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Abstract. The paper presents a minimization algorithm for Boolean functiefised by truth tables. It treats
only minterms having defined output values and is thus efficient allomecase of highly undefined functions,
where the methods processing also the don't care states lose meichi@ralgorithm proves its full strength for
functions with several hundreds of variables and several hundreds of msntgth defined output values. Its
programmed version gave in these cases better results (is tdrthe minimality of the solution and runtime)
than the state-of-the-art ESPRESSO.

1 Introduction

Synthesis of combinational functions with large numledrinput variables is a problem that appears in different
contexts. It may be encountered e.g. in the designrdfacsystems, where a large number of sensors deliver
their input data to be processed by an automaton, or inadiigs of logic circuits, where a sequence of code

words is to be transformed into the sequence of testrpat A common feature of those problems is the

disproportion between the total number of mintermstag for the given number of input variables and the

number of really used minterms, for which the outputieak defined (care minterms). Hence an efficient

synthesis method, whose time and memory complexitybsilacceptable even for large problems with several
hundreds of input variables and several hundreds of carermsitis desirable.

One of the best known and probably the most succes$fall programs for minimization of switching
functions, called ESPRESSO [1], [2], uses a heuristicgature for local search. This means that starting from
some initial solution, the procedure tries to imprdwe quality of the solution through successive modifications
These modifications are directed by some quality critedgaluating the newly reached situation. A similar
approach was used also in other methods listed in [1]elige[3]. A kind of local search is used also in our
case, although the heuristic is different.

2 Problem Statement

Let us have a Boolean function minput variabled=(x;, %, ... %,), whose output values are defined by a truth
table. The number of 1-minterms and O-minterms is equaliodz respectively, the rest are don't care states.
The function is highly undefined, i.e. only few of tHendinterms have an output value assigneel/&<2"). Our
task is to formulate a synthesis algorithm, whichl wiloduce a two-level disjunctive form &f, whose
complexity is close to the minimal disjunctive form.

3 Prime Implicant Generation

When generating a prime implicant (Pl) for a given fiorct=, we may proceed either by increasing the

dimensionality of an implicant (which is the usual apprdaoh by reducing the size of a hypercube which

contains the Pl as its subset. In a special casayitbm an implicate of the functiéh When reducing the size of

a hypercube, we must repetitively add literals to istauntil the hypercube becomes an implicant (possibly a
P1). This happens when no 0-minterm is covered any rBgremetrically, we generate a Pl by removing literals
from an implicant until we reach its maximum sizehwilit covering any 0-minterm. These two principles will

be used as basis for two implicant generation methods fifdteone, denoted asoverage-directed search



combines the implicant generation with solution of ttewering problem. The second one is denoted as
sequential searchbecause the candidates for rejection from a teenselected one by one.

3.1 Coverage-Directed Search

First we start with Pl generation method based on hyperceduction. Let us have a single-output Boolean
function F defined by its on-set and off-set (1-minterms and O-rmimggr As the first step, we select the most
frequent input literal from the given on-set and use & &xm from which an implicant will be derived. After
every selection we must verify whether the term dlyesorresponds to an implicant by comparing it with all O-
minterms. If we obtain an implicant, we record the tarmd continue searching for other implicants (see below).
If not, some other literal must be added. We divide thiergbn-set into two subsets. One subset contains those
minterms, which cannot be covered by any term contaimiagelected literal (minterms containing the literal
with the opposite polarity). This subset will not baesidered any more. From the other subset, we agaict sele
the most frequent literal and add it to the previous angeshave a two-literal product term. Again we compare
this term with the O-minterms and check if it is arplicant. We repeat this procedure until we get an imptica
We record this implicant and remove from the originalsehthose minterms, which are covered by this
implicant. Thus we obtain a reduced on-set containing ordpuaned minterms. Now we repeat the procedure
from the beginning selecting the next most frequently use@l, until the whole on-set is covered. The output
of this algorithm is a sum of product terms, covering atliiterms and no 0-minterm.

When selecting the most frequent literal, it may hapgpeat two or more literals have the same frequency of
occurrence. In this cases another heuristics could béedppVe construct temporary terms as candidates for
implicants by adding different literals to the previoustyected one(s). From them we select those ternhwhi
are implicants. This will prevent a useless term prgédion. If there are more or none terms that apdidgents,

the third selection method takes place. For each terrnowet the number of yet uncovered 1-minterms that
could be covered by this term and we select the term wikinmahcount. In other words, we add a literal that
will prevent covering the least of yet uncovered 1-ming When there are still more literals to choosent

we select one randomly.

A certain drawback of this algorithm is that it is greefliyus, once a literal is selected, it's kept till thel e

the term generation. Therefore the obtained implicapted not be prime. In other words, we have to check
whether some literals can be removed without any hatene the second part of the Pl generation algorithm,
called sequential search, finds its application.

3.2 Sequential Search

To check the results of the previous search, we magniysystematically remove from each term all liteoals

by one starting from the random position. If the hypercultairdd after removal of one literal does not cover
any 0-minterm, we make the removal permanent. If, orctimrary, some O-minterm is covered, we put the
literal back and proceed to the next literal. After ogimg all removable literals we obtain one prime iicgoht
covering the original term. This algorithm is also greedy

The sequential search will not reduce the number of ptddums, but it reduces the number of literals in the
terms by approximately 25% (experimental result). After redutite number of literals in the terms (and
therefore extending the range they cover) some implicawatg absorb others. Hence solving the covering
problem is desirable. Yet, this situation doesn’t oceuy wften.

There is also a possibility to use an exhaustive sedgdrithm instead of sequential search. More Plslare t
generated from the terms and solving the covering proldahus necessary. This method gives slightly better
results than the previous one. However, it can be udgdi@nsmall or highly undefined functions, where the
number of literals in the implicants obtained frone firevious search is small, because the complexityiof th
search algorithm is basically exponential.

Note: The sequential search and exhaustive search algorithmdsaremplicable for minimization without
preprocessing by the coverage-directed search algorittowew€r, the minimization process is then much
slower and less effective (see example).



3.3 Solution of the Covering Problem

The covering problem is solved by an algorithm similaiCia-search. First, we prefer implicants covering

minterms covered by the lowest number of other implicdfithere are more of such implicants, we select
implicants covering the highest number of yet uncovéradnterms. From these primes we select the “shortest
ones — terms constructed of the least of literals. "\&tdl more primes could be selected, we select one
randomly.

3.4 Repetitive Minimization

The minimization process consists of three above-mead stages (CD-search, Sequential search and Covering
problem solution). The results of all these methodsermoless depend on random events — when there are more
possibilities to choose and no selection criterioaviailable, a random number generator is used. Thissnean
that the results are not determined by the input fun¢tierin ESPRESSO), but they are coincidental. Thus, we
can improve the quality of solution by repeating the whmolnimization process several times and choosing the
best result judging by some criterion (e.g. total numbéiteséls). Or, the program could run in an infinicep,
recording the best result found so far, and the prodsastopped manually when the solution complies with
some criterion (like e.g. the total number of literdbes not exceed a given limit or the quality of solutioas

not change during a given number of iterations). The pedatxperience shows that in many cases the result
converges to the minimal one. The results from one-pass and 200-pass runs are compared in the
comparative example.

4 lllustrative Examples

In this section we show several simple examples illusgdtie three methods.

4.1. CD-Search Example

Let's have a partially defined boolean logic functiornesf input variables and ten defined minterms given by a
truth table. Input variables are named.%. The 1-minterms are highlighted.

var: 0123456789

0000000010 1
1000111011 1
0000011001 1
11110110000
10110011000
1111000100 1
0100010100 0
00110110110
0010111100 1
1110111000 1
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As the first step of minimization we count the nunsbef literals in the input table. The “0”-line and “liv
give counts ok, andx, literals respectively. In this table we selectiihast frequent literal.

var: 0123456789
0: 3435322444
1: 3231344222

The most frequent literal &' with five occurrences. This literal describes a functioat is a superset of an
implicant. This literal alone is not an implicant yetchuse it covers thé"@ninterm in the original function.
Hence another literal must be added. When searchirtdarext literal, we can reduce the scope of our search
by suppressing 1-minterms containing the selected literaltivtfopposite polarity. An implicant containing a
literal ;' cannot cover the"5minterm (because it contains tkeliteral). Thus, we temporarily suppress this
minterm. In the remaining 1-minterms we find the maostdrent literal:



var: 0123456789

0000000010 1
1000111011 1
0000011001 1
11110110000
10110011000
0100010100 0
00110110110
0010111100 1
1110111000 1

CoNOGA~WNEO

var: 0123456789
0: 343-211433
1: 212-344122

As there are several literals with maximal frequeofcgccurrencex;’, Xs, Xs, X7’ ), the second selection criterion
must be applied. We use them to create four product tefrs Xs'Xs, X3'Xs, X3'X7'. First they are checked if
some of them are already implicants. The tesfs is not an implicant (it covers thé"@ninterm), so it is
discarded. Now one of the remaining terms representing imggicaust be chosen. We choose a term, which
covers the maximum of yet uncovered (yellow) 1-minterms. Warfartely, all these implicants cover four 1-
minterms. So one of them is selected randomly —xghxg. This implicant is stored and the search continues. For
the future search we omit minterms covered by this irapti¢blue) and the most frequent literal is selected:

var: 0123456789
0000000010 1

1000111011 1

0000011001 1
1111011000 0

0

1

2

3

4. 1011001100 0
5. 1111000100 1
6

7

8

9

01000101000
00110110110

0010111100 1
1110111000 1
var: 0123456789

0: 1111222112
1: 1111000110

We have three equal possibilities, so we choose omemay — e.gxs’. When we add the;' literal we have an
implicant covering remaining 1-minterms. The resultingnf@f the function is'Xs+ Xs'Xs'.

4.2 Sequential Search Example
We have the function from the previous example:

var: 0123456789

0000000010 1
1000111011 1
0000011001 1
11110110000
10110011000
1111000100 1
0100010100 0
00110110110
0010111100 1
1110111000 1

CoNOGOAWNEO



Let us suppose that a function

X1'X3' XX X7+Xa'X 4
is an input for sequential search algorithm. We procégz@duct terms, the order is not significant. We start
with a termx;’x3’" and try to remove one literal. We remoyeand compare the remaining terxg' Y with all the
0-minterms. We'll find that it collides with thé"éninterm and thus,’ cannot be removed. We continue with
literal. It cannot be removed either, because the réntaterm covers®and 7 minterm. This term cannot be
reduced any more and thus it is a prime implicant. Neatny to reduce a second terrix§’x;). We can find
thatx; literal can be removed without covering any O-minternmcleethe original term was not prime. Thus it is
simplified to x;xs'. Likewise, we find that thes'x, term can be reduced ta. The function is reduced to
X1'X3 +X1Xs' +X4. This is a sum of prime implicants.

4.3 Covering Problem Solution Example
We solve the covering problem visualized by a followialgje:

abcdefgh
1. (3) —=X-X-X--
2. (4) XX--X-X-

The lines represent terms entering the algorithmhénparentheses are the numbers of literals of apptepri
terms and the columns represent 1-minterms, which musivezed.

First, we find the implicants covering minterms coveredhgylowest number of other implicants. These are the
2" and the % implicants, which are necessary for covering the c- amiheéerms. Thus we record them and
delete from the search set. The covered minterms m@vesl too.

abcdefgh
1. (3) —X-X-X--
2. (4) XX--X-X-
3. (3) =XX--X--
4. (2) X---=X-X
5. (4) ---X--XX

All the remaining 1-minterms are covered by two implicaatsl all implicants cover two yet uncovered
minterms. So the shortest one is selected —fhimpglicant with 2 literals.

abcdefgh
1. (3) —X-X-X--
2. (4) XX--X-X-
3. (3) =XX--X--
4. (2) X----X-X
5. (4) ---X--XX

Now, the d-minterm must be covered. We select thienplicant, because it is shorter than tffedhe. The 8
term could be omitted and all 1-minterms will be covered.

abcdefgh
1. (3) —=X-X-X--
2. (4) XX--X-X-
3. (3) =XX--X--
4. (2) X----X-X
5. (4) ---X--XX



5 Experimental Results

An extensive experimental work was done to evaluateffiteeacy of the proposed algorithm, especially in the
context of problems of large dimensions. The efficiem@s compared above all with ESPRESSO. The
problems solved were above the MCNC benchmarks. As figeofithese benchmark problems is relatively
small, some larger problems had to be prepared.

The proposed algorithm was programmed in Borland C++dBuibnd tested under MS Windows NT. The
processor used was a Celeron 433 MHz with 160 MB RAM, th&énne was measured in seconds. The quality
of the results was measured by two parameters: number afigireerms (implicants) and total number of
literals. Although every implementation basis requulé#ferent evaluation criteria, these two figures aredjo
representatives of the overall complexity of the sotutibtained.

5.1 Comparative Example

First a small example with 10 input variables and 20 aared, where also the true minimization by Quine-
McCluskey algorithm could be used, was solved by different rdsthall methods gave the same results
(minimal disjunctive form). The runtimes in secondsevéhe following: sequential search 0.04, exhaustive
search 0.27, CD-search 0.03, Espresso 0.03 Quine-McCI43Re32.

This example shows the ineffectiveness of the Quine-MgK&ly's algorithm. The computing time is
unacceptable and for more input variables this algorithm temmaised. Exhaustive search algorithm is also
very complex and for more than 20 input variables cannotdxt either.

5.2 Comparison of Coverage-Directed Search and Espresso

The following set of examples show the advantages a€iwsearch algorithm. Problems with large number of
input variables and minterms were solved. The trutresabl single-output functions were generated by random
number generator, for which only the number of input éggand number of care minterms in the truth table
were specified. The selection of care minterms and shigirament of output values were made randomly with
on-set and off-set kept approximately at the same sizee\y size of the input table were generated 10
samples and the average was taken. The results are @hobvai.1 and Tab.2. The first row of every cell
contains the CD-search results, the second row shBRKRESSO results. The entry format is: “time in sdsbn
#of implicants/ #of literals”. Yellow cells show the casghere CD-search algorithm gave in the average results
with less or equal number of literals than ESPRESS@.fifst table shows the results of Repetitive sewuiti

200 iterations, the second table shows the resultslybae iteration.



Number of input variables

20 40 60 80 100 120 140 160 180 200 220 240 26( 0 28 300
00 |0:27/217 0.39/2/7 0.44/2/5  |0.58/2/5 0.70/2/5 0.79/2/4 0.85/1/4 1.22/2/5 1.20/2/4 1.04/1/4 1.62/1/4 1.09/2/4 1.84/2/4 1.70/1/4 1.99/1/4
0.15/2/6 0.20/2/6 0.23/2/5  |0.43/2/5 0.46/1/4 0.61/1/4 0.69/1/4 1.21/2/4 1.29/2/4 1.62/1/4 1.75/1/4 2.63/1/4 2.75/2/4 3.30/1/4 3.37/1/4
40 |0-68/5/17  11.01/3/14  11.20/3/12 11.61/3/11 [1.89/3/11 }2.27/3/9 2.49/3/9 2.92/3/9 3.29/2/8 3.74/3/8 3.85/2/8 4.18/2/8 5.23/2/8 5.95/3/8 6.54/2/8
0.19/4/14 |0.34/3/13 |0.66/4/11 |0.91/3/11 |1.39/3/10 |1.60/3/9 2.10/3/9 2.86/3/9 3.80/3/9  |4.68/3/9 5.53/3/9 6.67/2/8 7.95/2/8 9.70/2/8 10.40/3/9
2 | oo |1637/27 [227/521 12.74/5/19 [3.66/4/17 4.46/4/15 [4.65/4/15 |5.88/4/15 [5.72/4/14 7.30/3/14 17.60/3/13 [8.17/3/13 |8.81/3/12 [10.53/3/12 [12.16/3/13 [10.88/3/12
5 0.21/6/23 |0.66/5/20 |1.02/4/17 |1.60/4/17 |2.54/4/15 |3.29/4/15 |3.91/4/14 |5.85/4/14 |6.88/4/14 |9.40/4/14 |11.22/4/14 |13.35/4/13 |15.02/3/13 |18.44/4/14 |19.71/3/14
£ | go [254/8/35 [4.06/7/30 [4.84/6/27 [6.59/5/23 7.36/5/22 |8.77/5/21 110.27/5/21 [12.47/5/20 [12.75/5/20 [14.04/5/19 [15.15/4/17 [22.80/4/17 |26.88/4/18 |28.38/4/16 |25.67/4/17
= 0.31/7/31 |0.94/6/27 |1.55/6/23 |2.87/5/22 |4.36/5/21 |6.01/5/21 |9.57/5/21 |10.06/5/20 |14.28/5/21 |15.82/5/21 |19.30/5/20 |23.02/4/18 |25.91/4/19 |30.17/4/17 |33.18/4/17
2 100|4-:62/11/50 15.84/8/36  17.91/7/33 [9.76/7/30 |11.38/6/28 |[13.57/6/27 [15.13/6/26 [16.75/6/25 |19.53/5/24 [22.51/5/24 |23.88/5/24 [3151/5/23 |28.60/5/24 [31.63/5/21 |31.36/5/22
3 0.37/9/44 |1.12/8/33 |2.15/7/31 |4.54/6/29 |5.78/6/29 |8.25/6/26 |11.57/6/26 |14.40/6/26 |20.12/6/24 |21.78/6/25 |27.96/6/25 |31.78/5/24 |35.69/5/24 |42.99/5/24 |A47.46/5/22
B | 190]5:05/13/60 [7.83/10/47 [10.42/9/41 |12.81/8/37 [15.26/7/35 |17.23/7/33 [20.45/7/31 |25.13/7/31 [28.00/6/30 |[29.24/6/29 |32.28/6/29 |35.96/6/28 |37.73/6/27 [39.67/6/26 |43.72/6/27
5 0.50/11/51 |1.69/9/43 |3.27/8/36 |5.68/8/36 |8.12/7/34 |12.43/7/32 |17.66/7/33 |19.41/7/30 |27.60/6/30 |34.57/7/32 |38.23/6/30 |45.51/6/29 |55.03/6/29 |63.59/6/28 |63.22/6/28
£ 140 | 7-43/15/77 110.77/11/55 | 14.53/10/50 [17.02/9/45 |20.95/9/42 [25.32/8/39 |28.31/8/39 [31.46/7/36 |35.05/7/35 [39.34/7/33 |43.02/7/33 [50.58/7/34 |53.69/7/33 |54.54/7/33 |56.78/7/31
> 0.52/13/63 |2.12/10/51 |4.51/10/45 |7.61/9/43 |11.04/9/42 |18.00/8/39 |23.41/8/38 |25.30/8/39 |35.57/8/37 |37.26/7/36 |45.64/8/36 |60.40/8/36 |72.49/7/33 |75.58/7/36 |80.75/7/33
160 | 9-33/17/87 113.96/12/63 | 19.42/11/56 [24.50/10/53 | 28.79/10/49 [33.64/9/46 |37.55/9/45 [4358/9/43 |46.64/8/41 [52.11/8/40 [57.21/8/39 [71.56/8/39 |74.34/7/37 |83.44/8/38 [100.44/7/37
0.72/14/73 |2.83/12/59 |5.99/11/52 |11.07/10/48 |16.00/10/47 |26.23/9/46 |31.87/9/44 |39.72/9/43 |50.55/9/43 |56.26/8/42 |69.96/9/42 |87.40/8/40 |94.79/8/40 |105.66/8/41 |114.47/8/39
180 | 13:84/19/107/19.96/15/76 | 25.44/13/68 [32.98/11/60 |37.59/11/57 [42.86/10/53 | 47.69/9/48 |57.58/10/49 |65.49/9/48 [68.21/9/46 |77.08/9/45 [87.89/9/46 [91.01/8/43 196.34/8/43 [102.32/8/42
1.05/16/83 |3.07/13/64 |6.61/12/61 |13.16/11/58 |18.63/11/55 |28.29/10/51 |31.59/10/51 | 44.71/10/49 | 53.07/10/48 |63.32/9/47 |79.32/9/46 |96.70/9/46 |118.29/9/46 |128.90/9/45 |131.19/9/44
200 | 14:80/21/114 22.58/16/86 | 31.03/14/73 [41.79/12/66 |45.80/11/62 [ 52.76/11/60 [57.63/11/56 | 69.43/10/55 [ 76.10/10/54 | 78.86/10/52 |87.60/10/50 | 102.59/10/5:f 102.94/9/46 |114.08/9/48 | 120.31/9/47
1.01/18/94 |4.24/14/74 |8.84/13/68 |17.50/12/63 |23.34/11/59 |33.93/11/57 | 44.29/11/58 | 54.24/11/56 | 67.52/10/54 |84.97/10/53 | 104.74/10/54 112.62/10/5] 129.48/10/54] 154.88/10/5(] 196.61/10/4¢
Tab. 1. Repetitve search with 200 iterations results
Number of input variables
20 40 60 80 100 120 140 160 180 200 220 240 260 0 28 300
o0 |0:00/3/9 0.00/2/5 0.00/2/4 0.00/2/6 0.00/2/6 0.00/2/6 0.00/2/5 0.01/2/5 0.00/2/5 0.00/2/4 0.01/2/7 0.00/2/3 0.01/2/6 0.01/3/8 0.01/2/4
0.15/2/6  |0.20/2/6 0.23/2/5 0.43/2/5 0.46/1/4 0.61/1/4 0.69/1/4 1.21/2/4 1.29/2/4 1.62/1/4 1.75/1/4 2.63/1/4 2.75/2/4 3.30/1/4 3.37/1/4
40 |0:00/520 10.00/4/12  10.01/4/12  [0.01/3/11 0.01/4/15 10.01/3/11 [0.01/3/11 0.02/4/15 [0.01/3/8 0.02/3/10  [0.02/4/11  [0.02/3/9 0.03/3/11 [0.02/3/11  |0.03/3/11
0.19/4/14 |0.34/3/13 |0.66/4/11 |0.91/3/11 |1.39/3/10 |1.60/3/9 2.10/3/9 2.86/3/9 3.80/3/9 4.68/3/9 5.53/3/9 6.67/2/8 7.95/2/8 9.70/2/8 10.40/3/9
2 oo 001832 10.01/6/20 10.02/6/23 [0.02/5/20 0.02/4/15 [0.03/5/22 10.03/4/16 10.03/4/16 [0.04/5/20 [0.04/5/16 [0.04/4/14 10.04/4/14 [0.06/4/15 0.07/6/25 ~[0.05/4/17
5 0.21/6/23  |0.66/5/20 |1.02/4/17 |1.60/4/17 |2.54/4/15 |3.29/4/15 |3.91/4/14 |5.85/4/14 |6.88/4/14 |9.40/4/14 |11.22/4/14 |13.35/4/13 |15.02/3/13 |18.44/4/14 |19.71/3/14
£ |go [001/9/39  f0.02/8/34 10.03/8/35 10.03/7/31 10.04/6/24 10.05/7/30 [0.05/6/28 10.05/5/23 {0.05/5/19 [0.07/6/29 ~ [0.08/6/25 10.11/4/18 0.13/5/20 10.14/5/18 10.13/5/21
S 0.31/7/31 |0.94/6/27 |1.55/6/23 |2.87/5/22 |4.36/5/21 |6.01/5/21 |9.57/5/21 |10.06/5/20 |14.28/5/21 |15.82/5/21 |19.30/5/20 |23.02/4/18 |25.91/4/19 |30.17/4/17 |33.18/4/17
:‘g’ 100 |0:03/14/69 10.02/8/37  0.04/9/40  10.04/7/33  10.06/6/25 [0.06/7/39 [0.07/6/25 [0.07/5/22 10.09/6/28 [0.10/6/26 10.12/6/29 10.16/8/35 [0.14/6/31 0.15/5/21 [0.17/6/28
3 0.37/9/44 |1.12/8/33 |2.15/7/31 |4.54/6/29 |5.78/6/29 |8.25/6/26 |11.57/6/26 |14.40/6/26 |20.12/6/24 |21.78/6/25 |27.96/6/25 |31.78/5/24 |35.69/5/24 |42.99/5/24 |47.46/5/22
B |00 [0-02/14/67 10.03/11/53 [0.05/10/53 [0.06/9/47 [0.07/7/33 10.08/10/49 [0.10/8/39 10.13/8/36  10.13/7/33 10.14/8/34 10.16/8/39 [0.18/8/35 0.18/8/35 [0.18/6/27 0.23/6/29
5 0.50/11/51 |1.69/9/43 |3.27/8/36 |5.68/8/36 |8.12/7/34 |12.43/7/32 |17.66/7/33 |19.41/7/30 |27.60/6/30 |34.57/7/32 |38.23/6/30 |45.51/6/29 |55.03/6/29 |63.59/6/28 |63.22/6/28
Q
E [140[0:04/16/77 [0.05/14/76 10.07/10/47 [0.08/9/42 0.10/10/50 [0.14/11/54 10.15/10/49 10.16/9/44 [0.19/8/39 10.22/9/42 10.22/9/50 10.24/8/43 [0.28/8/43 10.29/9/44  10.31/9/50
2 0.52/13/63 |2.12/10/51 |4.51/10/45 |7.61/9/43 |11.04/9/42 |18.00/8/39 |23.41/8/38 |25.30/8/39 |35.57/8/37 |37.26/7/36 |45.64/8/36 |60.40/8/36 |72.49/7/33 |75.58/7/36 |80.75/7/33
160 | 0-04/18/94 10.06/12/63 10.10/13/61 [0.12/14/74 10.16/12/70 [0.17/11/51 [0.18/10/51 [0.24/11/50 [0.22/10/54 [0.29/10/53 [0.31/10/48 10.34/9/49 [0.38/11/61 |0.42/10/52 [0.52/9/41
0.72/14/73 |2.83/12/59 |5.99/11/52 |11.07/10/48 |16.00/10/47 |26.23/9/46 |31.87/9/44 |39.72/9/43 |50.55/9/43 |56.26/8/42 |69.96/9/42 |87.40/8/40 |94.79/8/40 |105.66/8/41 |114.47/8/39
180 |0-07/21/11310.10/18/99 10.13/15/80 [0.17/15/84 10.19/12/61 [0.21/11/59 [0.23/12/66 [0.31/12/68 0.32/11/56 [0.30/11/60 0.40/11/54 10.46/12/65 [0.45/10/54 [0.52/11/61 [0.53/12/61
1.05/16/83 |3.07/13/64 |6.61/12/61 |13.16/11/58 |18.63/11/55 |28.29/10/51 |31.59/10/51 |44.71/10/49 |53.07/10/48 | 63.32/9/47 |79.32/9/46 |96.70/9/46 |118.29/9/46 |128.90/9/45 |131.19/9/44
200 |0:08/24/13310.10/17/91 0.15/17/90 [0.20/15/77 10.25/15/89 [0.23/12/63 0.26/11/60 [0.37/13/72 10.41/14/78 [0.39/12/63 0.45/12/63 10.50/12/66 [0.51/10/52 [0.58/14/75 [0.62/11/61
1.01/18/94 |4.24/14/74 |8.84/13/68 |17.50/12/63 |23.34/11/59 |33.93/11/57 |44.29/11/58 |54.24/11/56 |67.52/10/54 | 84.97/10/53 | 104.74/10/54 112.62/10/52 129.48/10/52| 154.88/10/5(] 196.61/10/4¢

Tab. 2: CD-Search, 1 iteration results







The dependency of the run times on the two parametersuialized by the graphs in Fig. 1. It should be noted
that the vertical scales are different, because ESBRES in all cases much slower.
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Fig. 1. Dependency of runtimes on the numbers of vassadohd care minterms

For problems with more input variables the differemes still bigger. A problem with 1000 variables and 1000
vectors was solved by C-D in a couple of minutes. ESPREfS&A0t solve the problem at all.

5.3 Standard Benchmarks

A set of standard Berkeley benchmarks [7] was also usezmbifioparison. All these benchmarks use a relatively
small number of inputs. Hence the runtimes needed by-hesé&arch were longer than those of ESPRESSO.

6 Conclusions

A method of single-output Boolean function minimization agtle to problems with large dimensions and
large number of don't care states has been presentdwbugit the Pl generation method is rather
straightforward, the results achieved are comparable BEBPRESSO and the runtimes are shorter. For large
problems with several hundreds of variables the prodmaaits ESPRESSO both in minimality of the result and
in the runtime.
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