

TABLE X. shows this in more detail. Although there are 

circuits where better but not worse results can be obtained (and 

vice versa), the benchmark set as a whole seems to be balanced 

in this respect. 

TABLE X.  OPPORTUNITIES FOR BETTER AND WORSE RESULTS 

< -5%  
@ 10% prob. 

> +5%  
@ 10% prob. 

Tool#1 Tool#2 ABC LUT 

no no 115 187 128 

no yes 25 3 42 

yes no 36 0 40 

yes yes 9 0 16 

V. CONCLUSIONS 

We have presented an experimental evaluation of robustness 

of several EDA tools, both academic and commercial. As 

robustness we understand the sensitivity to outer aspects that 

theoretically should not influence the result, like the source file 

statements ordering and variable names. We call it external bias. 

We have shown that the lack of robustness is much more 

severe than previously reported, and thus we emphasize the fact 

that the quality of EDA tools should be judged with respect 

to the external bias, otherwise any reported qualitative 

improvement/deterioration can be caused just by random bias. 

Since experimental evaluations of EDA algorithms and tools 

rely mostly on benchmarks, we may also question the 

benchmark notion: is a circuit modified in the above-mentioned 

way still the same benchmark circuit? If so, experimental 

evaluation must be performed with respect to random bias. 
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