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Abstract. A synthesis flow oriented on producing the delay-insensitive dual-rail asynchronous logic is 

proposed. Within this flow, the existing synchronous logic synthesis tools are exploited to design technology 

independent single-rail synchronous Boolean network of complex (AND-OR) nodes. Next, the 

transformation into a dual-rail Boolean network is done. Each node is minimized under the formulated 

constraint to ensure hazard-free implementation. Then the technology dependent mapping procedure is 

applied. The MCNC and ISCAS benchmark sets are processed and the area overhead with respect to the 

synchronous implementation is evaluated. The implementations of the asynchronous logic obtained using the 

proposed (with AND-OR nodes) and the state-of-the-art (nodes are designed based on DIMS, direct logic, 

NCL) network structures are compared. A method, where nodes are designed as simple (NAND, NOR, etc.) 

gates is chosen for a detailed comparison.  In our approach, the number of completion detection logic inputs 

is reduced significantly, since the number of nodes that should be supplied with the completion detection is 

less than in the case of the network structure that is based on simple gates. As a result, the improvement in 

sense of the total complexity and performance is obtained. 
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1. INTRODUCTION  

Asynchronous logic attracts an increasing interest 

of designers because asynchronous (delay-insensitive - DI) 

circuits are extremely robust. This means, the design is able 

to adapt to variations of manufacturing process parameters, 

gate and wire delays, temperature changes, noise, etc. [1]. 

The correct function is guaranteed, only the operational speed 

changes adaptively. Furthermore, a DI paradigm is very 

similar to synchronous one and generally, the DI design 

process follows the same steps as in synchronous logic 

design. As a result, it enables the developed DI design flow to 

be more easily incorporated into the design industry, since 

the tools and design processes are familiar to designers. The 

DI design process can be easier implemented, since a 

minimal delay analysis is required to ensure the circuit 

correct behavior. DI paradigm has additional advantages in 

designing complex circuits including substantially reduced 

crosstalk between analog and digital circuits, ease of multi-

rate circuits cooperation, facilitation of component reuse. 

The general disadvantages of DI asynchronous circuits 

with regard to the synchronous ones are high area and huge 

power consumption overheads, although the thermal 

distribution is uniform across the chip. 

We propose a synthesis flow of multi-level DI dual-rail 

implementation. It is based on exploiting synchronous logic 

synthesis tools to produce a single-rail Boolean network of a 

two-level (AND-OR) nodes, and further transformation of the 

network into a dual-rail one. Based on results [18], each node 

is designed as a hazard-free structure. Finally, the 

technology-dependent mapping procedure is applied. For the 

comparison, several state-of-the-art methods are considered, 

where nodes are designed based on DIMS [13], direct logic 

[11], and NCL [15]. For the detailed comparison, the method 

[17], where each single-rail Boolean network node is 

designed as a simple gate (NAND, NOR, etc.) was chosen. 

We believe that this method is the closest one to our 

approach. Although [17] is supposed for designing some 

other class of circuits, it is clear that the method can easily be 

adapted for DI logic synthesis. Indeed, the Boolean network 

[17] is designed as a dual-rail hazard-free logic. The 

indication of the new input state and internal stability can be 

done using the completion detection (CD) logic proposed 

in this paper. 

The main disadvantage of the method [17] is a large 

number of nodes that should be supplied with the CD – the 

completion detection must be provided for each simple gate. 

It is not the case of our approach, where the number of nodes 

of the synthesized Boolean network is significantly less than 

in [17]. Therefore, in our approach, the CD logic complexity 

is reduced, although the Boolean network implementation 

complexity may be slightly increased (to ensure hazard-free 

implementation of the AND-OR nodes).  As a result, the 

improvement in sense of the total complexity and 

performance is obtained. The other approaches to CD 
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optimization can be found in the literature. Namely, in [30], 

the optimization method based on the evaluation of the gates 

relative timing was proposed. In [31], the method in a cost-

aware manner was described. 

The rest of the paper is organized as follows. In Section 2, 

the review of the related works is given. The information and 

notations regarding dual-rail logic is presented in Section 3. 

Also, details of DI logic behavior rules that are based on 

Seitz’s strong and weak constraints are described. Section 4 

is devoted to the description of the model with modified 

weak constraints. Next, the node minimization constraint to 

ensure hazard-free implementation is formulated and the 

structure of the dual-rail network is proposed. Examples 

illustrating the state-of-the-art and our approaches are given. 

It is shown that our approach produces networks with 

significantly less number of signals the CD logic is supplied 

with. Section 5 describes the technology-independent and 

technology-dependent synthesis procedure. Experimental 

results are given in Section 6. Statements summarizing the 

results conclude the paper.  

2. RELATED  WORK 

The asynchronous logic is classified depending on the 

mode of interaction with the environment. In the input-output 

mode, the environment is allowed to change the input state 

once a new output state is produced. There is no assumption 

about internal signals and the environment is allowed 

to change the input state before the circuit is stabilized 

in response to the previous input state. 

In the fundamental mode (assumed in this paper, too), the 

logic operates based on the following discipline: the 

environment changes the input state once the output state has 

changed in response to the current input state and each gate 

inside the circuit is stable. Both design methodologies 

assume either bounded (a maximal value is known) or 

unbounded (a maximal value is unknown) gate and wire 

delays.  

In case of the fundamental mode with bounded delays, the 

moment when the environment may change the input state is 

estimated based on the worst case propagation delay [3]. 

Within this model, only one input signal can be changed at a 

time. In [4], a generalized fundamental mode was proposed, 

where multiple input changes are allowed during a narrow 

time interval. For such a mode, a method of hazard-free two-

level implementation was published [5]. A multi-level 

hazard-not-increasing transformation is applied to optimize 

the implementation [6]. Methods of hazard-free technology 

mapping were proposed in [7] and [8].  

In case of the unbounded delays, the asynchronous logic 

should be capable of:  

1) recognizing the moment when a new input state 

(generated by the environment) appears on the inputs and the 

moment when the circuit generates a new output state 

in response to the input one; 

2) notifying the environment of new input and output 

states. After receiving the notification, the environment can 

generate the next input state.  

To solve this problem, m-of-n codes of length n are used 

for states encoding, where each valid state is represented by 

ones in m positions and zeroes in the rest of (n-m) ones  [2].  

Among them, 1-of-2 (or dual-rail) as well as 1-of-4 

encodings have been of special interest. The other 1-of-n 

encodings are rather expensive, since their implementation 

requires more wires than the dual-rail one. In this paper, the 

dual-rail state encoding is used. 

A four-phase behavior discipline is supposed: to change 

an input state, the environment should reset it first (change to 

so called spacer state). The output state resets too, as a result. 

After that the environment sets a new input state. It implies a 

new output state. The behavior rule is based on Seitz’s strong 

or weak constraints [9], [10]. Under the strong constraints, 

each output changes its state only when all inputs have 

changed their state. Under the weak constraints, some outputs 

are permitted to change their state when some (not all) inputs 

have changed their state.  In the case of strong constraints, 

output signals also serve as the completion detection ones and 

indicate the moment when both internal and output signals 

become stable. In case of weak constraints, output signals 

may also serve as the completion detection, if they are able 

to indicate the state of all input signals. Otherwise, an 

additional completion detection block is required to ensure a 

proper indication [11]. In [12], the distribution of the 

completion detection between the outputs is proposed 

to minimize the implementation cost. Also, the completion 

detection must indicate the moment when internal signals 

become stable.  

The dual-rail implementation under the four-phase 

discipline is based on Delay-Insensitive Minterm Synthesis 

(DIMS) technique [13]. Within it, a function is implemented 

as a two-level structure with C-elements on the first level and 

an OR gate on the second one. The DIMS cost is very high, 

since the minimization of the number of product terms is not 

allowed. Therefore, 2k minterms (where k is the number 

of C-element inputs) must be generated to implement each 

function’s positive and negative forms, where each minterm 

is implemented using a k-input C-element. Finally, the 

C-element is more complex than a simple gate. 

The implementation of the two-level C-OR logic as a 

single CMOS gate (Direct Logic) significantly reduces the 

area [11]. 

A similar approach is based on using threshold functions 

(Null Convention Logic-NCL). NCL circuits are designed 

based on 27 library gates that are capable of implementing 

any function of four or less inputs [15]. In the case of dual-

rail logic, each literal is considered as a separate variable. 

Therefore, not any single-rail function of more than two 

inputs can be implemented in NCL; the feasibility of a 

function implementation depends on the number of literals 



in its dual-rail representation.  

Multi-level implementations of the dual-rail asynchronous 

logic were proposed in [14] and [17]. These methods are 

based on the initial circuit decomposition into simple (AND, 

OR, NOR, NAND, etc.) two-input gates. Further, each gate is 

mapped into DIMS [13] or implemented by a threshold gate 

[14]. It results in not only high complexity of the circuit 

implementation (in sense of the area), but also in a low 

performance, since each simple gate (single level structure) is 

implemented as a two-level (AND-OR, C-OR) structure. 

In [17], each simple gate is doubled to implement dual-rail 

logic. Compared to the synchronous implementation, the 

circuit cost doubles. 

Desynchronization [16] is a modern paradigm that is 

based on adopting synchronicity to the asynchronous logic 

design. If bounded delays are supposed, matched delays are 

introduced for the synchronization purpose. In case 

of unbounded delays, extra completion detection logic should 

be present to indicate the circuit stability.  A network of local 

controllers is designed to provide proper local 

synchronization signals, resulting in an additional area 

penalty. Finally, the circuit is equipped with output latches 

and a new output state is available only once a latch signal 

enables.  

Our approach is based on the combination and extension 

of methods [15, 17]. Namely, we propose the Boolean 

network multi-level implementation, where complex gates 

of general nature (represented as a two-level structure) are 

produced and transformed into the dual-rail logic. 

3. PRELIMINARIES 

3.1. Single and Dual-Rail Encoding 

Let F = {f1, f2, …, fq} be a multi-output function 

of n primary inputs X: X = {x1, x2, … , xn} and q primary 

outputs. Let Y = {y1, y2, …, ym},  f1, f2, …, fq   Y,  m ≥ q, be a 

set of single-output Boolean nodes obtained as a result of a 

decomposition of F. Each node function yc depends on given 

k or less number on inputs: yc = yc(zc1, zc2 , …, zck), | yc | ≤ k,  

zc1, zc2 , …, zck  {X  Y\{ f1, f2, …, fq, yc}}. We call it a single-

rail multi-level implementation. In [17], the node is a simple 

gate (NOR, NAND, etc). In our case it may also be a 

two-level (AND-OR) complex node (Figure 1a). Usually, a 

single-rail representation is obtained as a result of the 

synchronous logic synthesis and optimization. 

 

 

a) 

 

b) 

Figure 1. Single– (a) and dual-rail (b) multi-level Boolean 

network 

In dual-rail logic, it is supposed that each node input from 

the set Z = {zc1, zc2,…, zck} and the node output yc may be 

in one of these three states: states 1, 0 (so called working 

states) or undefined (spacer state). To implement a three-state 

input zi, two signals zi(1) and zi(0) are introduced, where 

zi(1) = 1 and zi(0) = 0, if zi is in state 1, zi(1) = 0 and zi(0) = 1 

if zi is in state 0, zi(1) = zi(0) = 0 if xi is in the spacer state. 

The combination zi(1) = zi(0) = 1 is not allowed. Similarly, 

to implement a three-state node function, the function yc, 

c = 1, 2,…, m, should be represented in both positive yc(1) 

and negative yc(0) forms. If yc(1) = 1, yc(0) = 0, then the 

function yc is in state 1, if yc(1) = 0, yc(0) = 1, then the 

function yc is in state 0, if yc(1) = yc(0) = 0, then the function 

yc is in the spacer state. The combination yc(1) = yc(0) = 1 is 

not allowed. To change the input state, the environment 

should reset it first to the spacer state and after that set it 

to the proper working state.  In the reset phase, the output 

state changes from the working state to the spacer one and 

in the set phase the new output state is recognized.  

In the dual-rail logic (Figure 1b), each function yc is 

represented as a pair:  yc = (yc(1), yc(0)), where yc(1), yc(0) 

describe its ON-, OFF- sets (yc(0) can be generated as a 

complement to the ON-set).  Therefore, each function yc can 

be represented as a Sum-Of-Product terms (SOP) of both 

positive yc(1) and negative yc(0) forms: yc(1) = t1+t2+…+ts, 

yc(0) = ts+1+ts+2+…+tp, c = 1, 2,…, m,  p  2k, where ti are 

product terms containing n or less literals, i = 1, 2,…, p,    

ti  tj = Ø, for (ti,  tj): ti  yc(1) and tj  yc(0).  



3.2. Strong and weak constraints 

In the fundamental mode, the DI logic operates under so 
called strong or weak constraints [10]. Timing diagrams 
depicting behavior rules under strong and weak constraints 
are presented in Figure 2.  

 

Figure 2. Behavior rules under strong (a) and weak (b) 

constraints 

The diagrams depict inputs X and outputs F state changes 

in time t along with input/output states dependency. Each 

input and output may be either in a working (high level) or a 

spacer (low level) state. Vertical shading depicts time 

intervals, where input and output states are going from the 

spacer to a working state and vice versa. 

Under the strong constraints (Figure 2a), the behavior rule 

is as follows:  

1. If all inputs are in the spacer state, then all outputs are 

going to the spacer state; 

2. If all inputs are in a working state, then all outputs are 

going to a working state. 

 

Under the weak constraints (Figure 2b), some outputs are 

permitted to change their states when some (not all) inputs 

have changed their states:  

1. If some inputs are in a working state, then some 

outputs are going to a working state; 

2. If all inputs are in a working state, then all outputs are 

going to a working state; 

3. If some inputs are in the spacer state, then some 

outputs are going to the spacer state; 

4. If all inputs are in the spacer state, then all outputs are 

going to the spacer state. 

 

In both cases, it is supposed that the states of all outputs 
depend on the state of all inputs. However, in some cases, the 
state of outputs can be determined based on the state of some 
(not all) inputs. For example, consider a function 
f(1) = x1(1) + x1(0)x2(0). If x1(1) = 1, then independently 
of the input x2 state, the function f = 1. Based on this 
observation, one can modify the (weak) constraints as 
follows: if some inputs are in the working/spacer state then 
some or even all outputs are going to the working/spacer 
state. In Section 4 it will be shown, that under such a 
modification, the product term minimization is allowed. 

4. MODEL BASED ON MODIFIED WEAK CONSTRAINTS 

4.1. Behaviour Rule 

To design the minimized two-level AND-OR logic, we 
introduce the model with modified weak constraints [18] 
under the following behavior rules (Figure 3): 

1. If some inputs are in a working state then all outputs 

are going to a working state; 

2. If all inputs are in a working state then all outputs 

remain in a working state; 

3. If some inputs are in the spacer state then all outputs 

are going to the spacer state; 

4. If all inputs are in the spacer state then all outputs 

remain in the spacer state.  

 

 

Figure 3.  Behavior rule under modified weak constraints 

The structure consists of two blocks (Figure 4): 
a two-level AND-OR structure and the CD logic. Since 
minimization is allowed, the AND-OR structure is 
implemented by less than 2n product terms (p < 2n - Figure 4) 

and product terms may contain less than n literals: |S(tk)|  n, 
where S(tk) is a set of term tk literals (input signals), k = 1, 2 
,…, p. Note, that outputs are not capable of indicating the 
states of all inputs, because output states may depend on 
some (not all) inputs. Furthermore, since multi-output 
functions are supposed, an additional signal is required to 
indicate the moment when all outputs are in a proper state 
(working or spacer). Therefore, the completion detection 
logic with an output signal D is introduced. The signal D 
switches on, when both inputs and outputs are in a working 
state.  



 

Figure 4. Dual-rail two-level logic 

4.2. Monotonicity and Hazard-Free Implementation 

The proposed structure is based on the concept 

of monotonicity of the nodes introduced in [17] and a 

hazard-free implementation of each two-level (AND-OR) 

node proposed in [18]. 

4.2.1 Monotonicity 

A node implementing the function yc = yc(zc1, zc2 , …, zck) 

is positive, if for each input zc , zc  {zc1, zc2 , …, zck} in its 

local fan-in it holds the following: if the input zc is set to 1 

(0), then the function yc is set to 1 (0). A node implementing 

function yc is negative, if for each input zc in its local fan-in it 

holds the following: if the input zc is set to 1 (0) then the 

function yc is set to 0 (1). The node is monotonic if it is either 

positive or negative. 

The node monotonicity is easily achieved by the dual-rail 

encoding [17].  

4.2.2 Hazard-Free Implementation 

To satisfy the proper behavior rules (see Subsection 4.1) 
and therefore ensure the hazard-free implementation, product 
terms within both ON- and OFF-sets must be orthogonal, i.e., 
a Disjoint Sum-Of-Products (DSOP) is supposed for their 
implementation [18], [29]. Based on [18], the following 
theorem is valid: 

Theorem 1. The behavior of any function fc (Figure 4), fc  F, 

does not violate the behavior rule (Section 4.1) iff:  ti  tj = Ø 

(the terms are orthogonal), for (ti,  tj): ti, tj  fc(1) and ti, t j 

 fc(0). 

Proof. Necessity. Suppose, that ti    tj ≠ Ø. Terms ti, tj can’t 

belong to different sets fc(1), fc(0), since fc(1)  fc(0) = Ø. 

Therefore, either ti, tj  fc(1) or ti, tj  fc(0). First, suppose ti, 

tj  fc(1). Consider the circuit fragment containing ANDj 

gates connected to an OR gate implementing the function 
fc(1) (Figure 5a). Let S(ti) be a set of  term ti literals (input 

signals). Define a joint set S(tij): S(tij) = S(ti)  S(tj). Let S(X) 
be a set of input signals that switch on once inputs switch to a 
given working state. For example, given input working state 
is: x1(1) = x2(0) = 1. Then S(X) = {x1(1), x2(0)}. Suppose: 

S(tij)  S(X) and: 1) a signal xl(u) has the longest switching 
delay among the signals of set S(ti); 2) a signal xr has the 
longest switching delay among the signals of set S(tj),  

xl(u)  S(ti), xr(u)  S(tj), u{0,1}. When the signal xl(u) 
switches on, then the ANDj gate output switches on. 
Similarly, when the signal xr(u) switches on, then the ANDj 
gate output switches on. As a result, signal 1 propagates 
through two paths: ANDi - OR, ANDj - OR. Suppose that the 
sum of the signal xl(u) switching delay and the path ANDi-
OR delay is shorter than the sum of the signal xr(u) switching 
delay and the path ANDj - OR delay. In this case, the signal 1 
propagating through the path ANDi - OR switches the output 
fc(1) on (the output fc goes to the working state). 

 

Figure 5. Necessity conditions: a) circuit, b) timing diagram 

Now suppose that any signal xa(u)  S(ti) switches off (the 
input xa goes to the spacer state). It implies switching the 
ANDi gate output off.  As a result, the signal 0 propagates 
through the path ANDi-OR and the function fc(1) switches off 
(the output fc goes to the spacer state). Due to a longer 
propagation delay, the signal 1 propagating through the path 
ANDj - OR may switch the output fc(1) on again and later off 

due to switching any signal  xb(u)  S(tj) off  (erroneous pulse 
- Figure 5b). It violates the behavior rule (“if some inputs are 
in the spacer state then some outputs are going to the spacer 
state and remain in this state”). The above conclusion is 

valid, if  ti, tj  fc(0) . 

Sufficiency. Again consider the same circuit fragment 



(Figure 6a). Suppose: ti  tj = Ø, ti, tj  fc(1). Then, 

S(tj)  S(X) because of ti  tj = Ø and in contrast to the 
previous case, there is only one path (Figure 6a, bold line) for 
the signal propagation to the output. 

Therefore, if signals from the set S(ti) switch on, then the 

ANDi gate output switches on and, in turn, the output fc(1) 

switches on (Subsection 4.1, rule 1). Once any signal xa(u)  

S(ti) switches off then the output fc(1) switches off 

(Subsection 4.1, rule 3) (Figure 6b). As a result, the behavior 

of any function fcF doesn’t violate the behavior rule 

(Subsection 4.1). This conclusion is valid for a function fc(0), 

if  ti, tj  fc(0). ∎  

 

Figure 6. Sufficiency conditions: a) circuit, b) timing 

diagram 

4.3. Dual-Rail Multi-Level Network 

Given a multi-level Boolean network (Figure 1a) obtained 

as a result of synchronous synthesis. The network is 

transformed into a dual-rail (Figure 1b) hazard-free one (the 

procedure will be given in the Subsection 5.1). The structure 

consists of two blocks (Figure 7): the functional one 

implementing the Boolean network as a multi-level logic 

using two-level AND-OR single-output nodes having a fan-in 

limited to 2k (remember, once given a single-rail node, then 

in dual-rail each input is represented as two separate inputs) 

and the CD logic that is obtained by merging the CDs of all 

nodes. The CD should indicate the proper state (working or 

spacer) of the network and of primary inputs and outputs. The 

CD logic is based on (n+m) C-elements together with (n+m) 

two-input OR gates, where n is number of primary inputs and 

m the number of nodes (including the ones generating q 

primary outputs). The CD signal D (Figure 7) is going up, 

when both primary inputs and node outputs are all in a 

working state and going down when all the signals mentioned 

are in the spacer state. 

Note, that this structure guarantees DI implementation 

even if the functional block is designed as a network 

of simple nodes as proposed in [17]. It gives an opportunity 

to consider the implementation (Figure 7) exploiting dual-rail 

network from [17] as a state-of-the-art and compare the 

proposed DI implementation with it. As mentioned before, 

our approach benefits from the significantly less number 

of CD input signals. It results in reduction of the complexity 

of the CD block. Although in the case of two-level nodes the 

functional block complexity is slightly increased, the total 

complexity is reduced. 

 

 

Figure 7. Dual-rail multi-level Boolean network with the CD 

logic 

4.4. Examples 

Let us consider an example of two implementations. The 

first implementation is based on the method [17], where the 

functional logic is represented as a Boolean network 

of simple (NAND, NOR, etc.) gates. The second one is based 

on the approach that we propose, where nodes may be 

implemented as a two-level logic that satisfies the constraint 

formulated in Theorem 1. 

Given a single-rail circuit (Figure 8a), where c’ means a 

complement of the signal c. Following [17], the dual-rail 

logic is produced and the CD logic is designed as given 

in Subsection 4.3. It results in the implementation shown 

in Figure 9. One can immediately see that the number of CD 

inputs is 8. However, one can easily notice that a group 

of NAND gates can, in fact, be treated as a three-input 

complex NAND-NAND node (shown in Figure 8b in bold), 

which is equivalent to an AND-OR structure. Such a node 

can be implemented as a four-input complex node (Figure 10) 

in dual-rail logic (remember, an input and its complement are 

treated as two separate inputs). Note, that it is described 

by the function with orthogonal terms (ce + c’d) and 



therefore is hazard-free (Theorem 1). The complement node 

(ce’ + c’d’) is also described by a function with orthogonal 

terms. Note, that the complement  function obtained using  

the transformation, proposed in [17] and shown in Figure 9, 

is as follows: ((e’ + c’)’(c + d’)’)’ = ce’ + e’d’ + c’d’ and  

contains an additional term e’d’. However, these two 

functions are equivalent, because in the working state the 

term e’d’ is redundant, but in the spacer state it produces a 

zero value, because all signals are in the spacer state. 

One can see that the functional block complexity remains 

the same. However, the CD block implementation will be 

simpler, since it is supplied with 6 inputs only.  

 

 

 

Figure 8. The circuit representation: a) as a simple gate 

logic; b) with a two-level complex node  

 

 

Figure 9. The implementation based on simple gates 

 

 

 

Figure 10. The implementation based on complex gates 



5. SYNTHESIS  

5.1. Technology-Independent Synthesis 

The proposed procedure of synthesis of the multi-level 

dual-rail logic with AND-OR nodes is based on tools ABC 

[19] used for multi-level synthesis, Espresso [20] minimizing 

two-level (represented as AND-OR structure) nodes, and 

DSOP [21] used to obtain two-level nodes with orthogonal 

terms. 

We start with an initial circuit description. First, an ABC 

script is applied to it, to obtain a multi-level single-rail 

Boolean network with the fan-in of each node limited to a 

given k. For this purpose, we have decided to use a LUT 

mapping synthesis process, since each LUT is actually 

represented as a single-output AND-OR node with a limited 

number of inputs (in the BLIF format generated by ABC 

[22]). 

We have used a sequence of ABC commands 

recommended for the LUT synthesis in the ABC reference 

guide [19] (Figure 11). The “choice” script performs a 

technology-independent optimization of the network. Then, 

the “fpga” command maps the network into k-input LUTs. 

Finally, possibly redundant LUTs are removed 

by “lutpack”. This command sequence was repeated 

10-times, to obtain better results. 

choice 

fpga –K k 

lutpack 

 

Figure 11. The LUT mapping script. Substitute k for the 

maximum node fan-in 

An alternative way of producing a network of arbitrary 

k-input nodes is to construct a technology library of all 

k-input functions and perform the technology (standard-cell) 

mapping by the ABC command “map”. Then the mapped 

library gates can be transformed back into their SOP 

representation by, e.g., the “sweep” command. The overall 

synthesis process will be then as follows: 

read_library k-gates.genlib 

choice 

map 

sweep 

 

Figure 12. The standard cells mapping script. Substitute k for 

the maximum node fan-in 

Apparently, such an approach is feasible for smaller k’s 

only (up to 4), due to a double-exponential growth of the 

number of functions. However, using this approach at least 

for k = 2 was a necessity, since the “fpga” command does 

not support 2-LUT mapping. 

After the single-rail synthesis, transformation into a 

dual-rail network is done. The procedure includes the 

following steps: 

1) a complement (OFF-set) node for each (ON-set) node 
is computed by the algorithm used in Espresso [20]. 
As a result, the number of nodes is doubled; 

2) each ON-set and OFF-set node is minimized 
by Espresso, since the LUT mapping process does not 
care about the SOP minimization and the Espresso 
complementation algorithm does not always return 
minimum results; 

3) each AND-OR node is orthogonalized by DSOP [21], 
to ensure the hazard-free behavior (Theorem 1). 
Simple nodes (like AND, OR, NAND, XOR etc) need 
not be orthogonalized, since they are implemented as 
single gates; 

4) single-rail signals are replaced by dual-rail ones. As a 
result, each node function may depend on up to 2k 
inputs (since each signal and its complement one are 
represented as separate rails). 

Another issue emerging in the dual-rail logic design with 

two-level nodes is a possibility of sharing of product terms 

between the nodes (except of pairs of ON- and OFF-set 

nodes, where the OFF-set node is a complement to the ON-

set node, since such two sets must be orthogonal). In the 

dual-rail network, shared product terms are identified and 

implemented only once.  

5.2. Technology-Dependent Synthesis 

In the case of technology-dependent synthesis, we 

estimate the complexity of the functional network and the 

completion detection logic separately. Then, the total 

complexity is calculated. To avoid additional inverters and 

therefore decrease the implementation complexity, we use 

negative (NAND-NAND) gates instead of AND-OR ones 

in the functional block and NOR gates instead of OR ones 

in the completion detection logic. As a result, the signal 

D = 1, when all inputs and outputs are in the spacer state and 

D = 0 for the working state.  

We suppose a library of k-input NAND and NOR gates, 

k-input C-elements, 2-input XOR gates, and inverters. The 

network obtained as a result of the technology-independent 

synthesis (see Subsection 5.1) may include logic that can’t be 

mapped into the above library, namely the number of the 

node second level NAND gate inputs may exceed the given k, 

since the node may be described by more than k terms (up to 

2k/2, for the XOR function). In this case the NAND gate is 

decomposed into a tree of NAND gates of k or less inputs and 

inverters are placed to ensure the functionality. Note, that the 

node logic remains hazard-free, since the transformation 

doesn’t violate the orthogonality of the product terms. 

Therefore, once the NAND gate is decomposed and mapped 

into a tree of NAND gates, the output of the last NAND gate 



only should be connected to completion detection logic.  The 

technology-dependent implementation (with the technology 

limit k = 2) of a node having a 3-input NAND gate is shown 

in Figure 13.  

Next, the number of C-element inputs is (n+m), which 

will definitely exceed k for non-trivial designs. Thus, the 

(n+m) input C-element is transformed into a delay-optimum 

tree structure of k–input C-elements (Figure 13) by a 

topological traversal of the dual-rail network. The topological 

ordering is determined by computing the actual signal arrival 

times of each complex node output. Outputs of nodes with 

the lowest arrival times and primary inputs, which have zero 

arrival time by definition, are connected to C-elements first. 

The topological ordering is updated by including the signal 

arrival times of the produced C-elements outputs as well as 

removing connected node outputs and primary inputs. The 

procedure is repeated, until primary output D is constructed. 

The idea behind this procedure is as follows: the higher 

input signal arrival time is, the closer to the C-elements 

structure top gate it should be connected, and vice versa. This 

decreases the signal propagation time. The best possible 

arrival time of D is obtained this way. Note, that although the 

CD logic is a tree, it may not be a balanced tree. The signals 

arrival times affect significantly the tree structure. 

Finally, note that NAND gate decomposition into a tree of 

k - (or less) input NANDs and inverters is based on the same 

iterative procedure as for C-elements. 

5.3. State-of-the-Art Synthesis for Comparison 

For the sake of a just comparison, we have implemented 

the approach described in [17] as follows. 

First, we have processed the initial network by the ABC 

“choice” script and mapped onto a library of standard 

k-input gates (AND, OR, NAND, NOR, XOR, XNOR) by the 

“map” command. Only 2-input XOR and XNOR gates were 

used, since standard cell libraries usually do not contain 

XORs of more inputs. The “choice; map” sequence was 

repeated 10-times, as in the proposed method. 

The dual-rail logic was obtained by duplicating the 

network, while substituting all the gates by their negated 

counterparts. 

Technology-dependent synthesis is guaranteed, no gate 

having more than k inputs may emerge, except of the 

C-elements structure, which is implemented in the same way 

as described in the Subsection 5.2. 

Also, the network was implemented based on DIMS, 

direct logic [13] and NCL [15] for comparison. As for DIMS 

and direct logic, the LUT mapping procedure described 

in Subsection 5.1 was used, to obtain a network of k-input 

nodes. Since the NCL logic allows implementation of gates 

up to 4 inputs, only the 2-input nodes mapping process (see 

Subsection 5.1) was used. Generally, a k-input node, k > 2, 

may depend on 2k > 4 variables in the dual-rail logic, thus 

cannot be implemented in NCL. 

 

Figure 13. Technology-dependent implementation  (k = 2) 

6. EXPERIMENTAL RESULTS 

6.1. Experimental background 

We have processed the MCNC [23] and ISCAS [24], [25] 
sets of benchmarks, 228 circuits altogether. We evaluate the 
complexity (expressed as the number of the transistors) and 
the performance (by summarizing gates logical efforts [26] 
within the critical path) of the proposed asynchronous 
implementation of these circuits and compare it to the state-
of-the-art [13], [15], [17].  

We suppose a technology dependent synthesis (fan-ins 

of NAND gates and C-elements do not exceed a given k). 

Suppose, given a library of k-input NAND and NOR 

gates, 2-input XOR gates and inverters. The gate complexity 

is estimated as follows: a k-input NAND or NOR gate 

requires 2k transistors, the inverter cost is 2 transistors and 

the 2-input XOR gate cost is 10 transistors, finally, the 

k-input C-element cost is 4(k+1) transistors [26]. 

Logical efforts of several typical gates are as follows: 

inverter: 1 (by definition, the logical efforts of other gates are 

calculated in the inverter logical effort units), NAND: (k+2)/3 

units. NOR: (2k+1)/3 units, C-element: k units, where k is the 

number of gate inputs. 

Consider a two-level complex node obtained as a result 

of technology-independent synthesis. Its k’-input OR gate 

(second level) is decomposed (by applying 

technology-dependent decomposition procedure - see 

Subsection 5.2) and mapped into a tree of NAND gates, 



k’ > k, where k is the technology limit. Within each iteration 

of this procedure, k inputs are removed and a single output is 

added and treated as a new input in the next iteration. 

Therefore, (k - 1) inputs are removed from the list until a list 

containing a single C-element output (primary output D) is 

constructed. As a result, the number of NAND library 

(k-input of less) gates required to map k’-input NAND gate is 

calculated using following formula: 
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As a result, the total complexity of the k’-input NAND 

gate tree is: 
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Now we calculate the complexity of the completion 

detection logic. To implement an (n+m)-input C-element, 

4(n+m+1) transistors are required. If n+m > k, the C-element 

should be decomposed into a tree of k-input C-elements. 

In case of a balanced tree, its complexity is: 
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To implement (n+m) two-input NOR gates, 4(n+m) 

transistors are required. The total complexity of the 

completion detection logic for an n-input multi-level logic 

with m nodes is: 
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Note, that the complexity of the sequential logic memory 

(flip-flops, latches) is not included in the results; only 

combinational parts of the circuits are assumed. 

The area of nodes implemented as DIMS and direct logic 

[13] was computed as follows: 

TABLE I.  COMPLEXITY OF OTHER IMPLEMENTATIONS 

Inputs DIMS [13] Direct Logic [15] 

2 24 22 

3 64 34 

4 160 54 

5 384 90 

6 896 158 

 

The NCL implementation is based on a network 

containing NAND and XOR logic. Library gates TH22 and 

THand0 [15] are used to implement NAND logic and its 

complement. Gates TH22 and THand0 total complexity is 21 

transistors. XOR logic and its complement implementation 

require two TH24comp gates with the total complexity 24 

transistors. 

6.2.  Selection of  k 

The first issue addressed in the experiments is a proper 

choice of k (maximum node fan-in). Nodes with a high fan-in 

are difficult to be implemented in technology. On the other 

hand, small k’s induce more nodes, which makes the 

completion detection logic more complex. Therefore, some 

kind of trade-off should be found. 

We have synthesized the asynchronous dual-rail logic 

for all the 228 benchmark circuits, for k = 2, 3, 4, 5, 6. Both 

LUT and standard cells mapping processes were tested, for 

sake of a just comparison. 

Note, that both processes do the same job: they construct 

a network of arbitrary k-input single-output functions. Just 

the mapping procedure is different. 

The results are shown in TABLE II. Summary numbers 

of transistors and logical efforts for the 228 circuits are 

shown, for different k’s and the two mapping processes 

(“k-map” and “k-fpga”). 

TABLE II.  INFLUENCE OF K  ON THE SIZE OF THE RESULTING LOGIC 

Process Transistors Logical effort 

2-map 3,191,136 6,586.33 

3-map 2,361,086 5,343.67 

4-map 2,275,860 4,942.67 

3-fpga 2,271,142 5,376.33 

4-fpga 2,191,972 4,955.33 

5-fpga 2,349,356 4,952.00 

6-fpga 2,615,018 4,933.33 

 

We can see that using 4-input gates yield the smallest 



summary area, both for standard cells and LUT mapping. We 

have found by a detailed analysis, that for 78% of circuits 

k = 4 gave better results than k = 3 and for 56% of circuits 

k = 4 was better than k = 5. Therefore, we can conclude that 

k = 4 should be considered for synthesis. However, k = 3 will 

be considered in the final experiments too, since the total area 

and performance differences from k = 4 are not so big. 

Since the LUT mapping using the “fpga” command 

gave slightly better results than “map” (both in the area and 

performance), LUT mapping by “fpga” will be used 

in further experiments.  

Obviously, the higher k, the less logical effort is. The 

figures are given in the “Logical effort” column. 

6.3. Summary Results 

Summary comparison results for all the 228 circuits are 

shown in TABLE III. and TABLE IV. for the area (in sense 

of the number of the transistors) and performance (in sense 

of logical effort), respectively. The total areas over all the 

228 circuits for the proposed complex nodes, simple nodes, 

DIMS, direct logic, and NCL are shown in TABLE III. , from 

the second till the last column. Average size differences 

between the first method and the others are shown, too. 

Similarly, the total logical efforts for the method [17] and 

the proposed one are given in TABLE IV. second and third 

columns. The average difference is shown in the last column. 

Positive difference values indicate an advantage of our 

method. Compared to the mentioned state-of-the-art methods, 

in many cases, our method gives better result in sense of the 

area. 

We can see that the DIMS implementation is heavily 

inferior to all the others for k > 2, which is expectable.  

The average size difference between our method and the 

direct logic is negative even for k = 4, however, we have 

observed that this is indifferently caused by several 

XOR-intensive circuits, whose direct logic implementation is 

much smaller. The absolute value of the number of transistors 

is less for our method. 

Unfortunately it is impossible to make a representative 

comparison with NCL, since more complex NCL gates are 

not available. 

Next, more detailed comparison w.r.t. the method [17], as 

the closest one to our approach will be done.  

We can observe opposite tendencies in the area growth 

for [17] and our method: while the area of the method [17] 

decreases with increasing k, in our method it grows from 

k = 3. This can be explained by a simple fact: since only 

simple gates are used in the former one, the complexity of the 

asynchronous logic is proportional to the synchronous one. 

Designs with more-input gates are definitely simpler. On the 

other hand, complex nodes are used in our method. The 

number of SOP terms of each node may grow exponentially 

with k, similarly to DIMS. Therefore, the total complexity 

increases with k. 

The average area consumed by our method is less than 

that of [17] for k = 3 and 4. The area differences obtained 

from all the 228 circuits are shown in Figure 14 for k = 3, 

where the area difference is most apparent. Each column 

in the figure represents one circuit. 

The area was reduced in 76% of circuits, sometimes 

significantly (up to 84% for the cordic circuit, see TABLE V. 

We have observed that the area reduction mostly occurs for 

XOR-intensive and hard-to-synthesize circuits. The 

maximum area increase was only 25%. 

Similar conclusion can be done regarding the logical 

effort. Although in 34% of circuits the logical effort is 

increased (by up to 28%), in most cases our method gives 

better results (see TABLE IV. ). The highest average logical 

effort reduction (3.8%) is achieved for k = 3 as well. The 

logical effort reductions for all the 228 circuits are shown in 

Figure 15. 

6.4. Detailed Results 

Detailed results for some of the 228 benchmarks are 

shown in Tables V-VIII.  We have selected 10 largest 

benchmarks, plus 8 benchmarks, where the highest area 

improvement is achieved. These two sets are separated by a 

double-line in the Tables.  

Area calculation. TABLE V. Presents the area results for 

k = 3. After the benchmark name the numbers of its inputs (n) 

and outputs (q) are indicated. The complexities 

of synchronous implementations are shown in the next 

column, in terms of the number of transistors. 

 

 

Figure 14. Area differences for 228 circuits, k = 3 



 

Figure 15. Logical effort differences for 228 circuits, k = 3 

The complexity of the proposed asynchronous multi-level 

implementation of the benchmarks is shown next. 

Complexities of the functional logic (“Funct. trans.”) and the 

completion detection logic (“CD trans.”) are shown first, 

then the values are summed together to obtain the total 

asynchronous logic complexity (“Total trans.”). The area 

increase of the asynchronous logic w.r.t. the synchronous 

implementation is shown in the next column (“Overh.”). 

 Complexities of the asynchronous multi-level 

implementation proposed in [17] are shown in the next triplet 

of columns. Again, the functional, completion detection and 

total complexities are given. The area reduction obtained 

by our method, w.r.t. [17], is shown in the last table column 

(“Diff.”). 

Average values of the area overhead and area difference 

computed from all the 228 circuits are shown in the last row. 

Performance calculation. As already mentioned before, 

the logical effort calculation is done within a critical path 

by summarizing the logical efforts of gates on the path. The 

calculation results for k = 3 are shown in TABLE VI. The 

format is partially retained from TABLE V. , only the 

numbers of transistors are substituted by the logical effort 

values. Note that the CD logic performance is given as the 

number of levels. One can easily express it as the logical 

effort units multiplying the number of levels by k, since a 

single level (implemented by a k-input C-element) logical 

effort equals to k. 

Note that the signals within the functional and CD logics 

propagate in parallel. The total logical effort is obviously 

higher than the functional logic one, however, generally, less 

than a sum of the logical efforts of the functional and CD 

logics.  

Area and logical effort results for k = 4 are shown 

in TABLE VII. and VIII respectively.  

7. DISCUSSION AND CONCLUSIONS 

A novel synthesis flow of the dual-rail asynchronous 

multi-level logic is proposed. The logic is implemented as a 

monotonous multi-level network of minimized AND-OR 

nodes together with the CD logic. Each node is a hazard-free 

structure. We have formulated an additional minimization 

constraint (the SOP terms must be mutually orthogonal) for 

that purpose. 

The proposed method offers a possibility of designing 

asynchronous circuits using both synchronous design tools 

and standard target technology used in synchronous designs. 

This is not the case of, e.g., NCL or direct logic, where 

special gates are used. The advantage of the proposed method 

over [17] is a reduction of the complexity of the CD logic. 

This can decrease both the total area and, more importantly, 

increase the performance, since the CD logic together with 

the functional logic form the critical path. 

Additionally, since nodes are implemented as SOPs, 

sharing of terms as well as gate trees in the technology 

dependent implementation is possible. This is not the case of 

the other methods (NCL, direct logic), as each node is 

implemented as a monolithic gate there. 

The MCNC and ISCAS benchmarks were processed and 

the complexity and performance of the logic obtained using 

the proposed and the state-of-the-art methods are compared. 

We have found experimentally, that compared to [17], our 

method gives better results in sense of performance 

(improvement up to 4% for 4-input gates). Also, mappings 

into 3- or 4-input gates are the most efficient ones, in sense 

of the area (compared to [17], the improvement is more than 

6% for 4-input gates).  

Even though the average area/performance improvements 

are not too striking, the proposed method is better than [17] 

in the majority of tested benchmarks (76% in area, 66% in 

performance). 

Note that the final design area/performance strictly 

depends on the synchronous optimization and mapping 

processes. We have observed that some circuits are “easier” 

for LUT mapping than for standard gates mapping (e.g. the 

cordic circuit), and vice versa. This is also one of the reasons 

for the small summary improvements we have measured – 

extreme cases exist on both sides. This fact clearly 

documented in the experimental section. 

The proposed method offers a possibility of using any 

synthesis process and it treats the result in the best possible 

way. 

We can conclude that, if the proposed method taken as an 

alternative way of asynchronous logic synthesis, better 

designs can be achieved. 

Let us also mention the scalability of the method. The 

scalability is determined by the scalability of the synchronous 

logic synthesis tools used, which is considered to be 



sufficient even for large industrial designs. The only possible 

bottleneck introduced is the orthogonalization phase. 

However, if gates of up to 6 inputs are considered (which is 

the industrial practice), no significant design time overhead 

can be expected. 
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TABLE III.  SUMMARY COMPARISON – AREA  (NUMBER OF TRANSISTORS) 

k 

Proposed 

 
Simple gates [17] DIMS [13] Direct logic [11] NCL [15] 

Transistors Transistors Avg. diff. Transistors Avg. diff. Transistors Avg. diff. Transistors Avg. diff. 

2 3,191,136 3,235,712 2% 2,896,824 -18% 2,655,422 -29% 2,551,032 -34% 

3 2,271,142 2,504,552 6% 3,871,184 35% 2,210,690 -14% N/A N/A 

4 2,191,972 2,218,362 2% 6,122,136 59% 2,326,294 -6% N/A N/A 

5 2,349,356 2,160,442 -5% 10,191,848 73% 2,747,548 2% N/A N/A 

6 2,615,018 2,115,466 -14% 17,309,296 80% 3,470,240 12% N/A N/A 

TABLE IV.  SUMMARY COMPARISON – LOGICAL EFFORT 

k Proposed Simple gates [17] Average difference 

2 6,546 6,586 0% 

3 5,376 5,442 0.9% 

4 4,955 5,214 3.8% 

5 4,952 5,168 3.1% 

6 4,933 5,123 2.6% 

TABLE V.  DETAIED RESULTS, K =  3, AREA 

   Synch. Proposed asynchronous Simple gates [17] 

  n q Trans. 
Funct. 

trans. 

CD 

trans. 

Total  

trans. 
Overh. 

Funct.  

trans. 

CD  

trans. 

Total 

trans. 
Diff. 

apex2 39 3 11,550 23,168 22,604 45,772 74.8% 26,040 30,836 56,876 19.5% 

c6288 32 32 13,112 22,742 9,212 31,954 59.0% 21,896 26,444 48,340 33.9% 

des 256 245 14,866 30,358 24,124 54,482 72.7% 25,160 35,956 61,116 10.9% 

mainpla 27 54 19,334 37,646 24,700 62,346 69.0% 26,468 36,452 62,920 0.9% 

misex3 14 14 13,094 25,930 21,716 47,646 72.5% 28,164 34,372 62,536 23.8% 

prom1 9 40 33,836 61,152 42,364 103,516 67.3% 43,308 57,356 100,664 -2.8% 

s35932 1763 2048 41,256 82,654 61,988 144,642 71.5% 58,000 79,804 137,804 -5.0% 

s38417 1664 1742 37,480 74,606 65,548 140,154 73.3% 62,340 103,292 165,632 15.4% 

s38584.1 1464 1730 44,444 90,704 72,484 163,188 72.8% 76,060 118,916 194,976 16.3% 

too_large 38 3 16,236 32,676 31,252 63,928 74.6% 29,164 36,940 66,104 3.3% 

rd84 8 4 2,368 4,326 3,508 7,834 69.8% 5,632 6,124 11,756 33.4% 

c6288 32 32 13,112 22,742 9,212 31,954 59.0% 21,896 26,444 48,340 33.9% 

shift 19 16 554 1,100 796 1,896 70.8% 1,132 1,892 3,024 37.3% 

vg2 25 8 436 882 1,004 1,886 76.9% 1,248 1,804 3,052 38.2% 

z4ml 7 4 194 364 220 584 66.8% 484 644 1,128 48.2% 

ex4p 128 28 3,726 7,500 6,940 14,440 74.2% 12,336 15,820 28,156 48.7% 

t481 16 1 2,142 4,294 3,524 7,818 72.6% 7,648 10,084 17,732 55.9% 

cordic 23 2 1,808 3,396 3,028 6,424 71.9% 17,036 21,916 38,952 83.5% 

Average:       74.1%    6.1% 



TABLE VI.  DETAIED RESULTS, K =  3, PERFORMANCE 

   Synch. Proposed asynchronous Simple gates [17] 

  n q 
Logical 

effort 

Funct. 

logical 

effort 

CD levels 

Total 

logical 

effort 

Funct. 

logical 

effort 

CD levels 
Total logical 

effort 
Diff. 

apex2 39 3 22.0 23.7 9 29.3 19.0 7 26.3 -11.4% 

c6288 32 32 128.0 132.7 10 136.3 140.3 10 144.3 5.5% 

des 256 245 26.3 25.7 6 34.3 25.0 6 34.3 0.0% 

mainpla 27 54 35.0 39.3 9 45.7 43.7 8 51.0 10.5% 

misex3 14 14 20.3 21.0 7 29.0 17.7 7 26.0 -11.5% 

prom1 9 40 23.3 24.3 7 33.0 26.7 10 35.7 7.5% 

s35932 1763 2048 16.7 17.0 7 29.0 18.3 8 32.0 9.4% 

s38417 1664 1742 33.7 35.3 7 42.0 31.7 7 42.7 1.6% 

s38584.1 1464 1730 34.7 36.7 9 40.3 31.7 8 37.3 -8.0% 

too_large 38 3 25.3 26.3 8 31.3 22.3 7 29.0 -8.0% 

rd84 8 4 20.3 20.0 5 25.3 14.3 5 21.7 -16.9% 

c6288 32 32 128.0 132.7 10 136.3 140.3 10 144.3 5.5% 

shift 19 16 8.0 8.0 5 15.7 10.7 4 19.7 20.3% 

vg2 25 8 12.0 13.3 4 19.3 12.0 4 18.3 -5.5% 

z4ml 7 4 10.0 10.7 2 15.7 12.0 3 17.7 11.3% 

ex4p 128 28 17.3 20.3 5 25.7 14.3 7 22.0 -16.7% 

t481 16 1 22.3 24.3 4 28.0 20.0 5 23.7 -18.3% 

cordic 23 2 23.7 23.0 6 27.7 19.3 7 25.7 -7.8% 

Average:          0.9% 



TABLE VII.  DETAIED RESULTS, K =  4, AREA 

   Synch. Proposed asynchronous Simple gates [17] 

 n q Trans. 

Funct. 

trans. 

CD 

trans. 

Total 

trans. Overh. 

Funct. 

trans. 

CD 

trans. 

Total 

trans. Diff. 

apex2 39 3 12,592 27,324 14,740 42,064 70.1% 22,092 22,548 44,640 5.8% 

c6288 32 32 20,134 34,116 5,860 39,976 49.6% 22,640 22,532 45,172 11.5% 

des 256 245 23,522 45,990 16,596 62,586 62.4% 28,316 30,100 58,416 -7.1% 

mainpla 27 54 19,538 40,540 15,876 56,416 65.4% 26,252 31,748 58,000 2.7% 

misex3 14 14 15,598 32,520 15,604 48,124 67.6% 27,516 26,596 54,112 11.1% 

prom1 9 40 42,766 73,850 26,364 100,214 57.3% 42,692 49,180 91,872 -9.1% 

s35932 1763 2048 40,104 75,900 48,156 124,056 67.7% 58,000 70,940 128,940 3.8% 

s38417 1664 1742 47,116 100,684 48,668 149,352 68.5% 61,236 87,588 148,824 -0.4% 

s38584.1 1464 1730 49,136 105,124 52,356 157,480 68.8% 75,592 103,748 179,340 12.2% 

too_large 38 3 17,366 36,616 21,948 58,564 70.3% 28,464 27,588 56,052 -4.5% 

cordic 23 2 1,630 3,390 1,564 4,954 67.1% 3,372 3,700 7,072 29.9% 

shift 19 16 598 1,264 708 1,972 69.7% 1,132 1,684 2,816 30.0% 

cht 15 11 592 1,256 900 2,156 72.5% 1,300 1,812 3,112 30.7% 

c8 28 18 498 1,066 676 1,742 71.4% 1,088 1,468 2,556 31.8% 

mux 21 1 206 428 356 784 73.7% 516 644 1,160 32.4% 

b12 15 9 258 542 380 922 72.0% 644 860 1,504 38.7% 

f51m 8 8 412 836 284 1,120 63.2% 1,092 1,172 2,264 50.5% 

vg2 25 8 354 848 628 1,476 76.0% 1,632 1,924 3,556 58.5% 

Average:             69.5%       1.5% 

TABLE VIII.  DETAIED RESULTS, K = 4, PERFORMANCE 

   Synch. Proposed asynchronous Simple gates [17] 

 n q 
Logical 

effort 

Funct. 

logical 

effort 

CD levels 

Total 

logical 

effort 

Funct. 

logical 

effort 

CD levels 
Total logical 

effort 
Diff. 

apex2 39 3 20.7 22.3 4 28.0 21.7 4 27.3 -2.4% 

c6288 32 32 126.7 136.7 4 140.3 134.3 7 138.0 -1.7% 

des 256 245 25.0 25.0 5 33.0 21.3 5 30.3 -8.8% 

mainpla 27 54 27.0 31.7 5 38.3 45.3 5 49.7 22.8% 

misex3 14 14 19.0 20.7 4 27.7 18.3 7 24.7 -12.2% 

prom1 9 40 21.3 24.3 7 31.3 27.3 6 33.7 6.9% 

s35932 1763 2048 12.7 13.3 6 23.0 18.3 7 30.0 23.3% 

s38417 1664 1742 29.3 31.3 6 41.0 33.0 6 40.7 -0.8% 

s38584.1 1464 1730 28.3 30.7 6 34.3 33.3 5 37.0 7.2% 

too_large 38 3 20.7 22.3 5 27.7 21.7 6 26.3 -5.1% 

cordic 23 2 20.7 25.0 4 28.7 21.7 4 26.7 -7.5% 

shift 19 16 8.3 10.0 3 15.7 10.7 3 18.0 13.0% 

cht 15 11 5.7 6.0 2 12.7 7.0 4 14.0 9.5% 

c8 28 18 8.7 10.0 3 14.3 10.3 3 16.0 10.4% 

mux 21 1 11.3 13.0 3 16.7 11.0 2 14.7 -13.6% 

b12 15 9 6.3 7.0 2 12.7 11.0 3 15.0 15.6% 

f51m 8 8 10.0 11.0 3 16.0 12.3 3 18.0 11.1% 

vg2 25 8 12.0 15.0 5 19.0 12.3 3 17.3 -9.6% 

Average:                   3.8% 

 


