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Abstract. Logic optimization is a process that takes a logic circuit description (Boolean network) as an input and tries 

to refine it, to reduce its size and/or depth. An ideal optimization process should be able to devise an optimum 

implementation of a network in a reasonable time, given any circuit structure at the input. However, there are cases where 

it completely fails to produce even near-optimum solutions. Such cases are typically induced by non-standard circuit 

structure modifications. Surprisingly enough, such deviated structures are frequently present in standard benchmark sets 

too. We may only wonder whether it is an intention of the benchmarks creators, or just an unlucky coincidence. Even 

though synthesis tools should be primarily well suited for practical circuits, there is no guarantee that, e.g., a higher-level 

synthesis process will not generate such unlucky structures. Here we present examples of circuit transformations that lead 

to failure of most of state-of-the-art logic synthesis and optimization processes, both academic and commercial, and suggest 

actions to mitigate the disturbing effects. 

INTRODUCTION 

Logic synthesis and optimization [1] is a process transforming an initial circuit description (be it RTL or gate-level) 

into a structure suitable for the final implementation in the target technology (ASIC, FPGA). 

Efficient algebraic and Boolean logic synthesis and optimization methods have been developed already in 1980s 

[1] and implemented in an academic synthesis tools SIS [2]. The academic state-of-the-art is now the And-Inverter 

Graph [3] based tool ABC [4], whose development still continues. 

The synthesis process is believed to be mature and it is supposed to be efficient enough for practical applications. 

However, recently there emerged hints that it crucially fails for some circuits, mostly due to improper circuit 

descriptions given as an input [5, 6, 7]. In particular, insufficiency of logic optimization and technology mapping has 

been reported in [5], where artificial benchmark circuits were constructed by obscuring their original structure and 

enlargement by decomposition. Similar cases were reported in [6] and [7], showing inability of tools to discover 

obscured XOR gates. In both cases, results up to two orders of magnitude larger the optimum were produced. 

Even though such unlucky circuits were artificially constructed, there are several reasons why the logic synthesis 

community should be concerned: 1) an ideal synthesis process should be able to efficiently cope with any circuit 

description, regardless any disturbing structural changes. 2) Unsuitable circuit descriptions may emerge in a good 

intention of a designer [8]. 3) Such cases appear in standard benchmark sets too [9]. We may wonder why this happens; 

was it intention to test capabilities of synthesis tools, or were these descriptions generated just incidentally? 

We present some simple circuit transformations retaining the functional equivalence, that are “lethal” for logic 

synthesis, show their severity, and propose possible ways of coping with them. 

CIRCUIT TRANSFORMATIONS 

Several example circuit transformations will be studied in this section, and their impact on synthesis tools will be 

evaluated next. Unfortunately, more comprehensive results and analyses are not present due to the page limitation. 



The first presented transformation is the Network Collapsing. Since most of the tested benchmark circuits are 

of multi-level origin, collapsing them into a two-level sum-of-products (SOP) form will completely destroy their 

original structure and hinder all the effort of their designers (in case they were originally well designed). 

It is well known that the circuit size can grow exponentially with the number of its inputs by this process. We may 

ask whether the synthesis will be able to re-discover the original structure, or the result size will immensely grow too. 

Another case could be a bad description of the original circuits, where collapsing could even help. 

The second transformation which can increase the circuit size exponentially is a Transformation into BDD. 

By constructing a canonical global BDD (Binary Decision Diagram [10]), the original circuit structure will be 

completely destroyed too. A logic network consisted of multiplexers can be directly constructed from a BDD. 

Also a Blind Decomposition into Simple Gates will increase the circuit size, assumed that the original circuit 

description contained more complex gates, like XORs and multiplexers. A blind (spontaneous, uninformed) 

decomposition will obscure the presence of such gates, thus, again, we may ask whether the synthesis will be able 

to re-discover the original implementation. Note that such a transformation does not destroy the multilevel circuit 

structure at all; it just introduces another, misleading structural information. 

Finally, the transformations can be combined. In particular, the network collapsing can be followed 

by decomposition into simple gates. Actually, exactly the same process has been used in [5] to destroy original 

structures of some circuits and increase their size by decomposition and introduce a misleading multi-level structure. 

EXPERIMENTAL RESULTS 

For the experiments we have used a mix of standard logic synthesis benchmarks coming both from academia and 

industry [9, 11, 12, 13, 14, 15] comprising 490 circuits of sizes ranging up to tenths of thousand FPGA look-up tables 

(LUTs) after synthesis. In our experiments, the source circuits have undergone the respective transformation, were 

submitted to the synthesis, and then the results were compared to results obtained by the synthesis of the original 

benchmark circuits. 

The ABC ‘collapse’ command was used for collapsing. For BDD transformation, the BDD manipulation package 

CUDD [16] was used to construct a global BDD and dump it into a network of multiplexers. SIS ‘tech_decomp –a 2’ 

command was used to perform a blind decomposition into 2-input AND gates and inverters. 

A comparison of the sizes of the original and transformed circuits from the benchmark mix, in terms of the number 

of literals, is shown in Figure 1 for the BDD transformation and in Figure 2 for “collapse” followed by “tech_decomp”. 

Each dot in the graphs represents a single circuit. We can see that in most cases the size increase can be observed 

(72% for BDD, 79% for collapsing), sometimes by more than three and two orders of magnitude respectively (6,000- 

and 700-times respectively), for the two processes. However, in some cases such a transformation actually decreased 

the size (up to more than 80- and 32-times respectively). These were probably the cases referred to in the following 

section. 

 

 

FIGURE 1. Circuit size change after transformation into BDD  

 

FIGURE 2. Circuit size change after “collapse” 

and “tech_decomp” 
 

The impact of the studied circuit transformations to both academic and industrial tools will be evaluated next. The 

state-of-the-art representative of academic logic synthesis tools is ABC [4]. Results of only LUT mapping will be 

shown in this paper, however, similar results were obtained from standard cells mapping as well. In particular, the 

best known LUT synthesis script ‘strash; dch; if; mfs’ suggested by ABC authors [4] was used, run iteratively 
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(repetitively) 20 iterations (chosen as a good compromise between run-time and result quality) and a “synthesis 

overkill”, 5000 iterations of the same script with permutations applied in each iteration [17], to show results that can 

ever be obtained by conventional synthesis, at expense of extreme run-time (up to weeks). Next, two commercial 

LUT-mapping tools (#1, #2) were exercised. 

The synthesis results are shown in Figure 3 and Figure 4, for all the four processes and two transformations. Ideally, 

all the solutions should be situated at the diagonal line – the case where equal solutions are produced by synthesis, 

regardless any transformation. We can see that this is far from the truth; all the tools have been found sensitive to the 

transformation, both in positive and negative ways. Generally, the tools are sensitive to the size of the input description 

in this case; the “bigger” circuit description is submitted to synthesis, the bigger will the result be. 

 

 

FIGURE 3. Comparison of sizes of synthesized original and transformed circuits – BDD transformation 
 

 

FIGURE 4. Comparison of sizes of synthesized original and transformed circuits – “collapse” + “tech_decomp” 

LETHAL CASES IN STANDARD BENCHMARK SETS 

We have shown that in many cases both enlarging and destroying the original benchmark circuit structure leads 

to an unacceptable synthesis result size increase. However, circuits probably processed in the same way are rather 

frequently present in standard benchmark sets too. For example, circuits in the IWLS’93 benchmark set [9] are 

decomposed into a network of inverters and AND and OR gates, probably in a very inefficient way (unknown to the 

authors, since it is not documented). Collapsing the network into a SOP will significantly help in many cases (in 40%); 

the observed maximum size decrease after collapsing and synthesis was 20-fold. 

Also, XOR intensive circuits (‘alu4’, ‘t481’, ‘xor5’) are often presented in their collapsed form in standard 

benchmark sets [10, 14]. This yields a significant size blowup, when synthesis tools are not able to discover the XORs. 

NON-LETHAL TRANSFORMATIONS AND REMEDIAL ACTIONS 

We have shown that some circuit transformations, like SOP collapsing, BDD transformation, or “blind” 

decomposition, increase the circuit size and the synthesis result size is accordingly increased too, which is not 

welcome. There are also transformations that increase the circuit size too, but synthesis is able to efficiently cope with 

them. A trivial case would be addition of a chain of inverters; we can increase the circuit size arbitrarily, however, the 

inverter chains will be efficiently eliminated by any synthesis. 

Another, less trivial case is shared logic replication [18]. The circuit size can be significantly increased, up to a 

complete elimination of any branching. We have observed that ABC is completely immune to this transformation, the 

two tested commercial tools are sensitive only insignificantly [18]. 

In general, a designer should avoid actions that increase the circuit size, otherwise a result size increase should be 

expected. Next, a proper decomposition could mitigate the effects of some transformations [19]. For example, the 

BDS decomposition tool [20] is able to efficiently re-discover XOR gates eliminated by network collapsing. 



CONCLUSIONS 

Several simple circuit transformations increasing the circuit size were presented. We have shown that the source 

circuit size increase induces proportional synthesized result size increase, even in case of an extreme-effort synthesis.  

Of course, this applies to some transformations and some circuits only; there are transformations that are not lethal 

to synthesis, there are circuits that are immune to some transformations, and also there are special synthesis processes 

that can eliminate the effects of transformations for some circuits. But still, there remains an open field and a big 

challenge for research; the ultimate logic synthesis process should not exhibit any structural bias and produce 

near-optimum results for arbitrary circuit descriptions. This is definitely not the case of contemporary academic and 

commercial tools. 
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