
Dual-Rail Asynchronous Logic Multi-Level Implementation

Igor Lemberski*(corresponding author), Petr Fišer**

* Baltic International Academy, Lomonosova 1/24, Riga, LV-1019, Latvia, e-mail: Igor.Lemberski@bsa.edu.lv,

ph.: +371 67 10 06 26, fax : +371 67 24 12 72

** Czech Technical University in Prague, FIT, Dept. of Digital Design, Prague, Czech Republic

e-mail: fiserp@fit.cvut.cz

Abstract. A synthesis flow oriented on producing the delay-insensitive dual-rail asynchronous logic is

proposed. Within this flow, the existing synchronous logic synthesis tools are exploited to design technology

independent single-rail synchronous Boolean network of complex (AND-OR) nodes. Next, the

transformation into a dual-rail Boolean network is done. Each node is minimized under the formulated

constraint to ensure hazard-free implementation. Then the technology dependent mapping procedure is

applied. The MCNC and ISCAS benchmark sets are processed and the area overhead with respect to the

synchronous implementation is evaluated. The implementations of the asynchronous logic obtained using the

proposed (with AND-OR nodes) and the state-of-the-art (nodes are designed based on DIMS, direct logic,

NCL) network structures are compared. A method, where nodes are designed as simple (NAND, NOR, etc.)

gates is chosen for a detailed comparison. In our approach, the number of completion detection logic inputs

is reduced significantly, since the number of nodes that should be supplied with the completion detection is

less than in the case of the network structure that is based on simple gates. As a result, the improvement in

sense of the total complexity and performance is obtained.

Keywords: asynchronous logic, decomposition, multi-level implementation, Boolean network, node.

1. INTRODUCTION

Asynchronous logic attracts an increasing interest

of designers because asynchronous (delay-insensitive - DI)

circuits are extremely robust. This means, the design is able

to adapt to variations of manufacturing process parameters,

gate and wire delays, temperature changes, noise, etc. [1].

The correct function is guaranteed, only the operational speed

changes adaptively. Furthermore, a DI paradigm is very

similar to synchronous one and generally, the DI design

process follows the same steps as in synchronous logic

design. As a result, it enables the developed DI design flow to

be more easily incorporated into the design industry, since

the tools and design processes are familiar to designers. The

DI design process can be easier implemented, since a

minimal delay analysis is required to ensure the circuit

correct behavior. DI paradigm has additional advantages in

designing complex circuits including substantially reduced

crosstalk between analog and digital circuits, ease of multi-

rate circuits cooperation, facilitation of component reuse.

The general disadvantages of DI asynchronous circuits

with regard to the synchronous ones are high area and huge

power consumption overheads, although the thermal

distribution is uniform across the chip.

We propose a synthesis flow of multi-level DI dual-rail

implementation. It is based on exploiting synchronous logic

synthesis tools to produce a single-rail Boolean network of a

two-level (AND-OR) nodes, and further transformation of the

network into a dual-rail one. Based on results [18], each node

is designed as a hazard-free structure. Finally, the

technology-dependent mapping procedure is applied. For the

comparison, several state-of-the-art methods are considered,

where nodes are designed based on DIMS [13], direct logic

[11], and NCL [15]. For the detailed comparison, the method

[17], where each single-rail Boolean network node is

designed as a simple gate (NAND, NOR, etc.) was chosen.

We believe that this method is the closest one to our

approach. Although [17] is supposed for designing some

other class of circuits, it is clear that the method can easily be

adapted for DI logic synthesis. Indeed, the Boolean network

[17] is designed as a dual-rail hazard-free logic. The

indication of the new input state and internal stability can be

done using the completion detection (CD) logic proposed

in this paper.

The main disadvantage of the method [17] is a large

number of nodes that should be supplied with the CD – the

completion detection must be provided for each simple gate.

It is not the case of our approach, where the number of nodes

of the synthesized Boolean network is significantly less than

in [17]. Therefore, in our approach, the CD logic complexity

is reduced, although the Boolean network implementation

complexity may be slightly increased (to ensure hazard-free

implementation of the AND-OR nodes). As a result, the

improvement in sense of the total complexity and

performance is obtained. The other approaches to CD

mailto:Igor.Lemberski@bsa.edu.lv

optimization can be found in the literature. Namely, in [30],

the optimization method based on the evaluation of the gates

relative timing was proposed. In [31], the method in a cost-

aware manner was described.

The rest of the paper is organized as follows. In Section 2,

the review of the related works is given. The information and

notations regarding dual-rail logic is presented in Section 3.

Also, details of DI logic behavior rules that are based on

Seitz’s strong and weak constraints are described. Section 4

is devoted to the description of the model with modified

weak constraints. Next, the node minimization constraint to

ensure hazard-free implementation is formulated and the

structure of the dual-rail network is proposed. Examples

illustrating the state-of-the-art and our approaches are given.

It is shown that our approach produces networks with

significantly less number of signals the CD logic is supplied

with. Section 5 describes the technology-independent and

technology-dependent synthesis procedure. Experimental

results are given in Section 6. Statements summarizing the

results conclude the paper.

2. RELATED WORK

The asynchronous logic is classified depending on the

mode of interaction with the environment. In the input-output

mode, the environment is allowed to change the input state

once a new output state is produced. There is no assumption

about internal signals and the environment is allowed

to change the input state before the circuit is stabilized

in response to the previous input state.

In the fundamental mode (assumed in this paper, too), the

logic operates based on the following discipline: the

environment changes the input state once the output state has

changed in response to the current input state and each gate

inside the circuit is stable. Both design methodologies

assume either bounded (a maximal value is known) or

unbounded (a maximal value is unknown) gate and wire

delays.

In case of the fundamental mode with bounded delays, the

moment when the environment may change the input state is

estimated based on the worst case propagation delay [3].

Within this model, only one input signal can be changed at a

time. In [4], a generalized fundamental mode was proposed,

where multiple input changes are allowed during a narrow

time interval. For such a mode, a method of hazard-free two-

level implementation was published [5]. A multi-level

hazard-not-increasing transformation is applied to optimize

the implementation [6]. Methods of hazard-free technology

mapping were proposed in [7] and [8].

In case of the unbounded delays, the asynchronous logic

should be capable of:

1) recognizing the moment when a new input state

(generated by the environment) appears on the inputs and the

moment when the circuit generates a new output state

in response to the input one;

2) notifying the environment of new input and output

states. After receiving the notification, the environment can

generate the next input state.

To solve this problem, m-of-n codes of length n are used

for states encoding, where each valid state is represented by

ones in m positions and zeroes in the rest of (n-m) ones [2].

Among them, 1-of-2 (or dual-rail) as well as 1-of-4

encodings have been of special interest. The other 1-of-n

encodings are rather expensive, since their implementation

requires more wires than the dual-rail one. In this paper, the

dual-rail state encoding is used.

A four-phase behavior discipline is supposed: to change

an input state, the environment should reset it first (change to

so called spacer state). The output state resets too, as a result.

After that the environment sets a new input state. It implies a

new output state. The behavior rule is based on Seitz’s strong

or weak constraints [9], [10]. Under the strong constraints,

each output changes its state only when all inputs have

changed their state. Under the weak constraints, some outputs

are permitted to change their state when some (not all) inputs

have changed their state. In the case of strong constraints,

output signals also serve as the completion detection ones and

indicate the moment when both internal and output signals

become stable. In case of weak constraints, output signals

may also serve as the completion detection, if they are able

to indicate the state of all input signals. Otherwise, an

additional completion detection block is required to ensure a

proper indication [11]. In [12], the distribution of the

completion detection between the outputs is proposed

to minimize the implementation cost. Also, the completion

detection must indicate the moment when internal signals

become stable.

The dual-rail implementation under the four-phase

discipline is based on Delay-Insensitive Minterm Synthesis

(DIMS) technique [13]. Within it, a function is implemented

as a two-level structure with C-elements on the first level and

an OR gate on the second one. The DIMS cost is very high,

since the minimization of the number of product terms is not

allowed. Therefore, 2k minterms (where k is the number

of C-element inputs) must be generated to implement each

function’s positive and negative forms, where each minterm

is implemented using a k-input C-element. Finally, the

C-element is more complex than a simple gate.

The implementation of the two-level C-OR logic as a

single CMOS gate (Direct Logic) significantly reduces the

area [11].

A similar approach is based on using threshold functions

(Null Convention Logic-NCL). NCL circuits are designed

based on 27 library gates that are capable of implementing

any function of four or less inputs [15]. In the case of dual-

rail logic, each literal is considered as a separate variable.

Therefore, not any single-rail function of more than two

inputs can be implemented in NCL; the feasibility of a

function implementation depends on the number of literals

in its dual-rail representation.

Multi-level implementations of the dual-rail asynchronous

logic were proposed in [14] and [17]. These methods are

based on the initial circuit decomposition into simple (AND,

OR, NOR, NAND, etc.) two-input gates. Further, each gate is

mapped into DIMS [13] or implemented by a threshold gate

[14]. It results in not only high complexity of the circuit

implementation (in sense of the area), but also in a low

performance, since each simple gate (single level structure) is

implemented as a two-level (AND-OR, C-OR) structure.

In [17], each simple gate is doubled to implement dual-rail

logic. Compared to the synchronous implementation, the

circuit cost doubles.

Desynchronization [16] is a modern paradigm that is

based on adopting synchronicity to the asynchronous logic

design. If bounded delays are supposed, matched delays are

introduced for the synchronization purpose. In case

of unbounded delays, extra completion detection logic should

be present to indicate the circuit stability. A network of local

controllers is designed to provide proper local

synchronization signals, resulting in an additional area

penalty. Finally, the circuit is equipped with output latches

and a new output state is available only once a latch signal

enables.

Our approach is based on the combination and extension

of methods [15, 17]. Namely, we propose the Boolean

network multi-level implementation, where complex gates

of general nature (represented as a two-level structure) are

produced and transformed into the dual-rail logic.

3. PRELIMINARIES

3.1. Single and Dual-Rail Encoding

Let F = {f1, f2, …, fq} be a multi-output function

of n primary inputs X: X = {x1, x2, … , xn} and q primary

outputs. Let Y = {y1, y2, …, ym}, f1, f2, …, fq  Y, m ≥ q, be a

set of single-output Boolean nodes obtained as a result of a

decomposition of F. Each node function yc depends on given

k or less number on inputs: yc = yc(zc1, zc2 , …, zck), | yc | ≤ k,

zc1, zc2 , …, zck  {X  Y\{ f1, f2, …, fq, yc}}. We call it a single-

rail multi-level implementation. In [17], the node is a simple

gate (NOR, NAND, etc). In our case it may also be a

two-level (AND-OR) complex node (Figure 1a). Usually, a

single-rail representation is obtained as a result of the

synchronous logic synthesis and optimization.

a)

b)

Figure 1. Single– (a) and dual-rail (b) multi-level Boolean

network

In dual-rail logic, it is supposed that each node input from

the set Z = {zc1, zc2,…, zck} and the node output yc may be

in one of these three states: states 1, 0 (so called working

states) or undefined (spacer state). To implement a three-state

input zi, two signals zi(1) and zi(0) are introduced, where

zi(1) = 1 and zi(0) = 0, if zi is in state 1, zi(1) = 0 and zi(0) = 1

if zi is in state 0, zi(1) = zi(0) = 0 if xi is in the spacer state.

The combination zi(1) = zi(0) = 1 is not allowed. Similarly,

to implement a three-state node function, the function yc,

c = 1, 2,…, m, should be represented in both positive yc(1)

and negative yc(0) forms. If yc(1) = 1, yc(0) = 0, then the

function yc is in state 1, if yc(1) = 0, yc(0) = 1, then the

function yc is in state 0, if yc(1) = yc(0) = 0, then the function

yc is in the spacer state. The combination yc(1) = yc(0) = 1 is

not allowed. To change the input state, the environment

should reset it first to the spacer state and after that set it

to the proper working state. In the reset phase, the output

state changes from the working state to the spacer one and

in the set phase the new output state is recognized.

In the dual-rail logic (Figure 1b), each function yc is

represented as a pair: yc = (yc(1), yc(0)), where yc(1), yc(0)

describe its ON-, OFF- sets (yc(0) can be generated as a

complement to the ON-set). Therefore, each function yc can

be represented as a Sum-Of-Product terms (SOP) of both

positive yc(1) and negative yc(0) forms: yc(1) = t1+t2+…+ts,

yc(0) = ts+1+ts+2+…+tp, c = 1, 2,…, m, p  2k, where ti are

product terms containing n or less literals, i = 1, 2,…, p,

ti  tj = Ø, for (ti, tj): ti  yc(1) and tj  yc(0).

3.2. Strong and weak constraints

In the fundamental mode, the DI logic operates under so
called strong or weak constraints [10]. Timing diagrams
depicting behavior rules under strong and weak constraints
are presented in Figure 2.

Figure 2. Behavior rules under strong (a) and weak (b)

constraints

The diagrams depict inputs X and outputs F state changes

in time t along with input/output states dependency. Each

input and output may be either in a working (high level) or a

spacer (low level) state. Vertical shading depicts time

intervals, where input and output states are going from the

spacer to a working state and vice versa.

Under the strong constraints (Figure 2a), the behavior rule

is as follows:

1. If all inputs are in the spacer state, then all outputs are

going to the spacer state;

2. If all inputs are in a working state, then all outputs are

going to a working state.

Under the weak constraints (Figure 2b), some outputs are

permitted to change their states when some (not all) inputs

have changed their states:

1. If some inputs are in a working state, then some

outputs are going to a working state;

2. If all inputs are in a working state, then all outputs are

going to a working state;

3. If some inputs are in the spacer state, then some

outputs are going to the spacer state;

4. If all inputs are in the spacer state, then all outputs are

going to the spacer state.

In both cases, it is supposed that the states of all outputs
depend on the state of all inputs. However, in some cases, the
state of outputs can be determined based on the state of some
(not all) inputs. For example, consider a function
f(1) = x1(1) + x1(0)x2(0). If x1(1) = 1, then independently
of the input x2 state, the function f = 1. Based on this
observation, one can modify the (weak) constraints as
follows: if some inputs are in the working/spacer state then
some or even all outputs are going to the working/spacer
state. In Section 4 it will be shown, that under such a
modification, the product term minimization is allowed.

4. MODEL BASED ON MODIFIED WEAK CONSTRAINTS

4.1. Behaviour Rule

To design the minimized two-level AND-OR logic, we
introduce the model with modified weak constraints [18]
under the following behavior rules (Figure 3):

1. If some inputs are in a working state then all outputs

are going to a working state;

2. If all inputs are in a working state then all outputs

remain in a working state;

3. If some inputs are in the spacer state then all outputs

are going to the spacer state;

4. If all inputs are in the spacer state then all outputs

remain in the spacer state.

Figure 3. Behavior rule under modified weak constraints

The structure consists of two blocks (Figure 4):
a two-level AND-OR structure and the CD logic. Since
minimization is allowed, the AND-OR structure is
implemented by less than 2n product terms (p < 2n - Figure 4)

and product terms may contain less than n literals: |S(tk)|  n,
where S(tk) is a set of term tk literals (input signals), k = 1, 2
,…, p. Note, that outputs are not capable of indicating the
states of all inputs, because output states may depend on
some (not all) inputs. Furthermore, since multi-output
functions are supposed, an additional signal is required to
indicate the moment when all outputs are in a proper state
(working or spacer). Therefore, the completion detection
logic with an output signal D is introduced. The signal D
switches on, when both inputs and outputs are in a working
state.

Figure 4. Dual-rail two-level logic

4.2. Monotonicity and Hazard-Free Implementation

The proposed structure is based on the concept

of monotonicity of the nodes introduced in [17] and a

hazard-free implementation of each two-level (AND-OR)

node proposed in [18].

4.2.1 Monotonicity

A node implementing the function yc = yc(zc1, zc2 , …, zck)

is positive, if for each input zc , zc  {zc1, zc2 , …, zck} in its

local fan-in it holds the following: if the input zc is set to 1

(0), then the function yc is set to 1 (0). A node implementing

function yc is negative, if for each input zc in its local fan-in it

holds the following: if the input zc is set to 1 (0) then the

function yc is set to 0 (1). The node is monotonic if it is either

positive or negative.

The node monotonicity is easily achieved by the dual-rail

encoding [17].

4.2.2 Hazard-Free Implementation

To satisfy the proper behavior rules (see Subsection 4.1)
and therefore ensure the hazard-free implementation, product
terms within both ON- and OFF-sets must be orthogonal, i.e.,
a Disjoint Sum-Of-Products (DSOP) is supposed for their
implementation [18], [29]. Based on [18], the following
theorem is valid:

Theorem 1. The behavior of any function fc (Figure 4), fc  F,

does not violate the behavior rule (Section 4.1) iff: ti  tj = Ø

(the terms are orthogonal), for (ti, tj): ti, tj  fc(1) and ti, t j

 fc(0).

Proof. Necessity. Suppose, that ti  tj ≠ Ø. Terms ti, tj can’t

belong to different sets fc(1), fc(0), since fc(1)  fc(0) = Ø.

Therefore, either ti, tj  fc(1) or ti, tj  fc(0). First, suppose ti,

tj  fc(1). Consider the circuit fragment containing ANDj

gates connected to an OR gate implementing the function
fc(1) (Figure 5a). Let S(ti) be a set of term ti literals (input

signals). Define a joint set S(tij): S(tij) = S(ti)  S(tj). Let S(X)
be a set of input signals that switch on once inputs switch to a
given working state. For example, given input working state
is: x1(1) = x2(0) = 1. Then S(X) = {x1(1), x2(0)}. Suppose:

S(tij)  S(X) and: 1) a signal xl(u) has the longest switching
delay among the signals of set S(ti); 2) a signal xr has the
longest switching delay among the signals of set S(tj),

xl(u)  S(ti), xr(u)  S(tj), u{0,1}. When the signal xl(u)
switches on, then the ANDj gate output switches on.
Similarly, when the signal xr(u) switches on, then the ANDj
gate output switches on. As a result, signal 1 propagates
through two paths: ANDi - OR, ANDj - OR. Suppose that the
sum of the signal xl(u) switching delay and the path ANDi-
OR delay is shorter than the sum of the signal xr(u) switching
delay and the path ANDj - OR delay. In this case, the signal 1
propagating through the path ANDi - OR switches the output
fc(1) on (the output fc goes to the working state).

Figure 5. Necessity conditions: a) circuit, b) timing diagram

Now suppose that any signal xa(u)  S(ti) switches off (the
input xa goes to the spacer state). It implies switching the
ANDi gate output off. As a result, the signal 0 propagates
through the path ANDi-OR and the function fc(1) switches off
(the output fc goes to the spacer state). Due to a longer
propagation delay, the signal 1 propagating through the path
ANDj - OR may switch the output fc(1) on again and later off

due to switching any signal xb(u)  S(tj) off (erroneous pulse
- Figure 5b). It violates the behavior rule (“if some inputs are
in the spacer state then some outputs are going to the spacer
state and remain in this state”). The above conclusion is

valid, if ti, tj  fc(0) .

Sufficiency. Again consider the same circuit fragment

(Figure 6a). Suppose: ti  tj = Ø, ti, tj  fc(1). Then,

S(tj)  S(X) because of ti  tj = Ø and in contrast to the
previous case, there is only one path (Figure 6a, bold line) for
the signal propagation to the output.

Therefore, if signals from the set S(ti) switch on, then the

ANDi gate output switches on and, in turn, the output fc(1)

switches on (Subsection 4.1, rule 1). Once any signal xa(u) 

S(ti) switches off then the output fc(1) switches off

(Subsection 4.1, rule 3) (Figure 6b). As a result, the behavior

of any function fcF doesn’t violate the behavior rule

(Subsection 4.1). This conclusion is valid for a function fc(0),

if ti, tj  fc(0). ∎

Figure 6. Sufficiency conditions: a) circuit, b) timing

diagram

4.3. Dual-Rail Multi-Level Network

Given a multi-level Boolean network (Figure 1a) obtained

as a result of synchronous synthesis. The network is

transformed into a dual-rail (Figure 1b) hazard-free one (the

procedure will be given in the Subsection 5.1). The structure

consists of two blocks (Figure 7): the functional one

implementing the Boolean network as a multi-level logic

using two-level AND-OR single-output nodes having a fan-in

limited to 2k (remember, once given a single-rail node, then

in dual-rail each input is represented as two separate inputs)

and the CD logic that is obtained by merging the CDs of all

nodes. The CD should indicate the proper state (working or

spacer) of the network and of primary inputs and outputs. The

CD logic is based on (n+m) C-elements together with (n+m)

two-input OR gates, where n is number of primary inputs and

m the number of nodes (including the ones generating q

primary outputs). The CD signal D (Figure 7) is going up,

when both primary inputs and node outputs are all in a

working state and going down when all the signals mentioned

are in the spacer state.

Note, that this structure guarantees DI implementation

even if the functional block is designed as a network

of simple nodes as proposed in [17]. It gives an opportunity

to consider the implementation (Figure 7) exploiting dual-rail

network from [17] as a state-of-the-art and compare the

proposed DI implementation with it. As mentioned before,

our approach benefits from the significantly less number

of CD input signals. It results in reduction of the complexity

of the CD block. Although in the case of two-level nodes the

functional block complexity is slightly increased, the total

complexity is reduced.

Figure 7. Dual-rail multi-level Boolean network with the CD

logic

4.4. Examples

Let us consider an example of two implementations. The

first implementation is based on the method [17], where the

functional logic is represented as a Boolean network

of simple (NAND, NOR, etc.) gates. The second one is based

on the approach that we propose, where nodes may be

implemented as a two-level logic that satisfies the constraint

formulated in Theorem 1.

Given a single-rail circuit (Figure 8a), where c’ means a

complement of the signal c. Following [17], the dual-rail

logic is produced and the CD logic is designed as given

in Subsection 4.3. It results in the implementation shown

in Figure 9. One can immediately see that the number of CD

inputs is 8. However, one can easily notice that a group

of NAND gates can, in fact, be treated as a three-input

complex NAND-NAND node (shown in Figure 8b in bold),

which is equivalent to an AND-OR structure. Such a node

can be implemented as a four-input complex node (Figure 10)

in dual-rail logic (remember, an input and its complement are

treated as two separate inputs). Note, that it is described

by the function with orthogonal terms (ce + c’d) and

therefore is hazard-free (Theorem 1). The complement node

(ce’ + c’d’) is also described by a function with orthogonal

terms. Note, that the complement function obtained using

the transformation, proposed in [17] and shown in Figure 9,

is as follows: ((e’ + c’)’(c + d’)’)’ = ce’ + e’d’ + c’d’ and

contains an additional term e’d’. However, these two

functions are equivalent, because in the working state the

term e’d’ is redundant, but in the spacer state it produces a

zero value, because all signals are in the spacer state.

One can see that the functional block complexity remains

the same. However, the CD block implementation will be

simpler, since it is supplied with 6 inputs only.

Figure 8. The circuit representation: a) as a simple gate

logic; b) with a two-level complex node

Figure 9. The implementation based on simple gates

Figure 10. The implementation based on complex gates

5. SYNTHESIS

5.1. Technology-Independent Synthesis

The proposed procedure of synthesis of the multi-level

dual-rail logic with AND-OR nodes is based on tools ABC

[19] used for multi-level synthesis, Espresso [20] minimizing

two-level (represented as AND-OR structure) nodes, and

DSOP [21] used to obtain two-level nodes with orthogonal

terms.

We start with an initial circuit description. First, an ABC

script is applied to it, to obtain a multi-level single-rail

Boolean network with the fan-in of each node limited to a

given k. For this purpose, we have decided to use a LUT

mapping synthesis process, since each LUT is actually

represented as a single-output AND-OR node with a limited

number of inputs (in the BLIF format generated by ABC

[22]).

We have used a sequence of ABC commands

recommended for the LUT synthesis in the ABC reference

guide [19] (Figure 11). The “choice” script performs a

technology-independent optimization of the network. Then,

the “fpga” command maps the network into k-input LUTs.

Finally, possibly redundant LUTs are removed

by “lutpack”. This command sequence was repeated

10-times, to obtain better results.

choice

fpga –K k

lutpack

Figure 11. The LUT mapping script. Substitute k for the

maximum node fan-in

An alternative way of producing a network of arbitrary

k-input nodes is to construct a technology library of all

k-input functions and perform the technology (standard-cell)

mapping by the ABC command “map”. Then the mapped

library gates can be transformed back into their SOP

representation by, e.g., the “sweep” command. The overall

synthesis process will be then as follows:

read_library k-gates.genlib

choice

map

sweep

Figure 12. The standard cells mapping script. Substitute k for

the maximum node fan-in

Apparently, such an approach is feasible for smaller k’s

only (up to 4), due to a double-exponential growth of the

number of functions. However, using this approach at least

for k = 2 was a necessity, since the “fpga” command does

not support 2-LUT mapping.

After the single-rail synthesis, transformation into a

dual-rail network is done. The procedure includes the

following steps:

1) a complement (OFF-set) node for each (ON-set) node
is computed by the algorithm used in Espresso [20].
As a result, the number of nodes is doubled;

2) each ON-set and OFF-set node is minimized
by Espresso, since the LUT mapping process does not
care about the SOP minimization and the Espresso
complementation algorithm does not always return
minimum results;

3) each AND-OR node is orthogonalized by DSOP [21],
to ensure the hazard-free behavior (Theorem 1).
Simple nodes (like AND, OR, NAND, XOR etc) need
not be orthogonalized, since they are implemented as
single gates;

4) single-rail signals are replaced by dual-rail ones. As a
result, each node function may depend on up to 2k
inputs (since each signal and its complement one are
represented as separate rails).

Another issue emerging in the dual-rail logic design with

two-level nodes is a possibility of sharing of product terms

between the nodes (except of pairs of ON- and OFF-set

nodes, where the OFF-set node is a complement to the ON-

set node, since such two sets must be orthogonal). In the

dual-rail network, shared product terms are identified and

implemented only once.

5.2. Technology-Dependent Synthesis

In the case of technology-dependent synthesis, we

estimate the complexity of the functional network and the

completion detection logic separately. Then, the total

complexity is calculated. To avoid additional inverters and

therefore decrease the implementation complexity, we use

negative (NAND-NAND) gates instead of AND-OR ones

in the functional block and NOR gates instead of OR ones

in the completion detection logic. As a result, the signal

D = 1, when all inputs and outputs are in the spacer state and

D = 0 for the working state.

We suppose a library of k-input NAND and NOR gates,

k-input C-elements, 2-input XOR gates, and inverters. The

network obtained as a result of the technology-independent

synthesis (see Subsection 5.1) may include logic that can’t be

mapped into the above library, namely the number of the

node second level NAND gate inputs may exceed the given k,

since the node may be described by more than k terms (up to

2k/2, for the XOR function). In this case the NAND gate is

decomposed into a tree of NAND gates of k or less inputs and

inverters are placed to ensure the functionality. Note, that the

node logic remains hazard-free, since the transformation

doesn’t violate the orthogonality of the product terms.

Therefore, once the NAND gate is decomposed and mapped

into a tree of NAND gates, the output of the last NAND gate

only should be connected to completion detection logic. The

technology-dependent implementation (with the technology

limit k = 2) of a node having a 3-input NAND gate is shown

in Figure 13.

Next, the number of C-element inputs is (n+m), which

will definitely exceed k for non-trivial designs. Thus, the

(n+m) input C-element is transformed into a delay-optimum

tree structure of k–input C-elements (Figure 13) by a

topological traversal of the dual-rail network. The topological

ordering is determined by computing the actual signal arrival

times of each complex node output. Outputs of nodes with

the lowest arrival times and primary inputs, which have zero

arrival time by definition, are connected to C-elements first.

The topological ordering is updated by including the signal

arrival times of the produced C-elements outputs as well as

removing connected node outputs and primary inputs. The

procedure is repeated, until primary output D is constructed.

The idea behind this procedure is as follows: the higher

input signal arrival time is, the closer to the C-elements

structure top gate it should be connected, and vice versa. This

decreases the signal propagation time. The best possible

arrival time of D is obtained this way. Note, that although the

CD logic is a tree, it may not be a balanced tree. The signals

arrival times affect significantly the tree structure.

Finally, note that NAND gate decomposition into a tree of

k - (or less) input NANDs and inverters is based on the same

iterative procedure as for C-elements.

5.3. State-of-the-Art Synthesis for Comparison

For the sake of a just comparison, we have implemented

the approach described in [17] as follows.

First, we have processed the initial network by the ABC

“choice” script and mapped onto a library of standard

k-input gates (AND, OR, NAND, NOR, XOR, XNOR) by the

“map” command. Only 2-input XOR and XNOR gates were

used, since standard cell libraries usually do not contain

XORs of more inputs. The “choice; map” sequence was

repeated 10-times, as in the proposed method.

The dual-rail logic was obtained by duplicating the

network, while substituting all the gates by their negated

counterparts.

Technology-dependent synthesis is guaranteed, no gate

having more than k inputs may emerge, except of the

C-elements structure, which is implemented in the same way

as described in the Subsection 5.2.

Also, the network was implemented based on DIMS,

direct logic [13] and NCL [15] for comparison. As for DIMS

and direct logic, the LUT mapping procedure described

in Subsection 5.1 was used, to obtain a network of k-input

nodes. Since the NCL logic allows implementation of gates

up to 4 inputs, only the 2-input nodes mapping process (see

Subsection 5.1) was used. Generally, a k-input node, k > 2,

may depend on 2k > 4 variables in the dual-rail logic, thus

cannot be implemented in NCL.

Figure 13. Technology-dependent implementation (k = 2)

6. EXPERIMENTAL RESULTS

6.1. Experimental background

We have processed the MCNC [23] and ISCAS [24], [25]
sets of benchmarks, 228 circuits altogether. We evaluate the
complexity (expressed as the number of the transistors) and
the performance (by summarizing gates logical efforts [26]
within the critical path) of the proposed asynchronous
implementation of these circuits and compare it to the state-
of-the-art [13], [15], [17].

We suppose a technology dependent synthesis (fan-ins

of NAND gates and C-elements do not exceed a given k).

Suppose, given a library of k-input NAND and NOR

gates, 2-input XOR gates and inverters. The gate complexity

is estimated as follows: a k-input NAND or NOR gate

requires 2k transistors, the inverter cost is 2 transistors and

the 2-input XOR gate cost is 10 transistors, finally, the

k-input C-element cost is 4(k+1) transistors [26].

Logical efforts of several typical gates are as follows:

inverter: 1 (by definition, the logical efforts of other gates are

calculated in the inverter logical effort units), NAND: (k+2)/3

units. NOR: (2k+1)/3 units, C-element: k units, where k is the

number of gate inputs.

Consider a two-level complex node obtained as a result

of technology-independent synthesis. Its k’-input OR gate

(second level) is decomposed (by applying

technology-dependent decomposition procedure - see

Subsection 5.2) and mapped into a tree of NAND gates,

k’ > k, where k is the technology limit. Within each iteration

of this procedure, k inputs are removed and a single output is

added and treated as a new input in the next iteration.

Therefore, (k - 1) inputs are removed from the list until a list

containing a single C-element output (primary output D) is

constructed. As a result, the number of NAND library

(k-input of less) gates required to map k’-input NAND gate is

calculated using following formula:














1

1'

k

k
 (1)

The number of inverters in the tree (between each pair

of NAND gates) is:

1
1

1'














k

k
 (2)

As a result, the total complexity of the k’-input NAND

gate tree is:

  




















 1

1

1'
12

k

k
k (3)

Now we calculate the complexity of the completion

detection logic. To implement an (n+m)-input C-element,

4(n+m+1) transistors are required. If n+m > k, the C-element

should be decomposed into a tree of k-input C-elements.

In case of a balanced tree, its complexity is:















1

1
)1(4

k

nm
k (4)

To implement (n+m) two-input NOR gates, 4(n+m)

transistors are required. The total complexity of the

completion detection logic for an n-input multi-level logic

with m nodes is:

  




















 nm

k

nm
k

1

1
14 (5)

Note, that the complexity of the sequential logic memory

(flip-flops, latches) is not included in the results; only

combinational parts of the circuits are assumed.

The area of nodes implemented as DIMS and direct logic

[13] was computed as follows:

TABLE I. COMPLEXITY OF OTHER IMPLEMENTATIONS

Inputs DIMS [13] Direct Logic [15]

2 24 22

3 64 34

4 160 54

5 384 90

6 896 158

The NCL implementation is based on a network

containing NAND and XOR logic. Library gates TH22 and

THand0 [15] are used to implement NAND logic and its

complement. Gates TH22 and THand0 total complexity is 21

transistors. XOR logic and its complement implementation

require two TH24comp gates with the total complexity 24

transistors.

6.2. Selection of k

The first issue addressed in the experiments is a proper

choice of k (maximum node fan-in). Nodes with a high fan-in

are difficult to be implemented in technology. On the other

hand, small k’s induce more nodes, which makes the

completion detection logic more complex. Therefore, some

kind of trade-off should be found.

We have synthesized the asynchronous dual-rail logic

for all the 228 benchmark circuits, for k = 2, 3, 4, 5, 6. Both

LUT and standard cells mapping processes were tested, for

sake of a just comparison.

Note, that both processes do the same job: they construct

a network of arbitrary k-input single-output functions. Just

the mapping procedure is different.

The results are shown in TABLE II. Summary numbers

of transistors and logical efforts for the 228 circuits are

shown, for different k’s and the two mapping processes

(“k-map” and “k-fpga”).

TABLE II. INFLUENCE OF K ON THE SIZE OF THE RESULTING LOGIC

Process Transistors Logical effort

2-map 3,191,136 6,586.33

3-map 2,361,086 5,343.67

4-map 2,275,860 4,942.67

3-fpga 2,271,142 5,376.33

4-fpga 2,191,972 4,955.33

5-fpga 2,349,356 4,952.00

6-fpga 2,615,018 4,933.33

We can see that using 4-input gates yield the smallest

summary area, both for standard cells and LUT mapping. We

have found by a detailed analysis, that for 78% of circuits

k = 4 gave better results than k = 3 and for 56% of circuits

k = 4 was better than k = 5. Therefore, we can conclude that

k = 4 should be considered for synthesis. However, k = 3 will

be considered in the final experiments too, since the total area

and performance differences from k = 4 are not so big.

Since the LUT mapping using the “fpga” command

gave slightly better results than “map” (both in the area and

performance), LUT mapping by “fpga” will be used

in further experiments.

Obviously, the higher k, the less logical effort is. The

figures are given in the “Logical effort” column.

6.3. Summary Results

Summary comparison results for all the 228 circuits are

shown in TABLE III. and TABLE IV. for the area (in sense

of the number of the transistors) and performance (in sense

of logical effort), respectively. The total areas over all the

228 circuits for the proposed complex nodes, simple nodes,

DIMS, direct logic, and NCL are shown in TABLE III. , from

the second till the last column. Average size differences

between the first method and the others are shown, too.

Similarly, the total logical efforts for the method [17] and

the proposed one are given in TABLE IV. second and third

columns. The average difference is shown in the last column.

Positive difference values indicate an advantage of our

method. Compared to the mentioned state-of-the-art methods,

in many cases, our method gives better result in sense of the

area.

We can see that the DIMS implementation is heavily

inferior to all the others for k > 2, which is expectable.

The average size difference between our method and the

direct logic is negative even for k = 4, however, we have

observed that this is indifferently caused by several

XOR-intensive circuits, whose direct logic implementation is

much smaller. The absolute value of the number of transistors

is less for our method.

Unfortunately it is impossible to make a representative

comparison with NCL, since more complex NCL gates are

not available.

Next, more detailed comparison w.r.t. the method [17], as

the closest one to our approach will be done.

We can observe opposite tendencies in the area growth

for [17] and our method: while the area of the method [17]

decreases with increasing k, in our method it grows from

k = 3. This can be explained by a simple fact: since only

simple gates are used in the former one, the complexity of the

asynchronous logic is proportional to the synchronous one.

Designs with more-input gates are definitely simpler. On the

other hand, complex nodes are used in our method. The

number of SOP terms of each node may grow exponentially

with k, similarly to DIMS. Therefore, the total complexity

increases with k.

The average area consumed by our method is less than

that of [17] for k = 3 and 4. The area differences obtained

from all the 228 circuits are shown in Figure 14 for k = 3,

where the area difference is most apparent. Each column

in the figure represents one circuit.

The area was reduced in 76% of circuits, sometimes

significantly (up to 84% for the cordic circuit, see TABLE V.

We have observed that the area reduction mostly occurs for

XOR-intensive and hard-to-synthesize circuits. The

maximum area increase was only 25%.

Similar conclusion can be done regarding the logical

effort. Although in 34% of circuits the logical effort is

increased (by up to 28%), in most cases our method gives

better results (see TABLE IV.). The highest average logical

effort reduction (3.8%) is achieved for k = 3 as well. The

logical effort reductions for all the 228 circuits are shown in

Figure 15.

6.4. Detailed Results

Detailed results for some of the 228 benchmarks are

shown in Tables V-VIII. We have selected 10 largest

benchmarks, plus 8 benchmarks, where the highest area

improvement is achieved. These two sets are separated by a

double-line in the Tables.

Area calculation. TABLE V. Presents the area results for

k = 3. After the benchmark name the numbers of its inputs (n)

and outputs (q) are indicated. The complexities

of synchronous implementations are shown in the next

column, in terms of the number of transistors.

Figure 14. Area differences for 228 circuits, k = 3

Figure 15. Logical effort differences for 228 circuits, k = 3

The complexity of the proposed asynchronous multi-level

implementation of the benchmarks is shown next.

Complexities of the functional logic (“Funct. trans.”) and the

completion detection logic (“CD trans.”) are shown first,

then the values are summed together to obtain the total

asynchronous logic complexity (“Total trans.”). The area

increase of the asynchronous logic w.r.t. the synchronous

implementation is shown in the next column (“Overh.”).

 Complexities of the asynchronous multi-level

implementation proposed in [17] are shown in the next triplet

of columns. Again, the functional, completion detection and

total complexities are given. The area reduction obtained

by our method, w.r.t. [17], is shown in the last table column

(“Diff.”).

Average values of the area overhead and area difference

computed from all the 228 circuits are shown in the last row.

Performance calculation. As already mentioned before,

the logical effort calculation is done within a critical path

by summarizing the logical efforts of gates on the path. The

calculation results for k = 3 are shown in TABLE VI. The

format is partially retained from TABLE V. , only the

numbers of transistors are substituted by the logical effort

values. Note that the CD logic performance is given as the

number of levels. One can easily express it as the logical

effort units multiplying the number of levels by k, since a

single level (implemented by a k-input C-element) logical

effort equals to k.

Note that the signals within the functional and CD logics

propagate in parallel. The total logical effort is obviously

higher than the functional logic one, however, generally, less

than a sum of the logical efforts of the functional and CD

logics.

Area and logical effort results for k = 4 are shown

in TABLE VII. and VIII respectively.

7. DISCUSSION AND CONCLUSIONS

A novel synthesis flow of the dual-rail asynchronous

multi-level logic is proposed. The logic is implemented as a

monotonous multi-level network of minimized AND-OR

nodes together with the CD logic. Each node is a hazard-free

structure. We have formulated an additional minimization

constraint (the SOP terms must be mutually orthogonal) for

that purpose.

The proposed method offers a possibility of designing

asynchronous circuits using both synchronous design tools

and standard target technology used in synchronous designs.

This is not the case of, e.g., NCL or direct logic, where

special gates are used. The advantage of the proposed method

over [17] is a reduction of the complexity of the CD logic.

This can decrease both the total area and, more importantly,

increase the performance, since the CD logic together with

the functional logic form the critical path.

Additionally, since nodes are implemented as SOPs,

sharing of terms as well as gate trees in the technology

dependent implementation is possible. This is not the case of

the other methods (NCL, direct logic), as each node is

implemented as a monolithic gate there.

The MCNC and ISCAS benchmarks were processed and

the complexity and performance of the logic obtained using

the proposed and the state-of-the-art methods are compared.

We have found experimentally, that compared to [17], our

method gives better results in sense of performance

(improvement up to 4% for 4-input gates). Also, mappings

into 3- or 4-input gates are the most efficient ones, in sense

of the area (compared to [17], the improvement is more than

6% for 4-input gates).

Even though the average area/performance improvements

are not too striking, the proposed method is better than [17]

in the majority of tested benchmarks (76% in area, 66% in

performance).

Note that the final design area/performance strictly

depends on the synchronous optimization and mapping

processes. We have observed that some circuits are “easier”

for LUT mapping than for standard gates mapping (e.g. the

cordic circuit), and vice versa. This is also one of the reasons

for the small summary improvements we have measured –

extreme cases exist on both sides. This fact clearly

documented in the experimental section.

The proposed method offers a possibility of using any

synthesis process and it treats the result in the best possible

way.

We can conclude that, if the proposed method taken as an

alternative way of asynchronous logic synthesis, better

designs can be achieved.

Let us also mention the scalability of the method. The

scalability is determined by the scalability of the synchronous

logic synthesis tools used, which is considered to be

sufficient even for large industrial designs. The only possible

bottleneck introduced is the orthogonalization phase.

However, if gates of up to 6 inputs are considered (which is

the industrial practice), no significant design time overhead

can be expected.

REFERENCES

[1] A.J. Martin et al., The first asynchronous

microprocessor: the test results, ACM SIGARCH Comp.

Arch. News, vol. 17, no. 4, June 1989, pp. 95-98.

[2] W.J. Bainbridge et al., Delay-Insensitive, Point-to-Point

Interconnect using m-of-n Codes, Proceedings of the 9th

IEEE Int. Symp. on Asynchronous Circuits and Systems

(ASYNC'03), Vancouver, May 2003 , pp. 132-140.

[3] S.H. Unger, S.H., Asynchronous Sequential Switching

Circuits, John Wiley & Sons, Inc., 1969

[4] S.M. Nowick, Automatic Synthesis of Burst-Mode

Asynchronous Controllers, Ph.D. thesis, Stanfort

University, March 1993.

[5] S.M. Nowick D.L. Dill, Exact Two-Level Minimization

of Hazard-Free Logic with Multiple-Input Changes,

IEEE CAD, vol. 14, August 1995, pp. 986-997.

[6] D. Kung, Hazard-Non-Increasing Gate–Level

Optimization Algorithm, IEEE Int. Conf. On Computer–

Aided Design, 1992, pp. 631-634.

[7] P. Beerel, K.Y. Yun, W.C. Chou, Opimizing Average-

Case Delay in Technology Mapping of Burst-Mode

Circuits, IEEE Int. Symp. on Advanced Research in

Asynchronous Circuits and Systems, 1996, pp. 244-259.

[8] P. Siegel, G.D. Micheli, D. Dill, Automatic Technology

Mapping for Generalized Fundamental Mode

Asynchronous Designs, IEEE Design Automation

Conference, 1993, pp. 61-67.

[9] W.J. Dally, J.W. Poulton, Digital Systems Engineering,

Cambridge University Press, 1998.

[10] C.L. Seitz, System Timing, Introduction to VLSI

Systems, C. Mead, L. Conway, Addison—Welsey

Publishing Company, 1980, pp. 218-262.

[11] C.D Nielsen, Evaluation of Function Block Designs,

Technical Report 1994-135, Department of Computer

Science, Technical University of Denmark, Denmark,

43, pp. , 1994.

[12] W.B. Toms, D.A. Edwards, Prime Indicants: A Synthesis

Method for Indicating Combinational Logic Blocks,

Proc. 15th IEEE International Symposium on

Asynchronous Circuits and Systems, Async 2009,

Chapel Hill, North Carolina, 17-20, May 2009, pp. 139-

150.

[13] E.J. Sparsø, J. Staunstrup, M. Dantzer-Sørensen, Design

of delay insensitive circuits using multi-ring structures,

In Proc. of the European Design Automation Conference

(EURO-DAC’92), 1992, pp. 15-20.

[14] M. Ligthart, K. Fant, R. Smith, A. Taubin, A.

Kondratyev, Asynchronous Design Using Commercial

HDL Synthesis Tools, 6-th Int. Symp. on Advanced

Research in Asynchronous Circuits and Systems, 2000,

pp. 114-125.

[15] S.C. Smith, J. Di, Designing Asynchronous Circuits

using NULL Convention Logic (NCL), Morgan &

Claypool, 2009, 96 p.

[16] J. Cortadella, A. Kondratyev, L. Lavagno, C.P. Sotiriou,

Desynchronization: Synthesis of Asynchronous Circuits

from Synchronous Specifications, IEEE Trans. on CAD,

vol.25, No.10, October 2006, pp. 1904-1921.

[17] J. Cortadella, A. Kondratyev, L. Lavagno, C.P. Sotiriou,

Coping with the Variability of Combinational Logic

Delays, IEEE Int. Conf. On Computer Design, 2004, pp.

505-508.

[18] I. Lemberski, P. Fišer, Asynchronous Two-Level Logic

of Reduced Cost, IEEE Symposium on Design and

Diagnostics of Electronic Circuits and Systems, April

15-17, 2009, Liberec, Czech Republic, pp. 68-73.

[19] Berkeley Logic Synthesis and Verification Group, ABC:

A System for Sequential Synthesis and Verification'.

http://www.eecs.berkeley.edu/~alanmi/abc/.

[20] R.K. Brayton et al. Logic minimization algorithms for

VLSI synthesis, Boston, MA, Kluwer Academic

Publishers, 1984.

[21] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli,

A New Heuristic for DSOP Minimization, Proc. 8th Int.

Workshop on Boolean Problems (IWSBP'08), Freiberg,

Germany, 18.-19.9.2008, pp. 169-174.

[22] Berkeley Logic Interchange Format, University of

California, Brekeley, Tech. report, 2005.

[23] S. Yang, Logic Synthesis and Optimization Benchmarks

User Guide, Technical Report 1991-IWLS-UG-Saeyang,

MCNC, Research Triangle Park, NC.

[24] F. Brglez and H. Fujiwara:,A Neutral Netlist of 10

Combinational Benchmark Circuits and a Target

Translator in Fortan, Proc. of ISCAS 1985, pp. 663-698.

[25] F. Brglez, D. Bryan, and H. Kozminski, Combinational

Profiles of Sequential Benchmark Circuits, Proc. of

ISCAS, pp. 1929-1934, 1989.

[26] I. Sutherland et al., Logical Efforts: Designing Fast

CMOS Circuits, Morgan Kaufmann, 1999, 239 pp.

[27] E.J. Sparsø. S. Furber, Principles of Asynchronous

Circuit Design, Kluwer Academic Publishers, 2001.

[28] H. Gao, Y. Yang., X. Ma, and G. Dong, Analysis of the

effect of LUT size on FPGA area and delay using

theoretical derivations, Proc. of the Sixth International

Symposium on Quality of Electronic Design”, 21.-23. 3,

pp. 370-374.

[29] V.I. Varshavski, Self - Timed Control of Concurrent

Processes, Kluwer Academic Publisher, 1990.

[30] A. Mokhov, D. Sokolov and A. Yakovlev, Completion

Detection Optimisation, Technical Report Series NCL-

EECE–MSD–TR–2005-109, 2005, 6 pp.

[31] Y. Zhou, D. Sokolov and A. Yakovlev, Cost-Aware

Synthesis of Asynchronous Circuits Based on Partial

Acknowledgement, Proc. ICCAD’06, San Jose,

November 2006, pp. 158-163.

http://www.eecs.berkeley.edu/~alanmi/abc/

TABLE III. SUMMARY COMPARISON – AREA (NUMBER OF TRANSISTORS)

k

Proposed

Simple gates [17] DIMS [13] Direct logic [11] NCL [15]

Transistors Transistors Avg. diff. Transistors Avg. diff. Transistors Avg. diff. Transistors Avg. diff.

2 3,191,136 3,235,712 2% 2,896,824 -18% 2,655,422 -29% 2,551,032 -34%

3 2,271,142 2,504,552 6% 3,871,184 35% 2,210,690 -14% N/A N/A

4 2,191,972 2,218,362 2% 6,122,136 59% 2,326,294 -6% N/A N/A

5 2,349,356 2,160,442 -5% 10,191,848 73% 2,747,548 2% N/A N/A

6 2,615,018 2,115,466 -14% 17,309,296 80% 3,470,240 12% N/A N/A

TABLE IV. SUMMARY COMPARISON – LOGICAL EFFORT

k Proposed Simple gates [17] Average difference

2 6,546 6,586 0%

3 5,376 5,442 0.9%

4 4,955 5,214 3.8%

5 4,952 5,168 3.1%

6 4,933 5,123 2.6%

TABLE V. DETAIED RESULTS, K = 3, AREA

 Synch. Proposed asynchronous Simple gates [17]

 n q Trans.
Funct.

trans.

CD

trans.

Total

trans.
Overh.

Funct.

trans.

CD

trans.

Total

trans.
Diff.

apex2 39 3 11,550 23,168 22,604 45,772 74.8% 26,040 30,836 56,876 19.5%

c6288 32 32 13,112 22,742 9,212 31,954 59.0% 21,896 26,444 48,340 33.9%

des 256 245 14,866 30,358 24,124 54,482 72.7% 25,160 35,956 61,116 10.9%

mainpla 27 54 19,334 37,646 24,700 62,346 69.0% 26,468 36,452 62,920 0.9%

misex3 14 14 13,094 25,930 21,716 47,646 72.5% 28,164 34,372 62,536 23.8%

prom1 9 40 33,836 61,152 42,364 103,516 67.3% 43,308 57,356 100,664 -2.8%

s35932 1763 2048 41,256 82,654 61,988 144,642 71.5% 58,000 79,804 137,804 -5.0%

s38417 1664 1742 37,480 74,606 65,548 140,154 73.3% 62,340 103,292 165,632 15.4%

s38584.1 1464 1730 44,444 90,704 72,484 163,188 72.8% 76,060 118,916 194,976 16.3%

too_large 38 3 16,236 32,676 31,252 63,928 74.6% 29,164 36,940 66,104 3.3%

rd84 8 4 2,368 4,326 3,508 7,834 69.8% 5,632 6,124 11,756 33.4%

c6288 32 32 13,112 22,742 9,212 31,954 59.0% 21,896 26,444 48,340 33.9%

shift 19 16 554 1,100 796 1,896 70.8% 1,132 1,892 3,024 37.3%

vg2 25 8 436 882 1,004 1,886 76.9% 1,248 1,804 3,052 38.2%

z4ml 7 4 194 364 220 584 66.8% 484 644 1,128 48.2%

ex4p 128 28 3,726 7,500 6,940 14,440 74.2% 12,336 15,820 28,156 48.7%

t481 16 1 2,142 4,294 3,524 7,818 72.6% 7,648 10,084 17,732 55.9%

cordic 23 2 1,808 3,396 3,028 6,424 71.9% 17,036 21,916 38,952 83.5%

Average: 74.1% 6.1%

TABLE VI. DETAIED RESULTS, K = 3, PERFORMANCE

 Synch. Proposed asynchronous Simple gates [17]

 n q
Logical

effort

Funct.

logical

effort

CD levels

Total

logical

effort

Funct.

logical

effort

CD levels
Total logical

effort
Diff.

apex2 39 3 22.0 23.7 9 29.3 19.0 7 26.3 -11.4%

c6288 32 32 128.0 132.7 10 136.3 140.3 10 144.3 5.5%

des 256 245 26.3 25.7 6 34.3 25.0 6 34.3 0.0%

mainpla 27 54 35.0 39.3 9 45.7 43.7 8 51.0 10.5%

misex3 14 14 20.3 21.0 7 29.0 17.7 7 26.0 -11.5%

prom1 9 40 23.3 24.3 7 33.0 26.7 10 35.7 7.5%

s35932 1763 2048 16.7 17.0 7 29.0 18.3 8 32.0 9.4%

s38417 1664 1742 33.7 35.3 7 42.0 31.7 7 42.7 1.6%

s38584.1 1464 1730 34.7 36.7 9 40.3 31.7 8 37.3 -8.0%

too_large 38 3 25.3 26.3 8 31.3 22.3 7 29.0 -8.0%

rd84 8 4 20.3 20.0 5 25.3 14.3 5 21.7 -16.9%

c6288 32 32 128.0 132.7 10 136.3 140.3 10 144.3 5.5%

shift 19 16 8.0 8.0 5 15.7 10.7 4 19.7 20.3%

vg2 25 8 12.0 13.3 4 19.3 12.0 4 18.3 -5.5%

z4ml 7 4 10.0 10.7 2 15.7 12.0 3 17.7 11.3%

ex4p 128 28 17.3 20.3 5 25.7 14.3 7 22.0 -16.7%

t481 16 1 22.3 24.3 4 28.0 20.0 5 23.7 -18.3%

cordic 23 2 23.7 23.0 6 27.7 19.3 7 25.7 -7.8%

Average: 0.9%

TABLE VII. DETAIED RESULTS, K = 4, AREA

 Synch. Proposed asynchronous Simple gates [17]

 n q Trans.

Funct.

trans.

CD

trans.

Total

trans. Overh.

Funct.

trans.

CD

trans.

Total

trans. Diff.

apex2 39 3 12,592 27,324 14,740 42,064 70.1% 22,092 22,548 44,640 5.8%

c6288 32 32 20,134 34,116 5,860 39,976 49.6% 22,640 22,532 45,172 11.5%

des 256 245 23,522 45,990 16,596 62,586 62.4% 28,316 30,100 58,416 -7.1%

mainpla 27 54 19,538 40,540 15,876 56,416 65.4% 26,252 31,748 58,000 2.7%

misex3 14 14 15,598 32,520 15,604 48,124 67.6% 27,516 26,596 54,112 11.1%

prom1 9 40 42,766 73,850 26,364 100,214 57.3% 42,692 49,180 91,872 -9.1%

s35932 1763 2048 40,104 75,900 48,156 124,056 67.7% 58,000 70,940 128,940 3.8%

s38417 1664 1742 47,116 100,684 48,668 149,352 68.5% 61,236 87,588 148,824 -0.4%

s38584.1 1464 1730 49,136 105,124 52,356 157,480 68.8% 75,592 103,748 179,340 12.2%

too_large 38 3 17,366 36,616 21,948 58,564 70.3% 28,464 27,588 56,052 -4.5%

cordic 23 2 1,630 3,390 1,564 4,954 67.1% 3,372 3,700 7,072 29.9%

shift 19 16 598 1,264 708 1,972 69.7% 1,132 1,684 2,816 30.0%

cht 15 11 592 1,256 900 2,156 72.5% 1,300 1,812 3,112 30.7%

c8 28 18 498 1,066 676 1,742 71.4% 1,088 1,468 2,556 31.8%

mux 21 1 206 428 356 784 73.7% 516 644 1,160 32.4%

b12 15 9 258 542 380 922 72.0% 644 860 1,504 38.7%

f51m 8 8 412 836 284 1,120 63.2% 1,092 1,172 2,264 50.5%

vg2 25 8 354 848 628 1,476 76.0% 1,632 1,924 3,556 58.5%

Average: 69.5% 1.5%

TABLE VIII. DETAIED RESULTS, K = 4, PERFORMANCE

 Synch. Proposed asynchronous Simple gates [17]

 n q
Logical

effort

Funct.

logical

effort

CD levels

Total

logical

effort

Funct.

logical

effort

CD levels
Total logical

effort
Diff.

apex2 39 3 20.7 22.3 4 28.0 21.7 4 27.3 -2.4%

c6288 32 32 126.7 136.7 4 140.3 134.3 7 138.0 -1.7%

des 256 245 25.0 25.0 5 33.0 21.3 5 30.3 -8.8%

mainpla 27 54 27.0 31.7 5 38.3 45.3 5 49.7 22.8%

misex3 14 14 19.0 20.7 4 27.7 18.3 7 24.7 -12.2%

prom1 9 40 21.3 24.3 7 31.3 27.3 6 33.7 6.9%

s35932 1763 2048 12.7 13.3 6 23.0 18.3 7 30.0 23.3%

s38417 1664 1742 29.3 31.3 6 41.0 33.0 6 40.7 -0.8%

s38584.1 1464 1730 28.3 30.7 6 34.3 33.3 5 37.0 7.2%

too_large 38 3 20.7 22.3 5 27.7 21.7 6 26.3 -5.1%

cordic 23 2 20.7 25.0 4 28.7 21.7 4 26.7 -7.5%

shift 19 16 8.3 10.0 3 15.7 10.7 3 18.0 13.0%

cht 15 11 5.7 6.0 2 12.7 7.0 4 14.0 9.5%

c8 28 18 8.7 10.0 3 14.3 10.3 3 16.0 10.4%

mux 21 1 11.3 13.0 3 16.7 11.0 2 14.7 -13.6%

b12 15 9 6.3 7.0 2 12.7 11.0 3 15.0 15.6%

f51m 8 8 10.0 11.0 3 16.0 12.3 3 18.0 11.1%

vg2 25 8 12.0 15.0 5 19.0 12.3 3 17.3 -9.6%

Average: 3.8%

