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Abstract. The paper presents a minimization algorithm for Boolean functions defined by truth tables. It treats 
only minterms having defined output values and is thus efficient above all in case of highly undefined functions, 
where the methods processing also the don't care states lose much time. The algorithm proves its full strength for 
functions with several hundreds of variables and several hundreds of minterms with defined output values. Its 
programmed version gave in these cases better results (in terms of the minimality of the solution and runtime) 
than the state-of-the-art ESPRESSO. 

 
1 Introduction 

Synthesis of combinational functions with large numbers of input variables is a problem that appears in different 
contexts. It may be encountered e.g. in the design of control systems, where a large number of sensors deliver 
their input data to be processed by an automaton, or in diagnostics of logic circuits, where a sequence of code 
words is to be transformed into the sequence of test patterns. A common feature of those problems is the 
disproportion between the total number of minterms existing for the given number of input variables and the 
number of really used minterms, for which the output value is defined (care minterms). Hence an efficient 
synthesis method, whose time and memory complexity will be acceptable even for large problems with several 
hundreds of input variables and several hundreds of care minterms, is desirable. 

One of the best known and probably the most successful of all programs for minimization of switching 
functions, called ESPRESSO [1], [2], uses a heuristic procedure for local search. This means that starting from 
some initial solution, the procedure tries to improve the quality of the solution through successive modifications. 
These modifications are directed by some quality criterion evaluating the newly reached situation. A similar 
approach was used also in other methods listed in [1], like e.g. [3]. A kind of local search is used also in our 
case, although the heuristic is different. 

 

2 Problem Statement 

Let us have a Boolean function of n input variables F(x1, x2, … xn,), whose output values are defined by a truth 
table. The number of 1-minterms and 0-minterms is equal to u and z respectively, the rest are don't care states. 
The function is highly undefined, i.e. only few of the 2n minterms have an output value assigned (u+v<< 2n). Our 
task is to formulate a synthesis algorithm, which will produce a two-level disjunctive form of F, whose 
complexity is close to the minimal disjunctive form. 

 

3 Prime Implicant Generation 

When generating a prime implicant (PI) for a given function F, we may proceed either by increasing the 
dimensionality of an implicant (which is the usual approach), or by reducing the size of a hypercube which 
contains the PI as its subset. In a special case it may be an implicate of the function F. When reducing the size of 
a hypercube, we must repetitively add literals to its term, until the hypercube becomes an implicant (possibly a 
PI). This happens when no 0-minterm is covered any more. Symmetrically, we generate a PI by removing literals 
from an implicant until we reach its maximum size without covering any 0-minterm. These two principles will 
be used as basis for two implicant generation methods. The first one, denoted as coverage-directed search, 
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combines the implicant generation with solution of the covering problem. The second one is denoted as 
sequential search, because the candidates for rejection from a term are selected one by one. 

 

3.1 Coverage-Directed Search 

First we start with PI generation method based on hypercube reduction. Let us have a single-output Boolean 
function F defined by its on-set and off-set (1-minterms and 0-minterms). As the first step, we select the most 
frequent input literal from the given on-set and use it as a term from which an implicant will be derived. After 
every selection we must verify whether the term already corresponds to an implicant by comparing it with all 0-
minterms. If we obtain an implicant, we record the term and continue searching for other implicants (see below). 
If not, some other literal must be added. We divide the given on-set into two subsets. One subset contains those 
minterms, which cannot be covered by any term containing the selected literal (minterms containing the literal 
with the opposite polarity). This subset will not be considered any more. From the other subset, we again select 
the most frequent literal and add it to the previous one, so we have a two-literal product term. Again we compare 
this term with the 0-minterms and check if it is an implicant. We repeat this procedure until we get an implicant. 
We record this implicant and remove from the original on-set those minterms, which are covered by this 
implicant. Thus we obtain a reduced on-set containing only uncovered minterms. Now we repeat the procedure 
from the beginning selecting the next most frequently used literal, until the whole on-set is covered. The output 
of this algorithm is a sum of product terms, covering all 1-minterms and no 0-minterm. 

When selecting the most frequent literal, it may happen that two or more literals have the same frequency of 
occurrence. In this cases another heuristics could be applied. We construct temporary terms as candidates for 
implicants by adding different literals to the previously selected one(s). From them we select those terms which 
are implicants. This will prevent a useless term prolongation. If there are more or none terms that are implicants, 
the third selection method takes place. For each term we count the number of yet uncovered 1-minterms that 
could be covered by this term and we select the term with maximal count. In other words, we add a literal that 
will prevent covering the least of yet uncovered 1-minterms. When there are still more literals to choose from, 
we select one randomly. 

A certain drawback of this algorithm is that it is greedy. Thus, once a literal is selected, it’s kept till the end of 
the term generation. Therefore the obtained implicants need not be prime. In other words, we have to check 
whether some literals can be removed without any harm. Here the second part of the PI generation algorithm, 
called sequential search, finds its application. 

 

3.2 Sequential Search 

To check the results of the previous search, we may try and systematically remove from each term all literals one 
by one starting from the random position. If the hypercube obtained after removal of one literal does not cover 
any 0-minterm, we make the removal permanent. If, on the contrary, some 0-minterm is covered, we put the 
literal back and proceed to the next literal. After removing all removable literals we obtain one prime implicant 
covering the original term. This algorithm is also greedy. 

The sequential search will not reduce the number of product terms, but it reduces the number of literals in the 
terms by approximately 25% (experimental result). After reducing the number of literals in the terms (and 
therefore extending the range they cover) some implicants may absorb others. Hence solving the covering 
problem is desirable. Yet, this situation doesn’t occur very often. 

There is also a possibility to use an exhaustive search algorithm instead of sequential search. More PIs are then 
generated from the terms and solving the covering problem is thus necessary. This method gives slightly better 
results than the previous one. However, it can be used only for small or highly undefined functions, where the 
number of literals in the implicants obtained from the previous search is small, because the complexity of this 
search algorithm is basically exponential. 

Note: The sequential search and exhaustive search algorithms are also applicable for minimization without 
preprocessing by the coverage-directed search algorithm. However, the minimization process is then much 
slower and less effective (see example). 

 



 3 

3.3 Solution of the Covering Problem 

The covering problem is solved by an algorithm similar to CD-search. First, we prefer implicants covering 
minterms covered by the lowest number of other implicants. If there are more of such implicants, we select 
implicants covering the highest number of yet uncovered 1-minterms. From these primes we select the “shortest” 
ones – terms constructed of the least of literals. When still more primes could be selected, we select one 
randomly. 

 

3.4 Repetitive Minimization 

The minimization process consists of three above-mentioned stages (CD-search, Sequential search and Covering 
problem solution). The results of all these methods more or less depend on random events – when there are more 
possibilities to choose and no selection criterion is available, a random number generator is used. This means, 
that the results are not determined by the input function (as in ESPRESSO), but they are coincidental. Thus, we 
can improve the quality of solution by repeating the whole minimization process several times and choosing the 
best result judging by some criterion (e.g. total number of literals). Or, the program could run in an infinite loop, 
recording the best result found so far, and the program is stopped manually when the solution complies with 
some criterion (like e.g. the total number of literals does not exceed a given limit or the quality of solution does 
not change during a given number of iterations). The practical experience shows that in many cases the result 
converges to the minimal one. The results from one-pass runs and 200-pass runs are compared in the 
comparative example. 
 

4 Illustrative Examples 

In this section we show several simple examples illustrating the three methods. 

 

4.1. CD-Search Example 
 
Let‘s have a partially defined boolean logic function of ten input variables and ten defined minterms given by a 
truth table. Input variables are named x0 ..x9. The 1-minterms are highlighted. 
 
var: 0123456789 
0.   0000000010 1 
1.   1000111011 1 
2.   0000011001 1 
3.   1111011000 0 
4.   1011001100 0 
5.   1111000100 1 
6.   0100010100 0 
7.   0011011011 0 
8.   0010111100 1 
9.   1110111000 1 
 
As the first step of minimization we count the numbers of literals in the input table. The “0”-line and “1”-line 
give counts of xn’  and xn literals respectively. In this table we select the most frequent literal.  
 
var: 0123456789 
0:   3435322444 
1:   3231344222 

 
The most frequent literal is x3‘  with five occurrences. This literal describes a function that is a superset of an 
implicant. This literal alone is not an implicant yet because it covers the 6th minterm in the original function. 
Hence another literal must be added. When searching for the next literal, we can reduce the scope of our search 
by suppressing 1-minterms containing the selected literal with the opposite polarity. An implicant containing a 
literal x3‘ cannot cover the 5th minterm (because it contains the x3 literal). Thus, we temporarily suppress this 
minterm. In the remaining 1-minterms we find the most frequent literal: 
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var: 0123456789 
0.   0000000010 1 
1.   1000111011 1 
2.   0000011001 1 
3.   1111011000 0 
4.   1011001100 0 
5.   1111000100 1  
6.   0100010100 0 
7.   0011011011 0 
8.   0010111100 1 
9.   1110111000 1 
 
var: 0123456789 
0:   343-211433 
1:   212-344122 

 
As there are several literals with maximal frequency of occurrence (x1’ , x5, x6, x7’ ), the second selection criterion 
must be applied. We use them to create four product terms x3‘x1’ , x3‘x5, x3‘x6, x3‘x7’ . First they are checked if 
some of them are already implicants. The term x3‘x5 is not an implicant (it covers the 6th minterm), so it is 
discarded. Now one of the remaining terms representing implicants must be chosen. We choose a term, which 
covers the maximum of yet uncovered (yellow) 1-minterms. Unfortunately, all these implicants cover four 1-
minterms. So one of them is selected randomly – e.g. x3‘x6. This implicant is stored and the search continues. For 
the future search we omit minterms covered by this implicant (blue) and the most frequent literal is selected: 
 
var: 0123456789 
0.   0000000010 1 
1.   1000111011 1  
2.   0000011001 1  
3.   1111011000 0 
4.   1011001100 0 
5.   1111000100 1 
6.   0100010100 0 
7.   0011011011 0 
8.   0010111100 1  
9.   1110111000 1  

 
var: 0123456789 
0:   1111222112 
1:   1111000110 
 
We have three equal possibilities, so we choose one randomly – e.g. x5’ . When we add the x6’  literal we have an 
implicant covering remaining 1-minterms. The resulting form of the function is x3’x6+ x5’x6’ . 
 
4.2 Sequential Search Example 
 
We have the function from the previous example: 
 
var: 0123456789 
0.   0000000010 1 
1.   1000111011 1 
2.   0000011001 1 
3.   1111011000 0 
4.   1011001100 0 
5.   1111000100 1 
6.   0100010100 0 
7.   0011011011 0 
8.   0010111100 1 
9.   1110111000 1 
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Let us suppose that a function 
x1’x3’+x1x5’x7+x3’x4 

is an input for sequential search algorithm. We process all product terms, the order is not significant. We start 
with a term x1’x3’ and try to remove one literal. We remove x1’  and compare the remaining term (x3’ ) with all the 
0-minterms. We’ll find that it collides with the 6th minterm and thus x1’  cannot be removed. We continue with x3’  
literal. It cannot be removed either, because the remaining term covers 4th and 7th minterm. This term cannot be 
reduced any more and thus it is a prime implicant. Now we try to reduce a second term (x1x5’x7). We can find 
that x7 literal can be removed without covering any 0-minterm, hence the original term was not prime. Thus it is 
simplified to x1x5’ . Likewise, we find that the x3’x4 term can be reduced to x4. The function is reduced to 
x1’x3’+x1x5’+x4. This is a sum of prime implicants. 
 

4.3 Covering Problem Solution Example 

We solve the covering problem visualized by a following table: 

       abcdefgh 
1. (3) –X-X-X-- 
2. (4) XX--X-X- 
3. (3) –XX----- 
4. (2) X----X-X 
5. (4) ---X--XX 
 

The lines represent terms entering the algorithm, in the parentheses are the numbers of literals of appropriate 
terms and the columns represent 1-minterms, which must be covered. 

First, we find the implicants covering minterms covered by the lowest number of other implicants. These are the 
2nd and the 3rd implicants, which are necessary for covering the c- and e-minterms. Thus we record them and 
delete from the search set. The covered minterms are removed too. 
 
       abcdefgh 
1. (3) –X-X-X-- 
2. (4) XX--X-X- 
3. (3) –XX--X-- 
4. (2) X----X-X 
5. (4) ---X--XX 

All the remaining 1-minterms are covered by two implicants and all implicants cover two yet uncovered 
minterms. So the shortest one is selected – the 4th implicant with 2 literals. 
 
       abcdefgh 
1. (3) –X-X-X-- 
2. (4) XX--X-X- 
3. (3) –XX--X-- 
4. (2) X----X-X 
5. (4) ---X--XX 
 

Now, the d-minterm must be covered. We select the 1st implicant, because it is shorter than the 5th one. The 5th 
term could be omitted and all 1-minterms will be covered. 

 
       abcdefgh 
1. (3) –X-X-X-- 
2. (4) XX--X-X- 
3. (3) –XX--X-- 
4. (2) X----X-X 
5. (4) ---X--XX 
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5 Experimental Results 

An extensive experimental work was done to evaluate the efficiency of the proposed algorithm, especially in the 
context of problems of large dimensions. The efficiency was compared above all with ESPRESSO. The 
problems solved were above the MCNC benchmarks. As the size of these benchmark problems is relatively 
small, some larger problems had to be prepared.  

The proposed algorithm was programmed in Borland C++ Builder and tested under MS Windows NT. The 
processor used was a Celeron 433 MHz with 160 MB RAM, the runtime was measured in seconds. The quality 
of the results was measured by two parameters: number of product terms (implicants) and total number of 
literals. Although every implementation basis requires different evaluation criteria, these two figures are good 
representatives of the overall complexity of the solution obtained. 

 

5.1 Comparative Example 

First a small example with 10 input variables and 20 care terms, where also the true minimization by Quine-
McCluskey algorithm could be used, was solved by different methods. All methods gave the same results 
(minimal disjunctive form). The runtimes in seconds were the following: sequential search 0.04, exhaustive 
search 0.27, CD-search 0.03, Espresso 0.03 Quine-McCluskey 438.32. 

This example shows the ineffectiveness of the Quine-McCluskey’s algorithm. The computing time is 
unacceptable and for more input variables this algorithm cannot be used. Exhaustive search algorithm is also 
very complex and for more than 20 input variables cannot be used either. 

 

5.2 Comparison of Coverage-Directed Search and Espresso 

The following set of examples show the advantages of the CD-search algorithm. Problems with large number of 
input variables and minterms were solved. The truth tables of single-output functions were generated by random 
number generator, for which only the number of input variables and number of care minterms in the truth table 
were specified. The selection of care minterms and the assignment of output values were made randomly with 
on-set and off-set kept approximately at the same size. For every size of the input table were generated 10 
samples and the average was taken. The results are shown in Tab.1 and Tab.2. The first row of every cell 
contains the CD-search results, the second row shows ESPRESSO results. The entry format is: “time in seconds/ 
#of implicants/ #of literals”. Yellow cells show the cases where CD-search algorithm gave in the average results 
with less or equal number of literals than ESPRESSO. The first table shows the results of Repetitive search with 
200 iterations, the second table shows the results of only one iteration. 
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Number of input variables 

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 

20 
0.27/2/7  
0.15/2/6 

0.39/2/7 
0.20/2/6 

0.44/2/5 
0.23/2/5 

0.58/2/5 
0.43/2/5 

0.70/2/5 
0.46/1/4 

0.79/2/4 
0.61/1/4 

0.85/1/4 
0.69/1/4 

1.22/2/5 
1.21/2/4 

1.20/2/4 
1.29/2/4 

1.04/1/4 
1.62/1/4 

1.62/1/4 
1.75/1/4 

1.09/2/4 
2.63/1/4 

1.84/2/4 
2.75/2/4 

1.70/1/4 
3.30/1/4 

1.99/1/4 
3.37/1/4 

40 
0.68/5/17 
0.19/4/14 

1.01/3/14 
0.34/3/13 

1.29/3/12 
0.66/4/11 

1.61/3/11 
0.91/3/11 

1.89/3/11 
1.39/3/10 

2.27/3/9 
1.60/3/9 

2.49/3/9 
2.10/3/9 

2.92/3/9 
2.86/3/9 

3.29/2/8 
3.80/3/9 

3.74/3/8 
4.68/3/9 

3.85/2/8 
5.53/3/9 

4.18/2/8 
6.67/2/8 

5.23/2/8 
7.95/2/8 

5.95/3/8 
9.70/2/8 

6.54/2/8 
10.40/3/9 

60 
1.63/7/27 
0.21/6/23 

2.27/5/21 
0.66/5/20 

2.74/5/19 
1.02/4/17 

3.66/4/17 
1.60/4/17 

4.46/4/15 
2.54/4/15 

4.65/4/15 
3.29/4/15 

5.88/4/15 
3.91/4/14 

5.72/4/14 
5.85/4/14 

7.30/3/14 
6.88/4/14 

7.60/3/13 
9.40/4/14 

8.17/3/13 
11.22/4/14 

8.81/3/12 
13.35/4/13 

10.53/3/12 
15.02/3/13 

12.16/3/13 
18.44/4/14 

10.88/3/12 
19.71/3/14 

80 
2.54/8/35 
0.31/7/31 

4.06/7/30 
0.94/6/27 

4.84/6/27 
1.55/6/23 

6.59/5/23 
2.87/5/22 

7.36/5/22 
4.36/5/21 

8.77/5/21 
6.01/5/21 

10.27/5/21 
9.57/5/21 

12.47/5/20 
10.06/5/20 

12.75/5/20 
14.28/5/21 

14.04/5/19 
15.82/5/21 

15.15/4/17 
19.30/5/20 

22.80/4/17 
23.02/4/18 

26.88/4/18 
25.91/4/19 

28.38/4/16 
30.17/4/17 

25.67/4/17 
33.18/4/17 

100 
4.62/11/50 
0.37/9/44 

5.84/8/36 
1.12/8/33 

7.91/7/33 
2.15/7/31 

9.76/7/30 
4.54/6/29 

11.38/6/28 
5.78/6/29 

13.57/6/27 
8.25/6/26 

15.13/6/26 
11.57/6/26 

16.75/6/25 
14.40/6/26 

19.53/5/24 
20.12/6/24 

22.51/5/24 
21.78/6/25 

23.88/5/24 
27.96/6/25 

31.51/5/23 
31.78/5/24 

28.60/5/24 
35.69/5/24 

31.63/5/21 
42.99/5/24 

31.36/5/22 
47.46/5/22 

120 
5.05/13/60 
0.50/11/51 

7.83/10/47 
1.69/9/43 

10.42/9/41 
3.27/8/36 

12.81/8/37 
5.68/8/36 

15.26/7/35 
8.12/7/34 

17.23/7/33 
12.43/7/32 

20.45/7/31 
17.66/7/33 

25.13/7/31 
19.41/7/30 

28.00/6/30 
27.60/6/30 

29.24/6/29 
34.57/7/32 

32.28/6/29 
38.23/6/30 

35.96/6/28 
45.51/6/29 

37.73/6/27 
55.03/6/29 

39.67/6/26 
63.59/6/28 

43.72/6/27 
63.22/6/28 

140 
7.43/15/77 
0.52/13/63 

10.77/11/55 
2.12/10/51 

14.53/10/50 
4.51/10/45 

17.02/9/45 
7.61/9/43 

20.95/9/42 
11.04/9/42 

25.32/8/39 
18.00/8/39 

28.31/8/39 
23.41/8/38 

31.46/7/36 
25.30/8/39 

35.05/7/35 
35.57/8/37 

39.34/7/33 
37.26/7/36 

43.02/7/33 
45.64/8/36 

50.58/7/34 
60.40/8/36 

53.69/7/33 
72.49/7/33 

54.54/7/33 
75.58/7/36 

56.78/7/31 
80.75/7/33 

160 
9.33/17/87 
0.72/14/73 

13.96/12/63 
2.83/12/59 

19.42/11/56 
5.99/11/52 

24.50/10/53 
11.07/10/48 

28.79/10/49 
16.00/10/47 

33.64/9/46 
26.23/9/46 

37.55/9/45 
31.87/9/44 

43.58/9/43 
39.72/9/43 

46.64/8/41 
50.55/9/43 

52.11/8/40 
56.26/8/42 

57.21/8/39 
69.96/9/42 

71.56/8/39 
87.40/8/40 

74.34/7/37 
94.79/8/40 

83.44/8/38 
105.66/8/41 

100.44/7/37 
114.47/8/39 

180 
13.84/19/102 
1.05/16/83 

19.96/15/76 
3.07/13/64 

25.44/13/68 
6.61/12/61 

32.98/11/60 
13.16/11/58 

37.59/11/57 
18.63/11/55 

42.86/10/53 
28.29/10/51 

47.69/9/48 
31.59/10/51 

57.58/10/49 
44.71/10/49 

65.49/9/48 
53.07/10/48 

68.21/9/46 
63.32/9/47 

77.08/9/45 
79.32/9/46 

87.89/9/46 
96.70/9/46 

91.01/8/43 
118.29/9/46 

96.34/8/43 
128.90/9/45 

102.32/8/42 
131.19/9/44 

N
u

m
b

e
r 

o
f d

e
fin

e
d

 m
in

te
rm

s 

200 
14.80/21/114 
1.01/18/94 

22.58/16/86 
4.24/14/74 

31.03/14/73 
8.84/13/68 

41.79/12/66 
17.50/12/63 

45.80/11/62 
23.34/11/59 

52.76/11/60 
33.93/11/57 

57.63/11/56 
44.29/11/58 

69.43/10/55 
54.24/11/56 

76.10/10/54 
67.52/10/54 

78.86/10/52 
84.97/10/53 

87.60/10/50 
104.74/10/54 

102.59/10/51 
112.62/10/52 

102.94/9/46 
129.48/10/52 

114.08/9/48 
154.88/10/50 

120.31/9/47 
196.61/10/49 

Tab. 1: Repetitve search with 200 iterations results 
 

Number of input variables 

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 

20 
0.00/3/9 
0.15/2/6 

0.00/2/5 
0.20/2/6 

0.00/2/4 
0.23/2/5 

0.00/2/6 
0.43/2/5 

0.00/2/6 
0.46/1/4 

0.00/2/6 
0.61/1/4 

0.00/2/5 
0.69/1/4 

0.01/2/5 
1.21/2/4 

0.00/2/5 
1.29/2/4 

0.00/2/4 
1.62/1/4 

0.01/2/7 
1.75/1/4 

0.00/2/3 
2.63/1/4 

0.01/2/6 
2.75/2/4 

0.01/3/8 
3.30/1/4 

0.01/2/4 
3.37/1/4 

40 
0.00/5/20 
0.19/4/14 

0.00/4/12 
0.34/3/13 

0.01/4/12 
0.66/4/11 

0.01/3/11 
0.91/3/11 

0.01/4/15 
1.39/3/10 

0.01/3/11 
1.60/3/9 

0.01/3/11 
2.10/3/9 

0.02/4/15 
2.86/3/9 

0.01/3/8 
3.80/3/9 

0.02/3/10 
4.68/3/9 

0.02/4/11 
5.53/3/9 

0.02/3/9 
6.67/2/8 

0.03/3/11 
7.95/2/8 

0.02/3/11 
9.70/2/8 

0.03/3/11 
10.40/3/9 

60 
0.01/8/32 
0.21/6/23 

0.01/6/20 
0.66/5/20 

0.02/6/23 
1.02/4/17 

0.02/5/20 
1.60/4/17 

0.02/4/15 
2.54/4/15 

0.03/5/22 
3.29/4/15 

0.03/4/16 
3.91/4/14 

0.03/4/16 
5.85/4/14 

0.04/5/20 
6.88/4/14 

0.04/5/16 
9.40/4/14 

0.04/4/14 
11.22/4/14 

0.04/4/14 
13.35/4/13 

0.06/4/15 
15.02/3/13 

0.07/6/25 
18.44/4/14 

0.05/4/17 
19.71/3/14 

80 
0.01/9/39 
0.31/7/31 

0.02/8/34 
0.94/6/27 

0.03/8/35 
1.55/6/23 

0.03/7/31 
2.87/5/22 

0.04/6/24 
4.36/5/21 

0.05/7/30 
6.01/5/21 

0.05/6/28 
9.57/5/21 

0.05/5/23 
10.06/5/20 

0.05/5/19 
14.28/5/21 

0.07/6/29 
15.82/5/21 

0.08/6/25 
19.30/5/20 

0.11/4/18 
23.02/4/18 

0.13/5/20 
25.91/4/19 

0.14/5/18 
30.17/4/17 

0.13/5/21 
33.18/4/17 

100 
0.03/14/69 
0.37/9/44 

0.02/8/37 
1.12/8/33 

0.04/9/40 
2.15/7/31 

0.04/7/33 
4.54/6/29 

0.06/6/25 
5.78/6/29 

0.06/7/39 
8.25/6/26 

0.07/6/25 
11.57/6/26 

0.07/5/22 
14.40/6/26 

0.09/6/28 
20.12/6/24 

0.10/6/26 
21.78/6/25 

0.12/6/29 
27.96/6/25 

0.16/8/35 
31.78/5/24 

0.14/6/31 
35.69/5/24 

0.15/5/21 
42.99/5/24 

0.17/6/28 
47.46/5/22 

120 
0.02/14/67 
0.50/11/51 

0.03/11/53 
1.69/9/43 

0.05/10/53 
3.27/8/36 

0.06/9/47 
5.68/8/36 

0.07/7/33 
8.12/7/34 

0.08/10/49 
12.43/7/32 

0.10/8/39 
17.66/7/33 

0.13/8/36 
19.41/7/30 

0.13/7/33 
27.60/6/30 

0.14/8/34 
34.57/7/32 

0.16/8/39 
38.23/6/30 

0.18/8/35 
45.51/6/29 

0.18/8/35 
55.03/6/29 

0.18/6/27 
63.59/6/28 

0.23/6/29 
63.22/6/28 

140 
0.04/16/77 
0.52/13/63 

0.05/14/76 
2.12/10/51 

0.07/10/47 
4.51/10/45 

0.08/9/42 
7.61/9/43 

0.10/10/50 
11.04/9/42 

0.14/11/54 
18.00/8/39 

0.15/10/49 
23.41/8/38 

0.16/9/44 
25.30/8/39 

0.19/8/39 
35.57/8/37 

0.22/9/42 
37.26/7/36 

0.22/9/50 
45.64/8/36 

0.24/8/43 
60.40/8/36 

0.28/8/43 
72.49/7/33 

0.29/9/44 
75.58/7/36 

0.31/9/50 
80.75/7/33 

160 
0.04/18/94 
0.72/14/73 

0.06/12/63 
2.83/12/59 

0.10/13/61 
5.99/11/52 

0.12/14/74 
11.07/10/48 

0.16/12/70 
16.00/10/47 

0.17/11/51 
26.23/9/46 

0.18/10/51 
31.87/9/44 

0.24/11/50 
39.72/9/43 

0.22/10/54 
50.55/9/43 

0.29/10/53 
56.26/8/42 

0.31/10/48 
69.96/9/42 

0.34/9/49 
87.40/8/40 

0.38/11/61 
94.79/8/40 

0.42/10/52 
105.66/8/41 

0.52/9/41 
114.47/8/39 

180 
0.07/21/113 
1.05/16/83 

0.10/18/99 
3.07/13/64 

0.13/15/80 
6.61/12/61 

0.17/15/84 
13.16/11/58 

0.19/12/61 
18.63/11/55 

0.21/11/59 
28.29/10/51 

0.23/12/66 
31.59/10/51 

0.31/12/68 
44.71/10/49 

0.32/11/56 
53.07/10/48 

0.30/11/60 
63.32/9/47 

0.40/11/54 
79.32/9/46 

0.46/12/65 
96.70/9/46 

0.45/10/54 
118.29/9/46 

0.52/11/61 
128.90/9/45 

0.53/12/61 
131.19/9/44 

N
u

m
b

e
r 

o
f d

e
fin

e
d

 m
in

te
rm

s 

200 
0.08/24/133 
1.01/18/94 

0.10/17/91 
4.24/14/74 

0.15/17/90 
8.84/13/68 

0.20/15/77 
17.50/12/63 

0.25/15/89 
23.34/11/59 

0.23/12/63 
33.93/11/57 

0.26/11/60 
44.29/11/58 

0.37/13/72 
54.24/11/56 

0.41/14/78 
67.52/10/54 

0.39/12/63 
84.97/10/53 

0.45/12/63 
104.74/10/54 

0.50/12/66 
112.62/10/52 

0.51/10/52 
129.48/10/52 

0.58/14/75 
154.88/10/50 

0.62/11/61 
196.61/10/49 

Tab. 2: CD-Search, 1 iteration results
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The dependency of the run times on the two parameters is visualized by the graphs in Fig. 1. It should be noted 
that the vertical scales are different, because ESPRESSO is in all cases much slower. 
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Fig. 1. Dependency of runtimes on the numbers of variables and care minterms 

For problems with more input variables the difference was still bigger. A problem with 1000 variables and 1000 
vectors was solved by C-D in a couple of minutes. ESPRESSO did not solve the problem at all. 

 

5.3 Standard Benchmarks 

A set of standard Berkeley benchmarks [7] was also used for comparison. All these benchmarks use a relatively 
small number of inputs. Hence the runtimes needed by the C-D search were longer than those of ESPRESSO. 

 

6 Conclusions 

A method of single-output Boolean function minimization applicable to problems with large dimensions and 
large number of don't care states has been presented. Although the PI generation method is rather 
straightforward, the results achieved are comparable with ESPRESSO and the runtimes are shorter. For large 
problems with several hundreds of variables the program beats ESPRESSO both in minimality of the result and 
in the runtime. 
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