
 partial10
 4/2/2000 11:55 PM

 1

ALGORITHM FOR MINIMIZATION OF PARTIAL BOOLEAN FUNCT IONS

Jan Hlavička, Petr Fišer

Czech Technical University, Karlovo nám. 13, 121 35 Prague 2
e-mail: hlavicka@fel.cvut.cz, fiserp@fel.cvut.cz

Abstract. The paper presents a minimization algorithm for Boolean functions defined by truth tables. It treats
only minterms having defined output values and is thus efficient above all in case of highly undefined functions,
where the methods processing also the don't care states lose much time. The algorithm proves its full strength for
functions with several hundreds of variables and several hundreds of minterms with defined output values. Its
programmed version gave in these cases better results (in terms of the minimality of the solution and runtime)
than the state-of-the-art ESPRESSO.

1 Introduction

Synthesis of combinational functions with large numbers of input variables is a problem that appears in different
contexts. It may be encountered e.g. in the design of control systems, where a large number of sensors deliver
their input data to be processed by an automaton, or in diagnostics of logic circuits, where a sequence of code
words is to be transformed into the sequence of test patterns. A common feature of those problems is the
disproportion between the total number of minterms existing for the given number of input variables and the
number of really used minterms, for which the output value is defined (care minterms). Hence an efficient
synthesis method, whose time and memory complexity will be acceptable even for large problems with several
hundreds of input variables and several hundreds of care minterms, is desirable.

One of the best known and probably the most successful of all programs for minimization of switching
functions, called ESPRESSO [1], [2], uses a heuristic procedure for local search. This means that starting from
some initial solution, the procedure tries to improve the quality of the solution through successive modifications.
These modifications are directed by some quality criterion evaluating the newly reached situation. A similar
approach was used also in other methods listed in [1], like e.g. [3]. A kind of local search is used also in our
case, although the heuristic is different.

2 Problem Statement

Let us have a Boolean function of n input variables F(x1, x2, … xn,), whose output values are defined by a truth
table. The number of 1-minterms and 0-minterms is equal to u and z respectively, the rest are don't care states.
The function is highly undefined, i.e. only few of the 2n minterms have an output value assigned (u+v<< 2n). Our
task is to formulate a synthesis algorithm, which will produce a two-level disjunctive form of F, whose
complexity is close to the minimal disjunctive form.

3 Prime Implicant Generation

When generating a prime implicant (PI) for a given function F, we may proceed either by increasing the
dimensionality of an implicant (which is the usual approach), or by reducing the size of a hypercube which
contains the PI as its subset. In a special case it may be an implicate of the function F. When reducing the size of
a hypercube, we must repetitively add literals to its term, until the hypercube becomes an implicant (possibly a
PI). This happens when no 0-minterm is covered any more. Symmetrically, we generate a PI by removing literals
from an implicant until we reach its maximum size without covering any 0-minterm. These two principles will
be used as basis for two implicant generation methods. The first one, denoted as coverage-directed search,

 2

combines the implicant generation with solution of the covering problem. The second one is denoted as
sequential search, because the candidates for rejection from a term are selected one by one.

3.1 Coverage-Directed Search

First we start with PI generation method based on hypercube reduction. Let us have a single-output Boolean
function F defined by its on-set and off-set (1-minterms and 0-minterms). As the first step, we select the most
frequent input literal from the given on-set and use it as a term from which an implicant will be derived. After
every selection we must verify whether the term already corresponds to an implicant by comparing it with all 0-
minterms. If we obtain an implicant, we record the term and continue searching for other implicants (see below).
If not, some other literal must be added. We divide the given on-set into two subsets. One subset contains those
minterms, which cannot be covered by any term containing the selected literal (minterms containing the literal
with the opposite polarity). This subset will not be considered any more. From the other subset, we again select
the most frequent literal and add it to the previous one, so we have a two-literal product term. Again we compare
this term with the 0-minterms and check if it is an implicant. We repeat this procedure until we get an implicant.
We record this implicant and remove from the original on-set those minterms, which are covered by this
implicant. Thus we obtain a reduced on-set containing only uncovered minterms. Now we repeat the procedure
from the beginning selecting the next most frequently used literal, until the whole on-set is covered. The output
of this algorithm is a sum of product terms, covering all 1-minterms and no 0-minterm.

When selecting the most frequent literal, it may happen that two or more literals have the same frequency of
occurrence. In this cases another heuristics could be applied. We construct temporary terms as candidates for
implicants by adding different literals to the previously selected one(s). From them we select those terms which
are implicants. This will prevent a useless term prolongation. If there are more or none terms that are implicants,
the third selection method takes place. For each term we count the number of yet uncovered 1-minterms that
could be covered by this term and we select the term with maximal count. In other words, we add a literal that
will prevent covering the least of yet uncovered 1-minterms. When there are still more literals to choose from,
we select one randomly.

A certain drawback of this algorithm is that it is greedy. Thus, once a literal is selected, it’s kept till the end of
the term generation. Therefore the obtained implicants need not be prime. In other words, we have to check
whether some literals can be removed without any harm. Here the second part of the PI generation algorithm,
called sequential search, finds its application.

3.2 Sequential Search

To check the results of the previous search, we may try and systematically remove from each term all literals one
by one starting from the random position. If the hypercube obtained after removal of one literal does not cover
any 0-minterm, we make the removal permanent. If, on the contrary, some 0-minterm is covered, we put the
literal back and proceed to the next literal. After removing all removable literals we obtain one prime implicant
covering the original term. This algorithm is also greedy.

The sequential search will not reduce the number of product terms, but it reduces the number of literals in the
terms by approximately 25% (experimental result). After reducing the number of literals in the terms (and
therefore extending the range they cover) some implicants may absorb others. Hence solving the covering
problem is desirable. Yet, this situation doesn’t occur very often.

There is also a possibility to use an exhaustive search algorithm instead of sequential search. More PIs are then
generated from the terms and solving the covering problem is thus necessary. This method gives slightly better
results than the previous one. However, it can be used only for small or highly undefined functions, where the
number of literals in the implicants obtained from the previous search is small, because the complexity of this
search algorithm is basically exponential.

Note: The sequential search and exhaustive search algorithms are also applicable for minimization without
preprocessing by the coverage-directed search algorithm. However, the minimization process is then much
slower and less effective (see example).

 3

3.3 Solution of the Covering Problem

The covering problem is solved by an algorithm similar to CD-search. First, we prefer implicants covering
minterms covered by the lowest number of other implicants. If there are more of such implicants, we select
implicants covering the highest number of yet uncovered 1-minterms. From these primes we select the “shortest”
ones – terms constructed of the least of literals. When still more primes could be selected, we select one
randomly.

3.4 Repetitive Minimization

The minimization process consists of three above-mentioned stages (CD-search, Sequential search and Covering
problem solution). The results of all these methods more or less depend on random events – when there are more
possibilities to choose and no selection criterion is available, a random number generator is used. This means,
that the results are not determined by the input function (as in ESPRESSO), but they are coincidental. Thus, we
can improve the quality of solution by repeating the whole minimization process several times and choosing the
best result judging by some criterion (e.g. total number of literals). Or, the program could run in an infinite loop,
recording the best result found so far, and the program is stopped manually when the solution complies with
some criterion (like e.g. the total number of literals does not exceed a given limit or the quality of solution does
not change during a given number of iterations). The practical experience shows that in many cases the result
converges to the minimal one. The results from one-pass runs and 200-pass runs are compared in the
comparative example.

4 Illustrative Examples

In this section we show several simple examples illustrating the three methods.

4.1. CD-Search Example

Let‘s have a partially defined boolean logic function of ten input variables and ten defined minterms given by a
truth table. Input variables are named x0 ..x9. The 1-minterms are highlighted.

var: 0123456789
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

As the first step of minimization we count the numbers of literals in the input table. The “0”-line and “1”-line
give counts of xn’ and xn literals respectively. In this table we select the most frequent literal.

var: 0123456789
0: 3435322444
1: 3231344222

The most frequent literal is x3‘ with five occurrences. This literal describes a function that is a superset of an
implicant. This literal alone is not an implicant yet because it covers the 6th minterm in the original function.
Hence another literal must be added. When searching for the next literal, we can reduce the scope of our search
by suppressing 1-minterms containing the selected literal with the opposite polarity. An implicant containing a
literal x3‘ cannot cover the 5th minterm (because it contains the x3 literal). Thus, we temporarily suppress this
minterm. In the remaining 1-minterms we find the most frequent literal:

 4

var: 0123456789
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

var: 0123456789
0: 343-211433
1: 212-344122

As there are several literals with maximal frequency of occurrence (x1’ , x5, x6, x7’), the second selection criterion
must be applied. We use them to create four product terms x3‘x1’ , x3‘x5, x3‘x6, x3‘x7’ . First they are checked if
some of them are already implicants. The term x3‘x5 is not an implicant (it covers the 6th minterm), so it is
discarded. Now one of the remaining terms representing implicants must be chosen. We choose a term, which
covers the maximum of yet uncovered (yellow) 1-minterms. Unfortunately, all these implicants cover four 1-
minterms. So one of them is selected randomly – e.g. x3‘x6. This implicant is stored and the search continues. For
the future search we omit minterms covered by this implicant (blue) and the most frequent literal is selected:

var: 0123456789
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

var: 0123456789
0: 1111222112
1: 1111000110

We have three equal possibilities, so we choose one randomly – e.g. x5’ . When we add the x6’ literal we have an
implicant covering remaining 1-minterms. The resulting form of the function is x3’x6+ x5’x6’ .

4.2 Sequential Search Example

We have the function from the previous example:

var: 0123456789
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

 5

Let us suppose that a function
x1’x3’+x1x5’x7+x3’x4

is an input for sequential search algorithm. We process all product terms, the order is not significant. We start
with a term x1’x3’ and try to remove one literal. We remove x1’ and compare the remaining term (x3’) with all the
0-minterms. We’ll find that it collides with the 6th minterm and thus x1’ cannot be removed. We continue with x3’
literal. It cannot be removed either, because the remaining term covers 4th and 7th minterm. This term cannot be
reduced any more and thus it is a prime implicant. Now we try to reduce a second term (x1x5’x7). We can find
that x7 literal can be removed without covering any 0-minterm, hence the original term was not prime. Thus it is
simplified to x1x5’ . Likewise, we find that the x3’x4 term can be reduced to x4. The function is reduced to
x1’x3’+x1x5’+x4. This is a sum of prime implicants.

4.3 Covering Problem Solution Example

We solve the covering problem visualized by a following table:

 abcdefgh
1. (3) –X-X-X--
2. (4) XX--X-X-
3. (3) –XX-----
4. (2) X----X-X
5. (4) ---X--XX

The lines represent terms entering the algorithm, in the parentheses are the numbers of literals of appropriate
terms and the columns represent 1-minterms, which must be covered.

First, we find the implicants covering minterms covered by the lowest number of other implicants. These are the
2nd and the 3rd implicants, which are necessary for covering the c- and e-minterms. Thus we record them and
delete from the search set. The covered minterms are removed too.

 abcdefgh
1. (3) –X-X-X--
2. (4) XX--X-X-
3. (3) –XX--X--
4. (2) X----X-X
5. (4) ---X--XX

All the remaining 1-minterms are covered by two implicants and all implicants cover two yet uncovered
minterms. So the shortest one is selected – the 4th implicant with 2 literals.

 abcdefgh
1. (3) –X-X-X--
2. (4) XX--X-X-
3. (3) –XX--X--
4. (2) X----X-X
5. (4) ---X--XX

Now, the d-minterm must be covered. We select the 1st implicant, because it is shorter than the 5th one. The 5th
term could be omitted and all 1-minterms will be covered.

 abcdefgh
1. (3) –X-X-X--
2. (4) XX--X-X-
3. (3) –XX--X--
4. (2) X----X-X
5. (4) ---X--XX

 6

5 Experimental Results

An extensive experimental work was done to evaluate the efficiency of the proposed algorithm, especially in the
context of problems of large dimensions. The efficiency was compared above all with ESPRESSO. The
problems solved were above the MCNC benchmarks. As the size of these benchmark problems is relatively
small, some larger problems had to be prepared.

The proposed algorithm was programmed in Borland C++ Builder and tested under MS Windows NT. The
processor used was a Celeron 433 MHz with 160 MB RAM, the runtime was measured in seconds. The quality
of the results was measured by two parameters: number of product terms (implicants) and total number of
literals. Although every implementation basis requires different evaluation criteria, these two figures are good
representatives of the overall complexity of the solution obtained.

5.1 Comparative Example

First a small example with 10 input variables and 20 care terms, where also the true minimization by Quine-
McCluskey algorithm could be used, was solved by different methods. All methods gave the same results
(minimal disjunctive form). The runtimes in seconds were the following: sequential search 0.04, exhaustive
search 0.27, CD-search 0.03, Espresso 0.03 Quine-McCluskey 438.32.

This example shows the ineffectiveness of the Quine-McCluskey’s algorithm. The computing time is
unacceptable and for more input variables this algorithm cannot be used. Exhaustive search algorithm is also
very complex and for more than 20 input variables cannot be used either.

5.2 Comparison of Coverage-Directed Search and Espresso

The following set of examples show the advantages of the CD-search algorithm. Problems with large number of
input variables and minterms were solved. The truth tables of single-output functions were generated by random
number generator, for which only the number of input variables and number of care minterms in the truth table
were specified. The selection of care minterms and the assignment of output values were made randomly with
on-set and off-set kept approximately at the same size. For every size of the input table were generated 10
samples and the average was taken. The results are shown in Tab.1 and Tab.2. The first row of every cell
contains the CD-search results, the second row shows ESPRESSO results. The entry format is: “time in seconds/
#of implicants/ #of literals”. Yellow cells show the cases where CD-search algorithm gave in the average results
with less or equal number of literals than ESPRESSO. The first table shows the results of Repetitive search with
200 iterations, the second table shows the results of only one iteration.

 7

Number of input variables

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

20
0.27/2/7
0.15/2/6

0.39/2/7
0.20/2/6

0.44/2/5
0.23/2/5

0.58/2/5
0.43/2/5

0.70/2/5
0.46/1/4

0.79/2/4
0.61/1/4

0.85/1/4
0.69/1/4

1.22/2/5
1.21/2/4

1.20/2/4
1.29/2/4

1.04/1/4
1.62/1/4

1.62/1/4
1.75/1/4

1.09/2/4
2.63/1/4

1.84/2/4
2.75/2/4

1.70/1/4
3.30/1/4

1.99/1/4
3.37/1/4

40
0.68/5/17
0.19/4/14

1.01/3/14
0.34/3/13

1.29/3/12
0.66/4/11

1.61/3/11
0.91/3/11

1.89/3/11
1.39/3/10

2.27/3/9
1.60/3/9

2.49/3/9
2.10/3/9

2.92/3/9
2.86/3/9

3.29/2/8
3.80/3/9

3.74/3/8
4.68/3/9

3.85/2/8
5.53/3/9

4.18/2/8
6.67/2/8

5.23/2/8
7.95/2/8

5.95/3/8
9.70/2/8

6.54/2/8
10.40/3/9

60
1.63/7/27
0.21/6/23

2.27/5/21
0.66/5/20

2.74/5/19
1.02/4/17

3.66/4/17
1.60/4/17

4.46/4/15
2.54/4/15

4.65/4/15
3.29/4/15

5.88/4/15
3.91/4/14

5.72/4/14
5.85/4/14

7.30/3/14
6.88/4/14

7.60/3/13
9.40/4/14

8.17/3/13
11.22/4/14

8.81/3/12
13.35/4/13

10.53/3/12
15.02/3/13

12.16/3/13
18.44/4/14

10.88/3/12
19.71/3/14

80
2.54/8/35
0.31/7/31

4.06/7/30
0.94/6/27

4.84/6/27
1.55/6/23

6.59/5/23
2.87/5/22

7.36/5/22
4.36/5/21

8.77/5/21
6.01/5/21

10.27/5/21
9.57/5/21

12.47/5/20
10.06/5/20

12.75/5/20
14.28/5/21

14.04/5/19
15.82/5/21

15.15/4/17
19.30/5/20

22.80/4/17
23.02/4/18

26.88/4/18
25.91/4/19

28.38/4/16
30.17/4/17

25.67/4/17
33.18/4/17

100
4.62/11/50
0.37/9/44

5.84/8/36
1.12/8/33

7.91/7/33
2.15/7/31

9.76/7/30
4.54/6/29

11.38/6/28
5.78/6/29

13.57/6/27
8.25/6/26

15.13/6/26
11.57/6/26

16.75/6/25
14.40/6/26

19.53/5/24
20.12/6/24

22.51/5/24
21.78/6/25

23.88/5/24
27.96/6/25

31.51/5/23
31.78/5/24

28.60/5/24
35.69/5/24

31.63/5/21
42.99/5/24

31.36/5/22
47.46/5/22

120
5.05/13/60
0.50/11/51

7.83/10/47
1.69/9/43

10.42/9/41
3.27/8/36

12.81/8/37
5.68/8/36

15.26/7/35
8.12/7/34

17.23/7/33
12.43/7/32

20.45/7/31
17.66/7/33

25.13/7/31
19.41/7/30

28.00/6/30
27.60/6/30

29.24/6/29
34.57/7/32

32.28/6/29
38.23/6/30

35.96/6/28
45.51/6/29

37.73/6/27
55.03/6/29

39.67/6/26
63.59/6/28

43.72/6/27
63.22/6/28

140
7.43/15/77
0.52/13/63

10.77/11/55
2.12/10/51

14.53/10/50
4.51/10/45

17.02/9/45
7.61/9/43

20.95/9/42
11.04/9/42

25.32/8/39
18.00/8/39

28.31/8/39
23.41/8/38

31.46/7/36
25.30/8/39

35.05/7/35
35.57/8/37

39.34/7/33
37.26/7/36

43.02/7/33
45.64/8/36

50.58/7/34
60.40/8/36

53.69/7/33
72.49/7/33

54.54/7/33
75.58/7/36

56.78/7/31
80.75/7/33

160
9.33/17/87
0.72/14/73

13.96/12/63
2.83/12/59

19.42/11/56
5.99/11/52

24.50/10/53
11.07/10/48

28.79/10/49
16.00/10/47

33.64/9/46
26.23/9/46

37.55/9/45
31.87/9/44

43.58/9/43
39.72/9/43

46.64/8/41
50.55/9/43

52.11/8/40
56.26/8/42

57.21/8/39
69.96/9/42

71.56/8/39
87.40/8/40

74.34/7/37
94.79/8/40

83.44/8/38
105.66/8/41

100.44/7/37
114.47/8/39

180
13.84/19/102
1.05/16/83

19.96/15/76
3.07/13/64

25.44/13/68
6.61/12/61

32.98/11/60
13.16/11/58

37.59/11/57
18.63/11/55

42.86/10/53
28.29/10/51

47.69/9/48
31.59/10/51

57.58/10/49
44.71/10/49

65.49/9/48
53.07/10/48

68.21/9/46
63.32/9/47

77.08/9/45
79.32/9/46

87.89/9/46
96.70/9/46

91.01/8/43
118.29/9/46

96.34/8/43
128.90/9/45

102.32/8/42
131.19/9/44

N
u

m
b

e
r

o
f d

e
fin

e
d

 m
in

te
rm

s

200
14.80/21/114
1.01/18/94

22.58/16/86
4.24/14/74

31.03/14/73
8.84/13/68

41.79/12/66
17.50/12/63

45.80/11/62
23.34/11/59

52.76/11/60
33.93/11/57

57.63/11/56
44.29/11/58

69.43/10/55
54.24/11/56

76.10/10/54
67.52/10/54

78.86/10/52
84.97/10/53

87.60/10/50
104.74/10/54

102.59/10/51
112.62/10/52

102.94/9/46
129.48/10/52

114.08/9/48
154.88/10/50

120.31/9/47
196.61/10/49

Tab. 1: Repetitve search with 200 iterations results

Number of input variables

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

20
0.00/3/9
0.15/2/6

0.00/2/5
0.20/2/6

0.00/2/4
0.23/2/5

0.00/2/6
0.43/2/5

0.00/2/6
0.46/1/4

0.00/2/6
0.61/1/4

0.00/2/5
0.69/1/4

0.01/2/5
1.21/2/4

0.00/2/5
1.29/2/4

0.00/2/4
1.62/1/4

0.01/2/7
1.75/1/4

0.00/2/3
2.63/1/4

0.01/2/6
2.75/2/4

0.01/3/8
3.30/1/4

0.01/2/4
3.37/1/4

40
0.00/5/20
0.19/4/14

0.00/4/12
0.34/3/13

0.01/4/12
0.66/4/11

0.01/3/11
0.91/3/11

0.01/4/15
1.39/3/10

0.01/3/11
1.60/3/9

0.01/3/11
2.10/3/9

0.02/4/15
2.86/3/9

0.01/3/8
3.80/3/9

0.02/3/10
4.68/3/9

0.02/4/11
5.53/3/9

0.02/3/9
6.67/2/8

0.03/3/11
7.95/2/8

0.02/3/11
9.70/2/8

0.03/3/11
10.40/3/9

60
0.01/8/32
0.21/6/23

0.01/6/20
0.66/5/20

0.02/6/23
1.02/4/17

0.02/5/20
1.60/4/17

0.02/4/15
2.54/4/15

0.03/5/22
3.29/4/15

0.03/4/16
3.91/4/14

0.03/4/16
5.85/4/14

0.04/5/20
6.88/4/14

0.04/5/16
9.40/4/14

0.04/4/14
11.22/4/14

0.04/4/14
13.35/4/13

0.06/4/15
15.02/3/13

0.07/6/25
18.44/4/14

0.05/4/17
19.71/3/14

80
0.01/9/39
0.31/7/31

0.02/8/34
0.94/6/27

0.03/8/35
1.55/6/23

0.03/7/31
2.87/5/22

0.04/6/24
4.36/5/21

0.05/7/30
6.01/5/21

0.05/6/28
9.57/5/21

0.05/5/23
10.06/5/20

0.05/5/19
14.28/5/21

0.07/6/29
15.82/5/21

0.08/6/25
19.30/5/20

0.11/4/18
23.02/4/18

0.13/5/20
25.91/4/19

0.14/5/18
30.17/4/17

0.13/5/21
33.18/4/17

100
0.03/14/69
0.37/9/44

0.02/8/37
1.12/8/33

0.04/9/40
2.15/7/31

0.04/7/33
4.54/6/29

0.06/6/25
5.78/6/29

0.06/7/39
8.25/6/26

0.07/6/25
11.57/6/26

0.07/5/22
14.40/6/26

0.09/6/28
20.12/6/24

0.10/6/26
21.78/6/25

0.12/6/29
27.96/6/25

0.16/8/35
31.78/5/24

0.14/6/31
35.69/5/24

0.15/5/21
42.99/5/24

0.17/6/28
47.46/5/22

120
0.02/14/67
0.50/11/51

0.03/11/53
1.69/9/43

0.05/10/53
3.27/8/36

0.06/9/47
5.68/8/36

0.07/7/33
8.12/7/34

0.08/10/49
12.43/7/32

0.10/8/39
17.66/7/33

0.13/8/36
19.41/7/30

0.13/7/33
27.60/6/30

0.14/8/34
34.57/7/32

0.16/8/39
38.23/6/30

0.18/8/35
45.51/6/29

0.18/8/35
55.03/6/29

0.18/6/27
63.59/6/28

0.23/6/29
63.22/6/28

140
0.04/16/77
0.52/13/63

0.05/14/76
2.12/10/51

0.07/10/47
4.51/10/45

0.08/9/42
7.61/9/43

0.10/10/50
11.04/9/42

0.14/11/54
18.00/8/39

0.15/10/49
23.41/8/38

0.16/9/44
25.30/8/39

0.19/8/39
35.57/8/37

0.22/9/42
37.26/7/36

0.22/9/50
45.64/8/36

0.24/8/43
60.40/8/36

0.28/8/43
72.49/7/33

0.29/9/44
75.58/7/36

0.31/9/50
80.75/7/33

160
0.04/18/94
0.72/14/73

0.06/12/63
2.83/12/59

0.10/13/61
5.99/11/52

0.12/14/74
11.07/10/48

0.16/12/70
16.00/10/47

0.17/11/51
26.23/9/46

0.18/10/51
31.87/9/44

0.24/11/50
39.72/9/43

0.22/10/54
50.55/9/43

0.29/10/53
56.26/8/42

0.31/10/48
69.96/9/42

0.34/9/49
87.40/8/40

0.38/11/61
94.79/8/40

0.42/10/52
105.66/8/41

0.52/9/41
114.47/8/39

180
0.07/21/113
1.05/16/83

0.10/18/99
3.07/13/64

0.13/15/80
6.61/12/61

0.17/15/84
13.16/11/58

0.19/12/61
18.63/11/55

0.21/11/59
28.29/10/51

0.23/12/66
31.59/10/51

0.31/12/68
44.71/10/49

0.32/11/56
53.07/10/48

0.30/11/60
63.32/9/47

0.40/11/54
79.32/9/46

0.46/12/65
96.70/9/46

0.45/10/54
118.29/9/46

0.52/11/61
128.90/9/45

0.53/12/61
131.19/9/44

N
u

m
b

e
r

o
f d

e
fin

e
d

 m
in

te
rm

s

200
0.08/24/133
1.01/18/94

0.10/17/91
4.24/14/74

0.15/17/90
8.84/13/68

0.20/15/77
17.50/12/63

0.25/15/89
23.34/11/59

0.23/12/63
33.93/11/57

0.26/11/60
44.29/11/58

0.37/13/72
54.24/11/56

0.41/14/78
67.52/10/54

0.39/12/63
84.97/10/53

0.45/12/63
104.74/10/54

0.50/12/66
112.62/10/52

0.51/10/52
129.48/10/52

0.58/14/75
154.88/10/50

0.62/11/61
196.61/10/49

Tab. 2: CD-Search, 1 iteration results

 9

The dependency of the run times on the two parameters is visualized by the graphs in Fig. 1. It should be noted
that the vertical scales are different, because ESPRESSO is in all cases much slower.

0

0,2

0,4

0,6

0,8

1

1,2

T
im

e
[s

ec
]

20 60 10
0

14
0

18
0

22
0

26
0

20

140

260

Input variables

CD-Search

Defined minterms

0

50

100

150

200

250

300

T
im

e
[s

ec
]

20 60 10
0

14
0

18
0

22
0

26
0

20

140

260

Input variables

ESPRESSO

Defined minterms

Fig. 1. Dependency of runtimes on the numbers of variables and care minterms

For problems with more input variables the difference was still bigger. A problem with 1000 variables and 1000
vectors was solved by C-D in a couple of minutes. ESPRESSO did not solve the problem at all.

5.3 Standard Benchmarks

A set of standard Berkeley benchmarks [7] was also used for comparison. All these benchmarks use a relatively
small number of inputs. Hence the runtimes needed by the C-D search were longer than those of ESPRESSO.

6 Conclusions

A method of single-output Boolean function minimization applicable to problems with large dimensions and
large number of don't care states has been presented. Although the PI generation method is rather
straightforward, the results achieved are comparable with ESPRESSO and the runtimes are shorter. For large
problems with several hundreds of variables the program beats ESPRESSO both in minimality of the result and
in the runtime.

Acknowledgment

The research was in part supported by the grant of the Czech Grant Agency GACR 102/99/1017.

References

[1] HACHTEL, G.D. - SOMENZI, F.: Logic synthesis and verification algorithms. Boston, MA, Kluwer Academic
Publishers, 1996, 564 pp.

[2] BRAYTON, R.K. et al.: Logic minimization algorithms for VLSI synthesis. Boston, MA, Kluwer Academic
Publishers, 1984

[3] COUDERT, O. - MADRE, J.C.: Implicit and incremental computation of primes and essential primes of Boolean
functions. In Proc. of the Design Automation Conf. (Anaheim, CA, June 1992), pp. 36-39

[4] COUDERT, O. - MADRE, J.C.: New ideas for solving covering problems. In Proc. of the Design Automation Conf.
(San Francisco, CA, June 1995), pp. 641-646

[5] McCLUSKEY, E.J.: Minimization of Boolean functions. The Bell System Technical Journal, 35, No. 5, Nov. 1956,
pp. 1417-1444

[6] QUINE, W.V.: The problem of simplifying truth functions. Amer. Math. Monthly, 59, No. 8, 1952, pp. 521-531
[7] ftp://ftp.mcnc.org/pub/benchmark/Benchmark_dirs/LGSynth93/testcases/pla/

