
TIME-AREA EFFICIENT HARDWARE

ARCHITECTURES FOR CRYPTOGRAPHY

AND CRYPTANALYSIS

Dissertation

zur
Erlangung des Grades eines

Doktor-Ingenieurs

der
Fakultät für Elektrotechnik und Informationstechnik

an der Ruhr-Universität Bochum

von Martin Novotný
Bochum, Februar 2009

ii

Author’s contact information:
novotnym@fit.cvut.cz

Thesis Advisor: Prof. Dr.-Ing. Christof Paar
Ruhr-University Bochum, Germany

Secondary Referee: Ing. Jan Schmidt, Ph.D.
CTU in Prague, Czech Republic

Thesis submission: February 2, 2009
Thesis defense: April 30, 2009

iii

iv

Abstract

In the first part of the thesis we focus on scalable arithmetic units operating
over the binary finite field GF (2m) with a normal basis representation of the
field elements. The scalability is crucial in applications of different kind –
small, low power embedded devices as opposed to high-throughput backbone
applications.

Although scaling by digit-serialization is a well-known method, its applica-
tion to normal-basis multipliers brings problems with irregularities. Little has
been done for the case when the digit width does not divide the degree of the
field, although this situation is unavoidable in cryptographic applications.

In this thesis we present four architectures of the digit-serial normal basis
multiplier that we developed. We demonstrate digit-serialization on the pipe-
lined multiplier by Agnew et al., however, these methods are also applicable
to other multiplier structures, e.g. the multiplier by Kwon et al. All architec-
tures can be implemented for any digit width. Our evaluation shows that their
advantages are complementary with respect to the digit width.

Based on the scalable multiplier design, we extended our work to build
an entire scalable arithmetic unit. Only a shifter has to be added to support
inversion. It is scaled by the number of shifts implemented in hardware. This
is a special case of another little-studied problem: scaling a sub-unit in the
presence of another one, dominating the design in area and time. We present
an optimization method applicable to such cases.

In the second part of the thesis we focus on cryptanalysis of GSM commu-
nication, which is encrypted with A5/1 cipher. We present two attacks against
A5/1 cipher. Both attacks are supported by an existing low-cost special-
purpose hardware device COPACOBANA. They represent the first real-world
implementations of attacks against A5/1 reported in open literature.

v

The first attack is a guess-and-determine attack revealing the internal state
of A5/1 in about 6 hours on average (and about 12 hours at the worst-case). To
mount the attack only 64 consecutive bits of a known keystream are required
and we do not need any precomputed data. We also propose an optimized
version of the attack. Both plain and optimized version of the attack have
been fully implemented and tested on our target platform.

The second attack is a time-memory-data trade-off attack revealing the
internal state of A5/1 with certain probability in a matter of minutes. COPA-
COBANA is used in both the precomputation phase and the online phase of
the attack. When designing the precomputation engine, we have utilized the
features of underlying FPGA architecture to gain the maximum performance.
Here proposed design approach can be reused when designing similar attacks
against other stream ciphers.

Keywords:

Public Key Cryptography, Elliptic Curve Cryptography, Arithmetic Unit,
Binary Finite Fields GF (2m), Normal Basis, Multiplication, Inversion, Cryp-
tanalysis, Brute-Force Attack, TMDTO Attack, A5/1, COPACOBANA,
FPGA

vi

Kurzfassung

Die vorliegende Dissertation gliedert sich thematisch in zwei Teile. Der ers-
te Teil beschäftigt sich mit skalierbaren Arithmetikeinheiten über endlichen
Körpern der Form GF (2m) in Normalbasis-Repräsentation. Die Skalierbarkeit
dieser Architekturen ist dabei essentiell, um den Anforderungen unterschied-
licher Anwendungen – zum Beispiel kleine, eingebettete Systeme mit geringer
Leistungsaufnahme im Gegensatz zu Backbone-Systemen mit hohem Daten-
durchsatz – gerecht zu werden.

Skalierung durch Serialisierung ist eine wohlbekannte Methode, jedoch
bringt ihre Anwendung auf Normalbasis-Multiplizierer Probleme durch be-
stimmte Irregularitäten mit sich. In der einschlägigen Literatur wurde der Fall,
dass die Wortbreite kein Teiler des Erweiterungsgrades ist, so gut wie nicht
behandelt, obwohl dieser Fall für kryptographische Anwendungen praktisch
unvermeidbar ist.

In dieser Arbeit werden vier neuartige
”
digit-serial“ Normalbasis-

Multiplizierer vorgestellt. Dabei handelt es sich um serialisierte Varianten des
Multiplizierers von Agnew et al. Es ist erwähnenswert, dass die dazu ent-
wickelten Serialisierungsmethoden auch auf anderere Architekturen, wie zum
Beispiel den Multiplizierer von Kwon et al., angewandt werden können. Alle
vorgestellten Architekturen können für beliebige Wortbreiten implementiert
werden. Die durchgeführte Evaluierung zeigt, dass die Vorteile der Architek-
turen sich hinsichtlich der Wortbreite komplementär verhalten.

Als weiterer Forschungsbeitrag wird eine vollständig skalierbare Arithme-
tikeinheit entwickelt, die auf den vorgestellten Multiplizierern basiert. Diese
Einheit wurde darauf optimiert möglichst wenig Chipfläche einzunehmen und
ist in der Tat nur unwesentlich größer als der enthaltene Multiplizierer. In die-
sem Kontext stellt sich das bisher wenig untersuchte Problem der Dimensio-
nierung eines Bausteins in der Gegenwart eines zweiten, der das Gesamtsystem

vii

bezüglich Fläche und Zeit dominiert. Eine allgemeine Optimierungsstrategie
für derartige Fälle wird vorgeschlagen.

Der zweite Teil dieser Arbeit beschäftigt sich mit der hardware-basierten
Kryptanalyse der im GSM-Mobilfunknetz eingesetzten Stromchiffre A5/1. Ba-
sierend auf dem kürzlich vorgestellten, kosteneffizienten FPGA-Cluster CO-
PACOBANA werden zwei Angriffe gegen A5/1 realisiert. Im Gegensatz zu
bisherigen Arbeiten handelt es sich hierbei um zwei äußerst praktikable und
vollständig implementierte Attacken.

Der erste Angriff fällt in die Klasse der sogenannten
”
guess-and-determine“

Attacken und ist in der Lage den geheimen internen Zustand der Chriffre in
durchschnittlich 6 Stunden (12 Stunden im

”
worst-case“) zu bestimmen. Um

diesen Angriff durchzuführen werden nur 64 (aufeinanderfolgende) Bits des
Schlüsselstroms und keinerlei Vorberechnungen benötigt. Die vorgeschlagene
Attacke, sowie eine optimierte Variante wurden komplett auf COPACOBANA
implementiert und getestet.

Beim zweiten Angriff handelt es sich um eine
”
time-memory-data trade-

off“ Attacke. Mittels der entwickelten hardware-basierten Realisierung dieses
Angriffs kann, mit einer gewissen aber signifikanten Wahrscheinlichkeit, der
Initialzustand von A5/1 innerhalb von Minuten wiederhergestellt werden. Die
Spezialhardware COPACOBANA wird sowohl für die benötigten (umfangrei-
chen) Vorberechnungen als auch für den eigentlichen Angriff eingesetzt. Idea-
lerweise könnte das hier vorgeschlagene Design als Referenz für gleichartige
Angriffe auf Stromchiffren dienen.

Schlüsselworte:

Public-Key-Kryptographie, Elliptische-Kurven-Kryptographie, Hardwarea-
rithmetik, Endliche Körper, Normalbasen, Multiplikation, Inversion, Krypt-
analyse, Brute-Force Attacken, TMDTO Attacken, A5/1, COPACOBANA,
FPGA

viii

Acknowledgements

First of all, I would like to thank to both my supervisors, Christof Paar and
Jan Schmidt.

I would like to thank Jan Schmidt for initiating my research, for sometimes
pushing me to do the right things, and for overall support. Without his ideas,
help and collaboration, the first part of this thesis would be infeasible.

Christof Paar gave me the opportunity to join his research group for 18
months. The experience I got in the fruitful atmosphere of the group is
unique. Christof’s constant encouragement and effort as the thesis super-
visor contributed substantially to the quality and completeness of the thesis.
I am also grateful for his generous help with the funding of my stay.

Finishing this thesis would be infeasible without the help of Irmgard Kühn.
She was generous with her help and support during my whole research stay.
Horst Edelmann helped me with all technical problems and gave me good tips
for trips around the Ruhr Area.

Tim Güneysu and Jan Pelzl initiated my stay in Bochum. With Tim, we
worked on COPACOBANA-related problems. Andy Rupp, Timo Gendrullis
and I collaborated on cryptanalysis of A5/1. We also discussed some problems
with Andrey Bogdanov. Our work led to the results which are summarized in
the second part of this thesis.

I had the privilege to share a lot of fun with Timo Kasper. I still reminisce
the voyages which we made with Francesco Regazzoni to explore the Ruhr
Area and Germany. Thanks to Amir Moradi and his wife Shakila I could
extend my knowledge about culture and life of people in different parts of the
world. I would also like to extend my thanks to Axel Poschmann, Thomas
Eisenbarth, Marko Wolf, Kerstin Lemke-Rust and many others.

ix

I am also thankful to my landlord Mr. Falke and his family. Their house in
Bochum became my second home for the whole period of my stay.

I am grateful to the head of our department, Hana Kubátová, for her un-
conditional help and support. Jǐŕı Douša and Alois Pluháček were my great
teachers who became my colleagues. I am also glad to have colleagues who cre-
ate a cosy environment, namely Petr Fǐser, Radek Dobiáš and Pavel Kubaĺık.

My thanks also go to many other people whom I forgot to mention, but
who helped me in my life and work or who simply make this world better.

However, my greatest thanks go to my family. It is my parents who provided
for my education and who have been supporting me throughout the my whole
life. My nephews Ondřej and Marek, sons of my brother and my wonderful
sister-in-law, are a constant source of happiness. My partner Mirek encouraged
me to get the experience in Bochum. The 18 month I spent there, far away
from home, were hard period for both of us, but Mirek has shown extraordinary
patience, love and support.

Thank you!

x

To my partner and my family.

xi

xii

Contents

List of Tables xix

List of Algorithms xxi

List of Figures xxii

1 Introduction 1

I Design Methods for Scalable Arithmetic Units over
Binary Fields with Normal Basis 3

2 Introduction to Part I 5

3 Mathematical Background 9

3.1 Elliptic Curves . 9

3.2 Elliptic Curves over Binary Finite Fields, GF (2m) 11

3.3 Operations on Binary Field, GF (2m) 13

3.4 Operations on GF (2m) with a Normal Basis Representation . . 14

3.4.1 Addition . 14

3.4.2 Multiplication . 14

3.4.3 Squaring . 16

3.4.4 Division/Inversion . 17

xiii

4 Previous work 19

4.1 Massively Parallel Multiplier 19

4.2 Massey-Omura Multiplier . 20

4.3 Pipelined Massey-Omura Multiplier 20

4.4 Other Multipliers . 24

4.5 Digit-Serial Multiplier . 25

5 Multiplication/Inversion Unit 31

5.1 Structure of the Unit . 32

5.1.1 Multiplication . 33

5.1.2 Inversion . 34

5.1.3 Division . 36

5.2 Throughput Improvement of the Unit 36

5.2.1 Digit-Serialization of the Multiplier 37

5.2.2 Modification of the Shifter 38

5.3 Implementation Results . 42

5.3.1 Effect of a Digit-Serialization of the Multiplier 42

5.3.2 Iterative Squarings Improvement in the Shifter 44

5.4 Summary and Final Remarks 44

6 Digit-Serial Multipliers of a General Digit Width 47

6.1 Circular Multiplier (GC) . 48

6.2 Linear Multiplier (GL) . 50

6.3 End-Correction Multiplier (GCEC) 54

6.4 Circular Multiplier with Distributed Overlap (GCDIST and
GCDO) . 58

6.5 Area and Critical Path Length 62

6.5.1 Bit-Serial Multiplier . 63

6.5.2 Standard Digit-Serial Multiplier 63

6.5.3 Circular Digit-Serial Multiplier 64

6.5.4 Linear Digit-Serial Multiplier 64

xiv

6.5.5 End-Correction Digit-Serial Multiplier 64

6.5.6 Circular Multiplier with Distributed Overlap 64

6.6 Implementation Results . 64

7 Scalable Shifter Synthesis 73

7.1 Problem Formulation . 73

7.2 Approach Overview . 76

7.2.1 Sub-optimum Rotation Set by a Genetic Algorithm . . . 77

7.2.2 Sub-optimum Rotation Set by a Fast Heuristic 77

7.3 Results . 78

7.3.1 Future Work . 78

7.3.1.1 Reformulating the Observation 2 79

7.4 Summary . 81

8 Conclusions of Part I 83

II COPACOBANA-Assisted Attacks on GSM Com-
munication 85

9 Introduction to Part II 87

10 Background 89

10.1 A5/1 Cipher . 89

10.2 Previous Work . 92

10.2.1 Guess-and-Determine Attacks 92

10.2.2 Time-Memory-Data Trade-off Attacks 94

10.3 COPACOBANA — A Cost-Optimized Parallel Code Breaker . 95

11 Smart Brute-Force Attack on A5/1 99

11.1 Analysis and Modification of Keller and Seitz’s Approach . . . 100

11.1.1 Analysis . 100

xv

11.1.2 A Slight Modification 102

11.2 Hardware Architecture for COPACOBANA 106

11.2.1 The Guessing-Engine . 106

11.2.2 The Control-Interface 107

11.2.3 Optimization: Storing Intermediate States 108

11.3 Implementation Results for COPACOBANA 111

11.4 Summary . 113

12 Time-Memory Trade-off Attacks 115

12.1 Original Hellman’s Approach 116

12.1.1 Basic Idea . 117

12.1.2 Offline Phase . 117

12.1.3 Online Phase . 118

12.1.4 Characteristics . 119

12.2 Distinguished Points . 121

12.2.1 Offline Phase . 121

12.2.2 Online Phase . 122

12.2.3 Characteristics . 123

12.3 Time-Memory-Data Trade-off Attacks 126

12.4 Rainbow Tables . 127

12.4.1 Offline Phase . 128

12.4.2 Online Phase . 128

12.4.3 Characteristics . 128

12.5 Thin-Rainbow Tables . 130

12.5.1 Thin-Rainbow Tables with Distinguished Points 130

12.5.2 Offline Phase . 131

12.5.3 Online Phase . 131

12.5.4 Characteristics . 131

13 Time-Memory-Data Trade-off Attack on A5/1 135

xvi

13.1 Table Precomputation . 136

13.1.1 Chosen Method . 136

13.1.2 Design Approach . 136

13.1.3 The TMTO Element . 138

13.1.4 Architecture of the Table Precomputation Engine 139

13.1.5 Data Transfer from COPACOBANA to the Host Com-
puter . 142

13.1.6 Selection of Parameters 143

13.2 Fast Sort of Disk Stored TMTO Tables 143

13.2.1 Implemented Method 146

13.3 Implementation Results — the Precomputation Phase 147

13.3.1 Chains Merging One Step after the Start Point 152

13.4 Online Engine . 155

13.4.1 Online TMTO element 155

13.4.2 Architecture of the A5/1 Online Engine 156

13.4.3 Implementation Results 159

13.5 Fast Search at Disk-Stored TMTO Tables 160

13.6 Summary and Final Remarks 162

14 Backtracking A5/1 165

14.1 Detailed View on Algorithm of A5/1 165

14.2 Previous Work . 167

14.3 Proposed Method . 167

14.4 Testing the Method for A5/1 Backtracking 169

14.4.1 Test 1: Clocking A5/1 Forward and Backward for 101
Clock Cycles . 173

14.4.2 Test 2: Clocking A5/1 Forward and Backward for 151
Clock Cycles . 173

14.4.3 Test 3: Clocking A5/1 Backward Only for 101 Clock
Cycles . 173

xvii

14.4.4 Test 4: Clocking A5/1 Backward Only for 151 Clock
Cycles . 178

14.5 Summary and Final Remarks 180

15 Conclusions of Part II 181

Acronyms and Symbols 183

Bibliography 190

Refereed Publications of the Author 191

Curriculum Vitae 193

xviii

List of Tables

5.1 The number of clock cycles required for squarings in ITT algo-
rithm for various number of rotation blocks and for m = 131,
180 and 251. 39

5.2 Implementation of the modified multiplier/inverter in the Xilinx
Virtex300 . 43

6.1 Hardware resources . 65

6.2 Critical path length . 65

6.3 Implementation results for m = 180 70

6.4 Implementation results for m = 173 71

7.1 Shifters Adjusted to Different Multipliers 79

10.1 Clockcontrol of A5/1 . 91

11.1 Implementation results for the control-interface and the
guessing-engines . 111

11.2 Comparison of the implementation results of both guessing-
engines . 112

11.3 Implementation results of the maximally utilized designs 112

13.1 A5/1 TMDTO: Expected runtimes and memory requirements . 144

13.2 Theoretical and measured values of the number of chains in the
table (m̂) and their average length (l′avg) after rejection of chains
with duplicate end points. 150

xix

14.1 Three examples of the internal states and the candidates for
their predecessors. Clocking bits are highlighted. 168

14.2 Predecessors of the states — part 1 170

14.3 Predecessors of the states — part 2 171

xx

List of Algorithms

3.1 Normal basis multiplication . 16
3.2 Itoh-Teechai-Tsujii inversion in GF (2m) 17
5.1 An implementation of the ITT inversion in a multiplica-

tion/inversion unit . 35
14.1 BACKWARD STEP(R1, R2, R3, DEPTH) — a recurrent pro-

cedure for A5/1 backtracking 172

xxi

xxii

List of Figures

3.1 Point addition on an elliptic curve 10

4.1 Massey-Omura multiplier . 20

4.2 Modification of the Massey-Omura multiplier by Agnew et al.
Structure shown here is for GF (26) and its optimal normal basis 21

4.3 Terms evaluated in the stages of the register C in the bit-serial
multiplier in the k-th clock cycle 23

4.4 Evaluation of terms in pipelined bit-serial multiplier by Agnew
et al. (for GF (26) and its optimal normal basis) 24

4.5 Evaluation of terms in pipelined bit-serial multiplier by Agnew
et al. (for GF (25) and its Type II optimal normal basis) 25

4.6 Evaluation of terms in pipelined bit-serial multiplier by Kwon
et al. (for GF (25) and its Type II optimal normal basis) 26

4.7 Evaluation of terms in the register C in standard digit-serial
multiplier, a) full notation, b) abbreviated notation 27

4.8 Evaluation of the terms in a pipelined digit-serial multiplier (for
GF (26) and its optimal normal basis; digit width D = 2) . . . 29

4.9 Evaluation of the terms in the stages of a digit-serial multiplier
for m = 6 and D = 2. 29

4.10 Evaluation of the terms in the stages of a digit-serial multiplier
for m = 6 and D = 3. 29

5.1 Block diagram of the pipelined multiplier by Agnew et al. . . . 32

5.2 Multiplication/inversion unit 33

xxiii

5.3 Control unit for a multiplication/inversion unit 34

5.4 The number of clock cycles spent in squarings for various num-
ber of rotation blocks. 39

5.5 “Long distance” rotations ROR x and ROR y save clock cycles
necessary for squarings in ITT algorithm. 40

5.6 Time of point addition for different digit widths. No “long dis-
tance” rotation blocks are used. 42

5.7 The effect of adding 1 rotation block, a) m = 162, b) m = 180. 44

6.1 Circular Multiplier, GC . 48

6.2 Evaluation of the terms in the stages of the circular digit-serial
multiplier for m = 11 and D = 2. 49

6.3 Evaluation of the terms in the stages of the circular digit-serial
multiplier for m = 11 and D = 3. 49

6.4 Linear Multiplier, GL . 50

6.5 Evaluation of the terms in the stages of a linear digit-serial
multiplier for m = 11 and D = 2. 53

6.6 Evaluation of the terms in the stages of a linear digit-serial
multiplier for m = 11 and D = 3. 53

6.7 The sum 2Sr,k contains the subset of the terms from the sum
1Sr,k, 2Sr,k ⊆ 1Sr,k. In the last clock cycle, some terms are
switched off. 56

6.8 End-Correction Multiplier, GCEC 56

6.9 Evaluation of the terms in the stages of the end-correction digit-
serial multiplier for m = 11 and D = 2. 58

6.10 Evaluation of the terms in the stages of the end-correction digit-
serial multiplier for m = 11 and D = 3. 58

6.11 Evaluation of the terms in the stages of a circular digit-serial
multiplier with a distributed overlap (GCDIST as well as
GCDO) for m = 11 and D = 3. 62

6.12 Evaluation of the terms in the stages of a circular digit-serial
multiplier with a distributed overlap (GCDIST) for m = 13 and
D = 3. 63

xxiv

6.13 Evaluation of the terms in the stages of an optimized circular
digit-serial multiplier with a distributed overlap (GCDO) for
m = 13 and D = 3. 63

6.14 Time spent for the calculation of one product for variable digit
widths . 67

6.15 Quality factor as a function of the digit width 68

6.16 Combinational logic synthesized in the stage of the end-
correction multiplier . 69

7.1 Arithmetic unit contains 2 scalable subunits, the multiplier and
the shifter . 74

7.2 Approach overview. 76

7.3 Heaps of coins for a) 2 nominal values and b) 3 nominal values
of coins and for m = 180. 80

10.1 A5/1 cipher . 90

10.2 Algorithm of A5/1 . 91

10.3 Architecture of COPACOBANA. 98

10.4 Photo of COPACOBANA. 98

11.1 Flowchart of the FSM of a guessing-engine 103

11.2 Guessing the clocking bit of R3 in detail 104

11.3 An example for a generated state candidate after 3 times guess-
ing R3(t)[10] . 104

11.4 An example for a reduced binary decision tree of R3(t)[10] . . . 105

11.5 An overview of the guessing-engine 108

11.6 Functions f(b), g(b): The average number of cycles clocking R3
to generate a state candidate with reloading intermediate states
at recovery position b . 110

12.1 One chain in the Hellman TMTO 117

12.2 Time-memory trade-off table 118

12.3 Sampling the keystream into D output prefixes 127

xxv

13.1 Simplified diagram of Xilinx FPGA slice 137

13.2 TMTO element — a processing unit calculating one chain of
the table . 138

13.3 Architecture of an A5/1 precomputation engine 140

13.4 Memory buffers minimize the fragmentation of files in RadixSort 145

13.5 Splitting an unsorted table into files according to the MSDs of
the key . 147

13.6 The average length of the chain after the rejection of the dupli-
cate end points. 151

13.7 The ratio between the number of chains after rejection of the
duplicate end points, and the number of generated chains. . . . 153

13.8 Both internal state xa and internal state xb have the same suc-
cessor — internal state xc. Both xa and xb produce the same
output keystream, ya = yb. 154

13.9 Architecture of the online TMTO element 156

13.10Architecture of an A5/1 online engine 157

13.11The TMDTO table is divided into sectors. Border points are
stored in a separate table. 161

14.1 Sequence of internal states in A5/1 166

14.2 Test 1: a) Histogram of the candidates for the state xi, b)
Histogram of the number of steps to seek the whole search tree 174

14.3 Test 2: a) Histogram of the candidates for the state xi, b)
Histogram of the number of steps to seek the whole search tree 175

14.4 Test 3: Histogram of the maximum depth reached in the search
tree . 176

14.5 Test 3: a) Histogram of the candidates for the state xi, b)
Histogram of the number of steps to seek the whole search tree 177

14.6 Test 4: Histogram of the maximum depth reached in the search
tree . 178

14.7 Test 4: a) Histogram of the candidates for the state xi, b)
Histogram of the number of steps to seek the whole search tree 179

xxvi

Chapter 1

Introduction

Cryptography increasingly finds its application area in everyday life. Bank
transfers, identification cards, admittance systems, communication, the Inter-
net, personal data, databases, they all need to be protected against unautho-
rized access.

Cryptanalysis, as a complementary discipline to cryptography, is in public
view connected with breaking the ciphers for espionage purposes, money thefts,
private data surveys etc. However, it is not necessarily that. If done seriously
and if all results are published, then the cryptanalysis significantly contributes
to cryptography by showing the weaknesses of cryptographic primitives or
protocols used in cryptography. Such weaknesses can be then improved, e.g.
by replacing the cipher with the stronger one.

Both cryptography and cryptanalysis demand for efficient hardware mod-
ules. For example, the cryptographic modules are necessary in RFID tags,
used in transportation, in supermarkets, etc. The tag is powered from the
electromagnetic field provided by the reader. The communication between the
tag and the reader should be accomplished in a reasonable time. Therefore,
the cryptographic hardware inside the tag must be cheap, fast, energy-efficient,
and providing sufficient cryptographic strength at the same time.

Efficient hardware modules are necessary also in cryptanalysis. For exam-
ple, when mounting an attack against certain cipher, we are typically given the
limited budget and/or the limited hardware resources. Efficient implementa-
tion of the hardware modules allows for faster attack and, consequently, better
cost-performance ratio.

1

Chapter 1. Introduction

In this thesis we contribute to both cryptography and cryptanalysis. From
each field we have chosen one specific topic. In the first part of the thesis we
focus on hardware architectures operating over elements of binary finite fields
with normal basis representation. Such architectures are applicable e.g. in
Elliptic Curve Cryptography, which increasingly finds its application area e.g.
in bank cards, as a replacement of the RSA cipher. We propose the new struc-
ture of the normal basis arithmetic unit, which is both small and scalable. The
scalability option allows the designer to meet the design constraints optimally.

In the second part of the thesis we focus on cryptanalysis of A5/1 cipher
used in GSM communication. We describe hardware architectures of our two
attacks on A5/1 cipher. The attacks have been implemented for a special-
purpose hardware COPACOBANA. The attacks are designed to utilize both
the properties of the cipher and the properties of the programmable devices
used in COPACOBANA. Presented design approaches can be reused when
designing attacks against similar (stream) ciphers.

2

Part I

Design Methods for
Scalable Arithmetic Units
over Binary Fields with

Normal Basis

3

Chapter 2

Introduction to Part I

History of cryptography is old. In antiquity, middle ages, or in 20th century,
there always were messages that had to be encrypted. However, with growing
development of information technology in past few decades, the importance
of cryptographic systems has increased. Bank transfers, identification cards,
admittance systems, communication, the Internet, personal data, databases,
they all need to be protected against unauthorized access.

While symmetric cryptosystems use the same key for both encryption and
decryption, the asymmetric cryptosystems, based on the idea of Diffie and
Hellman [DH76], use two keys. One key — public key — is used for encryp-
tion, while the other key — private key — is used for decryption. A nice
idea of decrypting messages only with the knowledge of secret private key is
replaced with the necessity of higher computational complexity of asymmetric
cryptosystems in comparison to the symmetric ones. Therefore, many cryp-
tographic systems, namely those used for transfering large amounts of data,
combine advantages of both classes of ciphers. Before the data transfer starts,
the key of a symmetric cipher is exchanged by both sides. For this key ex-
change, the asymmetric cryptosystem is used. Then the data is transferred
using the symmetric cipher. Asymmetric cryptosystems are also used in cases
where the initial dialog between both sides is impossible (e.g. for the en-
cryption of e-mail messages), or for the authentication — digital signature
schemes [FIP00], [ANS97], [ANS98a], [ANS98b] or smart cards [Mas97] can be
mentioned here as typical examples.

5

Chapter 2. Introduction to Part I

The RSA cipher [RSA78] is probably the most frequently used asymmetric
cipher in currently used applications. Its algorithm is based on a factorization
problem. Other algorithms are based either on a discrete logarithm prob-
lem (DLP) [DH76] or an elliptic curve discrete logarithm problem (ECDLP)
[Mil86], [Kob87].

The elliptic curve cryptosystems (ECC) need significantly shorter keys to
achieve the same cryptographic strength as the classical RSA; e.g. the 160-
bit ECC has the same cryptographic strength as the 1024-bit RSA [Cer97].
This fact is very important in applications such as smart cards, where the size
of hardware or energy consumption is crucial. For this advantage, the EC
cryptosystems are commercially more and more popular.

Elliptic curves used for cryptographic purposes have point coordinates
which are elements of finite fields, GF (q). Generally, finite fields are defined
by a characteristic p and a degree m, marked GF (pm), where the character-
istic p is a prime number and the degree m is an integer. In elliptic curve
cryptography particularly prime fields GF (p) and binary fields GF (2m) are
used for a simpler implementation of arithmetic operations. Brief taxonomy
may be found e.g. in [Paa99].

In our work we focused on binary fields, GF (2m). Field elements in binary
fields are represented either in a polynomial basis or in a normal basis. The
choice of the basis has a strong impact on hardware, each of them offering
different advantages. Arithmetic units operating over the normal basis require
smaller amount of hardware resources [A.1] in comparison to the units operat-
ing over the polynomial basis. On the other hand, arithmetic units operating
over the polynomial basis are more common, more flexible and they better
integrate with integer arithmetics in comparison to the units operating over
normal basis. The main goal of this part of the thesis was a development
of hardware architectures operating over the normal basis that would be as
flexible as those operating over the polynomial basis.

Some applications require the cryptographic system to be as fast as possible,
in other applications area and/or power consumption are strongly limited, in
yet another applications the data throughput should be “the right one”, while
the minimum area and energy consumption are desirable. To meet differ-
ent design constraints the designer has to choose different area/throughput
trade-offs. The flexibility of the system in this sense is called scalability. The
scalability is the crucial characteristics of current cryptographic systems.

The designer expects e.g. no more than a twofold increase in area for
a twofold increase in throughput. This is the ideal case. To measure real

6

systems in this aspect we use quality factor as the ratio of throughput to area.
Although this is not the only possibility, it is the most common measure.

In this part of the thesis we describe a normal basis cryptographic arith-
metic unit that we developed. This arithmetic unit is able to perform two
crucial operations, multiplication and inversion in normal basis. This unit has
been designed to be as small as possible; in fact, it is slightly bigger than the
multiplier itself. The arithmetic unit contains two principal subunits, a multi-
plier and a shifter used in an inversion algorithm. Both subunits may be scaled
as much as the designer needs. This extended scalability allows the designer
to tune the cryptographic system to fit the design constraints optimally.

This part of the thesis is structured as follows: In Chapter 3, we summarize
basic mathematical backgrounds necessary for elliptic curve cryptography. In
Chapter 4, we bring an overview on essential algorithms and arithmetic ar-
chitectures for binary finite fields. In Chapter 5, we describe the multiplica-
tion/inversion unit that we developed. As mentioned above, the unit consists
of two subunits, the multiplier and the shifter. As the scalability options of a
standard multiplier are limited, we developed four architectures of multipliers
that can be scaled as much as necessary. These architectures are described
in Chapter 6. In the last Chapter 7, we discuss the shifter and its scalability
options.

7

Chapter 2. Introduction to Part I

8

Chapter 3

Mathematical Background

In this chapter we summarize mathematical foundations of an elliptic curve
cryptography. We remind the definition of an elliptic curve, element oper-
ations over elliptic curves and elliptic curves with point coordinates as the
elements of finite fields, namely binary fields. The information given here was
acquired from annex A of IEEE1363 standard [IEE00] and other sources, e.g.
[MBG+93].

3.1 Elliptic Curves

Elliptic curve E over real numbers is a set of points satisfying the Weierstrass
equation

y2 = x3 + ax + b, (3.1)

along with an additional element called the point at infinity (denoted ©).

A basic operation defined on an elliptic curve is a point addition. Its geo-
metrical construction is outlined in Figure 3.1.

Definition 3.1 (Point addition — geometrical approach). Let P1 and P2 be
two points of elliptic curve E, P1, P2 ∈ E, with coordinates P1 = [x1, y1] and
P2 = [x2, y2]. Let l1 be a secant of E that intersects E at points P1 and P2.
Then l1 intersects E at a third point −Q = [xQ,−yQ]. Point Q = [xQ, yQ] is
a result of point addition, Q = P1 + P2.

Point −Q = [xQ,−yQ] is the inverse of point Q = [xQ, yQ].

9

Chapter 3. Mathematical Background

x

y

P1

P2
-Q

Q=P1+P2
E

l1

l2

Figure 3.1: Point addition on an elliptic curve

Definition 3.2 (Point doubling — geometrical approach). Let P1 = P2 = P
be a point of an elliptic curve E, P ∈ E. Let l1 be a tangent of E that
intersects E at a point P . Then l1 intersects E at a point −Q = [xQ,−yQ].
Point Q = [xQ, yQ] is a result of a point doubling, Q = 2P .

The point at infinity © plays the role of a neutral element:

P +© = P,

P + (−P) =©.

Definition 3.3 (Point addition — algebraic approach). Let P1 and P2 be
two points of an elliptic curve E, P1, P2 ∈ E, with coordinates P1 = [x1, y1]
and P2 = [x2, y2]. Then the result of addition of points P1 and P2 is a point
Q = P1 + P2 with coordinates xQ, yQ:

xQ = λ2 − x1 − x2

yQ = λ(x1 − xQ)− y1,

where

λ =
y2 − y1

x2 − x1
.

Definition 3.4 (Point doubling - algebraic approach). Let P1 = P2 = P be a
point of an elliptic curve E, P ∈ E, with coordinates P = [x1, y1]. Then the

10

3.2. Elliptic Curves over Binary Finite Fields, GF (2m)

result of the doubling of a point P is a point Q = 2P = P +P with coordinates
xQ, yQ:

xQ = λ2 − 2x1

yQ = λ(x1 − xQ)− y1,

where

λ =
3x2

1 + a

2y1
.

3.2 Elliptic Curves over Binary Finite Fields,
GF (2m)

For cryptographic purposes, the coordinates x and y of the points on an elliptic
curve are expressed as elements of a finite field GF (q). Generally, the finite
field GF (q) has q = pm elements, marked GF (pm). Characteristic p is a
prime number, the degree m is a positive integer number. In cryptography,
particularly prime fields GF (p) and binary fields GF (2m) are used for simpler
implementation of arithmetic operations.

We focused on elliptic curves over binary fields GF (2m), where field ele-
ments can be expressed as m-bit vectors. For the binary fields GF (2m), the
Weierstrass equation is

y2 + xy = x3 + ax2 + b, (3.2)

where a and b are elements of GF (2m) with b 6= 0.

Also the point addition and point doubling are redefined for the elliptic
curves over binary fields.

Definition 3.5 (Point addition on the elliptic curve over the binary field).
Let P1 and P2 be two points of a elliptic curve E, P1, P2 ∈ E, with coordinates
P1 = [x1, y1] and P2 = [x2, y2]; x1, x2, y1, y2 ∈ GF (2m). Then the result of
the addition of points P1 and P2 is a point Q = P1 + P2 with coordinates
xQ, yQ ∈ GF (2m):

xQ = a + λ2 + λ + x1 + x2 (3.3)

yQ = λ(x2 + xQ) + xQ + y2, (3.4)

11

Chapter 3. Mathematical Background

where

λ =
y2 + y1

x2 + x1
. (3.5)

Definition 3.6 (Point doubling on the elliptic curve over the binary field).
Let P1 = P2 = P be a point of the elliptic curve E, P ∈ E, with coordinates
P = [x1, y1]; x1, y1 ∈ GF (2m). Then the result of the doubling of a point P is
a point Q = 2P = P + P with coordinates xQ, yQ ∈ GF (2m):

xQ = a + λ2 + λ (3.6)

yQ = λ(x1 + xQ) + xQ + y1, (3.7)

where
λ = x1 +

y1

x1
. (3.8)

With the knowledge of the point addition we can define derivative operation
— scalar point multiplication.

Definition 3.7 (Scalar multiplication of the point). Let k be a positive integer
(k ∈ N) and P be a point on an elliptic curve E, P ∈ E. Then a scalar multiple
Q = kP is a result of adding k copies of P , Q = kP = P + P + ... + P .

The definition of a scalar point multiplication can be extended to k being
zero or k being a negative integer: 0P = ©, (−k)P = k(−P).

Scalar point multiplication is the main operation used in elliptic curve cryp-
tography, in other words, it is used in cryptographic primitives. The EC based
cryptography utilizes the fact that for given k ∈ N and P ∈ E it is relatively
simple to compute Q = kP (it takes O(log k) point additions or doublings),
while the reverse operation — computation of k for known P and Q — is
difficult (it takes k − 1 point additions). For the evaluation of the scalar
point multiple, the double-and-add method (Horner scheme), the addition-
subtraction method outlined in [IEE00] or other methods [LD99], [Mon87] can
be used.

Example 3.1. For k = 41 = 110012, with the double-and-add method
the scalar point multiple Q is evaluated after 5 point doublings and 2
point additions:

Q = k × P = 41× P = 1010012 × P

= ((((((1P)× 2 + 0P)× 2 + 1P)× 2 + 0P)× 2 + 0P)× 2 + 1P).

12

3.3. Operations on Binary Field, GF (2m)

Vice versa, to evaluate k from known points P and Q, we must perform
40 point additions P +P +P + ...+P until the result matches the point
Q. After that we know the secret value k = 41.

The value k is called an elliptic curve discrete logarithm (more precise def-
inition of an elliptic curve discrete logarithm is given e.g. in [IEE00]). The
problem with evaluation of k for known P and Q is called an elliptic curve
discrete logarithm problem (ECDLP).

3.3 Operations on Binary Field, GF (2m)

From Equations 3.3 through 3.8 it is evident that the following operations on
the elements of GF (2m) must be implemented:

• addition
• multiplication
• division/inversion
• squaring

If an algorithm for division is not known, then division is performed as
multiplication by an inverse element of a divisor (denominator). In that case,
an algorithm for inversion is involved. Although squaring is in general derived
from multiplication, it is advantageous to consider it as a separate operation,
since squaring may be performed faster than multiplication.

Let us remark that in the previous text we operated with so called affine
coordinates of the points on an elliptic curve. If so called projective coordinates
are used, than for point addition or point doubling, no division or inversion
is necessary. On the other hand, an increased number of multiplications is
inevitable. Division, however, is still necessary for conversion from projective
to affine coordinates.

Addition of two elements of GF (2m) is always realized as a bit-wise addition
modulo 2 (XOR operation). The realization of other operations depends on
a basis representation of the field elements. There are two common families
of basis representations for the binary fields: polynomial basis representations
and normal basis representations.

A polynomial basis is a set of the form B = {tm−1, . . . , t2, t1, t0}. The rep-
resentation of GF (2m) via the polynomial basis is carried out by interpreting
the bit string (am−1 . . . a2a1a0) as an element am−1t

m−1 + · · ·+a2t
2 +a1t+a0.

13

Chapter 3. Mathematical Background

A normal basis is a set of the form B = {β20

, β21

, β22

, . . . , β2m−1} . The rep-
resentation of GF (2m) via the normal basis is carried out by interpreting the

bit string (a0a1a2 . . . am−1) as the element a0β+a1β
2+a2β

4+· · ·+am−1β
2m−1

.
For more information about normal bases, see [Gao93] and [MBG+93].

As arithmetic units working over a normal basis representation are smaller
and faster than those ones working over a polynomial basis [A.1], we focused
entirely on a normal basis in our work.

3.4 Operations on GF (2m) with a Normal Basis
Representation

In our work we entirely focused on a normal basis representation. Here we
present algorithms concerning operations in a normal basis mentioned above.

Let
B = {β20

, β21

, β22

, . . . , β2m−1}
be a normal basis in GF (2m). Let a, b be elements of GF (2m) with a normal
basis B, then

a = a0β
20

+ a1β
21

+ a2β
22

+ · · ·+ am−1β
2m−1

b = b0β
20

+ b1β
21

+ b2β
22

+ · · ·+ bm−1β
2m−1

,

where ai, bi ∈ GF (2).

3.4.1 Addition

Addition of elements a and b is performed as addition of polynomials a(β) and
b(β). As elements of GF (2m) are usually represented as m-bit vectors, the
addition is equivalent to a bit-wise XOR operation on the vectors a and b.

3.4.2 Multiplication

Multiplication of two elements in GF (2m) with a normal basis B can be defined
by a multiplication matrix M. The multiplication matrix is a square matrix
with elements λj,l ∈ GF (2). The algorithm of finding the multiplication matrix
M for a given normal basis can be found in [IEE00].

14

3.4. Operations on GF (2m) with a Normal Basis Representation

The coefficients of a product c = a× b are

ci =
m−1∑

j=0

m−1∑

l=0

aj+lbl+iλjl, 0 ≤ i ≤ m− 1, (3.9)

where additions and multiplications are performed in GF (2). Consequently,
additions are performed as XOR operations and multiplications as AND op-
erations. The indices of a and b are added modulo m.

Equation 3.9 can be rewritten into following forms:

ci =

m−1∑

j=0

aj+l

m−1∑

l=0

bl+iλjl, 0 ≤ i ≤ m− 1, (3.10)

or

ci =
m−1∑

l=0

bl+i

m−1∑

j=0

aj+lλjl, 0 ≤ i ≤ m− 1.

Let CN denotes the number of non-zero elements λjl in M. As obvious, it
corresponds to the number of product terms in Equation 3.9 for each ci. Thus,
CN determines the complexity of multiplication — the higher the number CN

is, the more complex the multiplication is, i.e. multiplication consumes more
time, more area or both. Mullin et al. [MOVW89] proved that the complexity
CN ≥ 2m − 1. Bases reaching CN = 2m − 1 are called optimal normal
bases. Optimal normal bases belong to the subset of normal bases called
Gaussian normal bases. In Gaussian normal bases, the complexity of the base
is expressed by the type of a base T . Optimal normal bases are of Type I and
Type II. As an illustrative example, let us show a set of equations for m = 6
and an optimal normal basis of Type II:

Example 3.2. For GF (26) and its optimal normal basis the multipli-
cation matrix M is

M =

0 1 0 0 0 0
1 0 0 0 1 0
0 0 0 1 1 0
0 0 1 0 0 1
0 1 1 0 0 0
0 0 0 1 0 1

(3.11)

15

Chapter 3. Mathematical Background

Algorithm 3.1 Normal basis multiplication

Input: The multiplication matrix M for the field GF (2m);
field elements a = (a0a1 . . . am−1) and b = (b0b1 . . . bm−1).

Output: The product c = (c0c1 . . . cm−1) of a and b.
1: x← a
2: y ← b
3: for k = 0 to m− 1 do
4: (compute via matrix multiplication)

ck ← xMytr

(where ytr denotes the matrix transpose of the vector y)
5: x← LeftShift(x), y ← LeftShift(y),

(where LeftShift denotes the circular left shift operation)
6: end for
7: return c = (c0c1 . . . cm−1)

Let a = (a0a1a2a3a4a5) and b = (b0b1b2b3b4b5) be two elements of
GF (26). After application of a multiplication matrix 3.11 into 3.10
we obtain a following set of equations for bits (c0c1c2c3c4c5)of result
c = a× b:

c0 = a0b1 + a1(b0 + b4) + a2(b3 + b4) + a3(b2 + b5) + a4(b1 + b2) + a5(b3 + b5)

c1 = a1b2 + a2(b1 + b5) + a3(b4 + b5) + a4(b3 + b0) + a5(b2 + b3) + a0(b4 + b0)

c2 = a2b3 + a3(b2 + b0) + a4(b5 + b0) + a5(b4 + b1) + a0(b3 + b4) + a1(b5 + b1)

c3 = a3b4 + a4(b3 + b1) + a5(b0 + b1) + a0(b5 + b2) + a1(b4 + b5) + a2(b0 + b2)

c4 = a4b5 + a5(b4 + b2) + a0(b1 + b2) + a1(b0 + b3) + a2(b5 + b0) + a3(b1 + b3)

c5 = a5b0 + a0(b5 + b3) + a1(b2 + b3) + a2(b1 + b4) + a3(b0 + b1) + a4(b2 + b4)
(3.12)

The set of equations is regular. The equation for bit ci+k can be derived
from the equation for ci by a k-bit circular left rotation of arguments a and b.
Algorithm 3.1 implements the multiplication of two elements of a field GF (2m)
represented in a normal basis. This algorithm has been taken from [IEE00].

3.4.3 Squaring

Squaring in a normal basis is implemented as a circular shift of an ar-
gument “one bit to the right”; if a = (a0a1 . . . am−2am−1), then a2 =

16

3.4. Operations on GF (2m) with a Normal Basis Representation

Algorithm 3.2 Itoh-Teechai-Tsujii inversion in GF (2m)

Input: A field GF (2m) and a nonzero field element β
Output: The reciprocal β−1

1: Let m − 1 = brbr−1 . . . b1b0 be the binary representation of m − 1, where
the most significant bit br of m− 1 is 1.

2: η ← β, k ← 1
3: for i = r downto 1 do
4: µ← η
5: for j = k downto 1 do
6: µ← µ2

7: end for
8: η ← µη, k ← 2k
9: if bi−1 = 1 then

10: η ← η2β, k ← k + 1
11: end if
12: end for
13: return η2

(am−1a0a1 . . . am−2). As obvious, this operation is in a normal basis very
simple — it can be performed in one or zero clock cycles.

3.4.4 Division/Inversion

For division or inversion in a polynomial basis, the extended Euclidean al-
gorithm is used. Unfortunately, this algorithm is not applicable in a normal
basis. In a normal basis, division is implemented as multiplication by an in-
verse element of a divisor.

The fastest known inversion algorithm that can be used in GF (2m) with a
normal basis is the algorithm developed by Itoh, Teechai, and Tsujii [ITT86]
outlined in Algorithm 3.2. Note that the algorithm can be generalized for
any GF (pm). The algorithm uses repeated multiplication (steps 8 and 10)
and squaring (steps 6, 10 and 13). During the execution of an algorithm,
r = ⌊log(m− 1)⌋ multiplications are performed in step 8, and w(m − 1) − 1
multiplications are performed in step 10, where w(◦) denotes the Hamming
weight. Total number of multiplications necessary for one inversion is

IM = ⌊log(m− 1)⌋+ w(m− 1)− 1. (3.13)

17

Chapter 3. Mathematical Background

The number of iterative squarings performed in step 6 is

IIS = (m− 1)− w(m− 1). (3.14)

The number of squarings performed in step 10 is w(m − 1) − 1, and there is
one last squaring in step 13 [ITT86]. A total number of squarings necessary
for one inversion is then

IS = m− 1. (3.15)

18

Chapter 4

Previous work

Multiplication is the crucial operation to be implemented over GF (2m) with a
normal basis. Other operations are in a normal basis either simple or based on
multiplication. There has been an array of normal basis multipliers developed.
An overview of several architectures of normal basis multipliers can be found
e.g. in [ANR99]. Alternative architectures with a slightly reduced gate count
or a critical path were reported in [GS00, RMH03, KGKH04]. Some multipliers
are optimized for special cases of normal bases, mainly to the optimal normal
bases of both Type I [KS98] and Type II [Kwo03, SK01]. Here we deal with
Massey-Omura multiplier [MO86] that can be used for any type of a normal
basis, and with its pipelined version by Agnew et al. [AMOV91].

4.1 Massively Parallel Multiplier

The set of equations defining the bits of result (see example set 3.12) can be
implemented as a combinational logic that computes all bits of a result in
parallel. Such a multiplier is huge (the amount of hardware is proportional to
m2, in the best case) and the critical path is long (it is proportional to log m)
This multiplier is also called bit-parallel.

19

Chapter 4. Previous work

combinational logic

a0 a1 … am-1

c0 c1 … cm-1

b0 b1 … bm-1

Figure 4.1: Massey-Omura multiplier

4.2 Massey-Omura Multiplier

Massey and Omura [MO86] proposed a multiplier that employs the regularity
of equations for all bits of a result. If we construct an equation for one bit
of a result (e.g. c0), equations for other bits can be derived by rotating bits
of arguments a and b, as shown in Algorithm 3.1 (see also an example set of
Equations 3.12). In this multiplier, one bit of the result is computed in one
clock cycle and the registers holding arguments a and b are rotated one bit to
the left between cycles. The Massey-Omura multiplier is m times smaller than
the massively parallel one because it contains logic for the computation of one
bit only. The computation of the result takes m clock cycles. The length of the
critical path remains the same as for the massively parallel multiplier. This
multiplier is also called bit-serial. The block structure of the Massey-Omura
multiplier is shown in Figure 4.1.

4.3 Pipelined Massey-Omura Multiplier

Agnew, et al. [AMOV91] modified the Massey-Omura multiplier by pipelining
and parallelization. From Equation 3.10 it follows, that the equation for each
bit of result can be divided into m terms Ti,j :

ci = Ti,0 + Ti,1 + · · ·+ Ti,m−2 + Ti,m−1 =

m−1∑

j=0

Ti,j , (4.1)

20

4.3. Pipelined Massey-Omura Multiplier

C

a0 a1 a2 a3 a4 a5a0 a1 a2 a3 a4 a5

b0 b1 b2 b3 b4 b5b0 b1 b2 b3 b4 b5

s0 s1 s2 s3 s4 s5

A

B

sr+1

sr

au

bs bt

sr–1

DrDr

STAGE

clkclk

Figure 4.2: Modification of the Massey-Omura multiplier by Agnew et al.
Structure shown here is for GF (26) and its optimal normal basis

where

Ti,j = aj+i

m−1∑

l=0

bl+iλjl (4.2)

(the values of the subscript indices are reduced modulo m).

In the multiplier by Agnew et al., the computation of the result is again
performed in m clock cycles. In the k-th clock cycle, terms Ti,i+k (∀i, 0 ≤ i ≤
m−1) are evaluated and added to the intermediate results of the corresponding
bits ci. Registers A and B that hold arguments a and b are rotated one bit
right in every clock cycle. As pipelining is used, also the register C, in which
the result is successively evaluated, is rotated one bit right in every clock cycle.
The result in the register C is available after m clock cycles. For illustration,
the block structure of a multiplier for the set of Equations 3.12 is shown in
Figure 4.2. The initial content of registers A and B is shown in this figure.

The combinational logic, which lies in front of each C register bit, imple-
ments one term. Denote the logic together with the register bit a stage. The
amount of hardware in the multiplier by Agnew et al. is the same as for the
Massey-Omura multiplier, but the combinational logic is distributed over the
stages s0s1 . . . sm−1 of the register C. Thus the critical path is short and con-
stant (it does not depend on m) and the maximum achievable frequency is
higher.

21

Chapter 4. Previous work

Rule 4.1 (pipelined Massey-Omura multiplier). Let q = m be the number of
clock cycles of one multiplication. Then, in the k-th clock cycle (0 ≤ k ≤ q−1),
the stage sr (0 ≤ r ≤ m− 1) evaluates the term

Sr,k = Tr−k,r (4.3)

(the values of the subscript indices are reduced modulo m).

After substituting 4.2 into 4.3 we get

Sr,k = Tr−k,r = ar+r−k

m−1∑

l=0

bl+r−kλrl,

Sr,k = a2r−k

m−1∑

l=0

b(l+r)−kλrl (4.4)

(the values of the subscript indices are reduced modulo m).

The term Sr,k is added to the partial result of the bit cr−k, which is, due
to the rotation of the register C, present in the stage sr during the k-th clock
cycle. The result c0c1c2 . . . cm−1 is available in stages sm−1s0s1 . . . sm−2 after
m clock cycles.

Let us briefly explain the functionality of the multiplier. From Equations 4.3
and 4.4 follows that in the first clock cycle (k = 0), stage sr evaluates the term
(see also Figure4.3)

Sr,0 = Tr,r

or

Sr,0 = a2r−0

m−1∑

l=0

b(l+r)−0λrl (4.5)

(the values of the subscript indices are reduced modulo m).

From the comparison of Equations 4.5 and 4.4 is obvious that to evaluate
an appropriate term Sr,k in the k-th clock cycle, only arguments a and b are
needed to rotate k bits to the right. Arguments a and b are held in registers
A and B.

From Equation 4.1 follows that on its run around the register C, the bit ci

must “collect” all terms Ti,j with an equal first index i and with all distinct
second indices j, 0 ≤ j ≤ m− 1. The equality of the first index i is satisfied by
the rotation of the register C — the term Tr−k,r is added to the partial result

22

4.3. Pipelined Massey-Omura Multiplier

T0-k,0

s0

T1-k,1

s1

T2-k,2

s2

Tm-2-k,m-2

sm-2

Tm-1-k,m-1

sm-1

Figure 4.3: Terms evaluated in the stages of the register C in the bit-serial
multiplier in the k-th clock cycle

of the bit cr−k in the stage sr during the k-th clock cycle. The second index
j is fixed with an appropriate stage sj (see 4.3). As every bit ci of the result
passes all stages sj , it “collects” all terms Ti,j .

Let us note that the description given in Rule 4.1 corresponds to the one
given at [AMOV91]. In this description, in the first clock cycle (k = 0), the
stage sr evaluates the term Tr,r. However, it is possible to make permutation of
terms Ti,j . Generally, we have to only satisfy that the terms Ti,j concurrently
evaluated in stages s0s1 . . . sm−1 during one clock cycle have distinct values of
indices i as well as distinct values of indices j.

Example 4.1. It is shown in Figure 4.4 how the product c from Exam-
ple 3.2 is successively evaluated in a pipelined bit-serial multiplier. In
the first clock cycle (k = 0) boxed terms are evaluated, in the second
clock cycle (k = 1) overlined terms are evaluated etc. Multiplication
takes q = m = 6 clock cycles.

In the following we will sketch the proof of correctness of the pipelined
Massey-Omura multiplier. Outline of the proof will be used for proofs of other
multipliers. To prove the correctness of any of the multipliers we have to show
that the Equation 4.1 is satified for any ci.

Proof of correctness of the bit-serial multiplier. Let i = r − k. From Rule 4.1
it follows that in the k-th clock cycle the partial result of the bit ci is present
in the stage si+k. The stage si+k evaluates the term Si+k,k = Ti,i+k which
is added to the partial result of ci present in the stage. As evaluation takes
q = m clock cycles, then

ci =
m−1∑

k=0

Si+k,k =
m−1∑

k=0

Ti,i+k

23

Chapter 4. Previous work

c0 = a0b1 + a1(b0 + b4) + a2(b3 + b4) + a3(b2 + b5) + a4(b1 + b2) + a5(b3 + b5)

c1 = a1b2 + a2(b1 + b5) + a3(b4 + b5) + a4(b3 + b0) + a5(b2 + b3) + a0(b4 + b0)

c2 = a2b3 + a3(b2 + b0) + a4(b5 + b0) + a5(b4 + b1) + a0(b3 + b4) + a1(b5 + b1)

c3 = a3b4 + a4(b3 + b1) + a5(b0 + b1) + a0(b5 + b2) + a1(b4 + b5) + a2(b0 + b2)

c4 = a4b5 + a5(b4 + b2) + a0(b1 + b2) + a1(b0 + b3) + a2(b5 + b0) + a3(b1 + b3)

c5 = a5b0 + a0(b5 + b3) + a1(b2 + b3) + a2(b1 + b4) + a3(b0 + b1) + a4(b2 + b4)

Figure 4.4: Evaluation of terms in pipelined bit-serial multiplier by Agnew et
al. (for GF (26) and its optimal normal basis)

As the indices are reduced modulo m, the Equation 4.1 is satisfied.

4.4 Other Multipliers

Reyhani-Masoleh and Hasan [RMH03] proposed two other architectures of the
multiplier. By utilizing the symmetric property of the multiplication, their
multipliers have reduced area complexity in comparison to the multiplier by
Agnew et al. On the other hand, the critical path of these multipliers is slightly
longer, or at least comparable to that of the multiplier by Agnew et al.

Kwon et al. [KGKH04] proposed another structure for a pipelined bit-serial
multiplier. Their multiplier is applicable only for odd values of m. The multi-
plier has the area complexity comparable to the multiplier by Reyhani-Masoleh
and Hasan, while it preserves the critical path delay of the multiplier by Agnew
et al.

The structure of the multiplier is similar to the structure of the multiplier
by Agnew et al. Simply saying, by smart reordering the terms Ti,j , some
logical expressions are repeated in several distinct stages. Consequently, the
combinational logic implementing those expressions can be reused.

Figures 4.5 shows, how the set of equations is evaluated in multiplier by
Agnew et al. Figure 4.6 shows, how the same set of equations is evaluated in
multiplier by Kwon et al. Boxed terms are evaluated in the first clock cycle.
As evident from the example in Figure 4.6, an expression (b2 + b3) appears in

24

4.5. Digit-Serial Multiplier

c0 = a0b1 + a1(b0 + b3) + a2(b3 + b4) + a3(b1 + b2) + a4(b2 + b4)

c1 = a1b2 + a2(b1 + b4) + a3(b4 + b0) + a4(b2 + b3) + a0(b3 + b0)

c2 = a2b3 + a3(b2 + b0) + a4(b0 + b1) + a0(b3 + b4) + a1(b4 + b1)

c3 = a3b4 + a4(b3 + b1) + a0(b1 + b2) + a1(b4 + b0) + a2(b0 + b2)

c4 = a4b0 + a0(b4 + b2) + a1(b2 + b3) + a2(b0 + b1) + a3(b1 + b3)

Figure 4.5: Evaluation of terms in pipelined bit-serial multiplier by Agnew et
al. (for GF (25) and its Type II optimal normal basis)

two terms. Therefore, the XOR gate producing this expression is shared by
corresponding two stages, which reduces the gate count in multiplier by Kwon
et al. The same stands for an expression (b0 + b2).

4.5 Digit-Serial Multiplier

When implementing a cryptosystem in a constrained environment such as at
smart cards, the designer needs to consider trade-offs between the area and
speed. Bit-serial implementations of the normal basis multiplier outlined above
require less area, but they are slow, since they need m clock cycles to generate
the product of the two field elements. On the other hand, massively-parallel
(bit-parallel) versions are fast but require more area. In between the two ends
of the architectural spectrum (i.e., fully bit-serial and fully bit-parallel), digit-
serial multipliers exist. Such multipliers give a designer the flexibility to make
trade-offs between the speed and the area.

The digit-serial Massey-Omura multiplier in parallel evaluates D bits (called
a digit) of the result during one clock cycle, in contrast to a bit-serial version in
which just one bit is evaluated during one clock cycle. Hence, the computation
of one product is faster and takes only q =

⌈
m
D

⌉
clock cycles. For D = 1 we

get a bit-serial multiplier discussed in paragraph 4.2, while for D = m, we get
a bit-parallel multiplier discussed in paragraph 4.1.

25

Chapter 4. Previous work

c0 = a0b1 + a3(b1 + b2) + a1(b0 + b3) + a4(b2 + b4) + a2(b3 + b4)

c1 = a1b2 + a4(b2 + b3) + a2(b1 + b4) + a0(b3 + b0) + a3(b4 + b0)

c2 = a2b3 + a0(b3 + b4) + a3(b2 + b0) + a1(b4 + b1) + a4(b0 + b1)

c3 = a3b4 + a1(b4 + b0) + a4(b3 + b1) + a2(b0 + b2) + a0(b1 + b2)

c4 = a4b0 + a2(b0 + b1) + a0(b4 + b2) + a3(b1 + b3) + a1(b2 + b3)

Figure 4.6: Evaluation of terms in pipelined bit-serial multiplier by Kwon et
al. (for GF (25) and its Type II optimal normal basis)

The transformation of the digit-serial Massey-Omura multiplier into the
pipelined multiplier by Agnew et al. leads to the evaluation of D terms in
every stage of the multiplier during one clock cycle. The construction of the
pipelined digit-serial multiplier is possible whenever a digit width D divides the
number of bits m. The computation needs then only q = m

D
clock cycles. Every

bit of the result is successively evaluated in q consecutive stages, e.g. the bit
c0 passes stages s0 . . . sq−1, while the bit cm−1 passes stages sm−1, s0 . . . sq−2.
The evaluation of the terms in the register C is shown in Figure 4.7.

Rule 4.2 (a standard digit-serial multiplier). Let D|m. Let q = m
D

be the
number of the clock cycles of one multiplication. Then, in the k-th clock cycle
(0 ≤ k ≤ q − 1), the stage sr (0 ≤ r ≤ m− 1) evaluates the sum of terms

Sr,k =

vr∑

j=ur

Tr−k,j , (4.6)

where

ur = rD,

vr = ur + D − 1

(the values of the subscript indices are reduced modulo m).

The sum of terms Sr,k is added to the partial result of the bit cr−k,
which is, due to the rotation of the register C, present in the stage sr dur-

26

4.5. Digit-Serial Multiplier

s0 s1 sq-1 sq sm-1

∑−

=

−

1

0

,0

D

j

jkT ∑−

=

−

12

,1

D

Dj

jkT ∑
−

−=

−−

1

)1(

,1

qD

Dqj

jkqT ∑−

=

−

1

0

,

D

j

jkqT ∑
−

−=

−−

1

)1(

,1

qD

Dqj

jkmT

S0,k

s0

S1,k

s1

Sq-1,k

sq-1

Sq,k

sq

Sm-1,k

sm-1

Figure 4.7: Evaluation of terms in the register C in standard digit-serial mul-
tiplier, a) full notation, b) abbreviated notation

ing the k-th clock cycle. The result c0c1c2 . . . cm−1 is available in stages
sq−1sqsq+1 . . . sm−1s0 . . . sq−2 after q clock cycles.

To prove the correctness of the digit-serial multiplier we again have to show
that the Equation 4.1 is satisfied for any ci.

Proof of correctness of the digit-serial multiplier. Let i = r−k. From Rule 4.2
it follows that in the k-th clock cycle the partial result of the bit ci is present
in the stage si+k. The stage si+k evaluates the sum of terms

Si+k,k =

vi,k∑

j=ui,k

Ti,j ,

where

ui,k = (i + k)D,

vi,k = ui,k + D − 1

The sum of terms Si+k,k is added to the partial result of ci present in the stage
si+k. As evaluation takes q = m

D
clock cycles, then

ci =

q−1∑

k=0

Si+k,k =

q−1∑

k=0

vi,k∑

j=ui,k

Ti,j (4.7)

27

Chapter 4. Previous work

As the indices j form a sequence, concretely ui,k = vi,k−1 +1, the equation 4.7
may be rewritten

ci =

q−1∑

k=0

vi,k∑

j=ui,k

Ti,j =

vi,q−1∑

j=ui,0

Ti,j =

iD+m−1∑

j=iD

Ti,j

As the indices are reduced modulo m, the Equation 4.1 is satisfied.

Let the block of q consecutive stages be denoted as a pipeline block. From
Equation 4.1 follows that any pipeline block implements exactly m terms Ti,j .
The whole multiplier implements exactly D×m terms Ti,j , hence, we may split
the multiplier into D pipeline blocks. From 4.1 also follows that the terms Ti,j

evaluated in the stages si and si+q have the same second indices j.

In the digit-serial multiplier the amount of combinational logic in the stages
of the register C is roughly D-times larger than in the bit-serial one. The
amount of other logic and registers remains the same.

Example 4.2. Figure 4.8 shows how the product c from Example 3.2
is successively evaluated in the pipelined digit-serial multiplier. In this
case, the digit width D = 2, i.e. two terms Ti,j are evaluated in each
stage in one clock cycle. In the first clock cycle (k = 0) boxed terms are
evaluated, in the second clock cycle (k = 1) overlined terms are evalu-
ated and in the last clock cycle (k = 2) unmarked terms are evaluated.
Multiplication takes q = m

D
= 3 clock cycles.

From 4.6 follows that the values of the first indices i of the terms
Ti,j evaluated in the stage sr are changing between the cycles, while the
values of the second indices j remain constant — they are fixed with
an appropriate stage. Figure 4.9 sketches the values of the indices j of
the terms Ti,j being evaluated in the stages of a pipelined digit-serial
multiplier for D = 2, as shown in Figure 4.8. Figure 4.10 sketches the
values of the indices j for D = 3; in this case, multiplication takes
q = m

D
= 2 clock cycles.

The disadvantage of a standard digit-serial multiplier consists in the neces-
sity of dividing the number of bits m by the digit width D. This property may
limit scalability options of cryptographic system in which a normal basis mul-
tiplier is used, since the set of divisors for chosen m may be small. Moreover,
NIST [FIP00] recommends m to be prime for its cryptographic strength. In
this case, the construction of a standard digit-serial multiplier described here
is impossible.

28

4.5. Digit-Serial Multiplier

c0 = a0b1 + a1(b0 + b4) + a2(b3 + b4) + a3(b2 + b5) + a4(b1 + b2) + a5(b3 + b5)

c1 = a1b2 + a2(b1 + b5) + a3(b4 + b5) + a4(b3 + b0) + a5(b2 + b3) + a0(b4 + b0)

c2 = a2b3 + a3(b2 + b0) + a4(b5 + b0) + a5(b4 + b1) + a0(b3 + b4) + a1(b5 + b1)

c3 = a3b4 + a4(b3 + b1) + a5(b0 + b1) + a0(b5 + b2) + a1(b4 + b5) + a2(b0 + b2)

c4 = a4b5 + a5(b4 + b2) + a0(b1 + b2) + a1(b0 + b3) + a2(b5 + b0) + a3(b1 + b3)

c5 = a5b0 + a0(b5 + b3) + a1(b2 + b3) + a2(b1 + b4) + a3(b0 + b1) + a4(b2 + b4)

Figure 4.8: Evaluation of the terms in a pipelined digit-serial multiplier (for
GF (26) and its optimal normal basis; digit width D = 2)

0,1

s0

2,3

s1

4,5

s2

0,1

s3

4,5

s5

2,3

s4

Figure 4.9: Evaluation of the terms in the stages of a digit-serial multiplier
for m = 6 and D = 2. The values of the second indices j of the terms Ti,j are
introduced. Multiplication takes q = 3 clock cycles.

0,1,2

s0

3,4,5

s1

0,1,2

s2

3,4,5

s3

3,4,5

s5

0,1,2

s4

Figure 4.10: Evaluation of the terms in the stages of a digit-serial multiplier
for m = 6 and D = 3. The values of the second indices j of the terms Ti,j are
introduced. Multiplication takes q = 2 clock cycles.

29

Chapter 4. Previous work

One of our goals was to overcome this disadvantage to allow the designers
to scale their designs as much as they need. In Chapter 6, we will intro-
duce four architectures of digit-serial multipliers that can be constructed for
any digit width independently of the number of bits m. We have found out
that one structure of a general digit-serial multiplier has been probably devel-
oped in [LL02]. Unfortunately, the authors neither describe their solution, nor
present any reference.

30

Chapter 5

Multiplication/Inversion
Unit

The computation of an inverse element (inversion) by the ITT algorithm
[ITT86] may be implemented in a high-level language [BSGEG04], controlled
by a microprogram [LMWL00, LL02], or implemented as a hardware macro in
a hardware description language [BSGEG04].

As discussed in Subsection 3.4.4, Equations 3.13 through 3.15, the ITT
algorithm needs O(log m) multiplications and O(m) squarings, and thus it
takes O(m log m) clock cycles when a bit-serial multiplier is used. This is
a great disadvantage in comparison to the polynomial basis representation,
where an inverse element can be computed by an extended Euclidean algorithm
and the computation takes O(m) cycles only. This negative effect can be
reduced by a digit-serialization of the multiplier [A.1] discussed in Section 4.5.
The multiplication takes m

D
clock cycles in a digit-serial multiplier and the

inversion takes then O(m
D

log m) clock cycles.

In this chapter, we present a modified multiplier by Agnew et al. [AMOV91].
Modifications that we made keep the properties of a multiplier, enabling an
efficient implementation of the ITT inversion algorithms. In comparison with
other implementations of inversion [LMWL00, LL02, LL03, BSGEG04], no ad-
ditional registers or data transfers outside the multiplier are necessary. This
leads to the savings in the area of a cryptographic processor in which a pro-
posed multiplication/inversion unit is used. Also time necessary for the exe-
cution of a cryptographic algorithm may be saved.

31

Chapter 5. Multiplication/Inversion Unit

A

Multiply
Logic

ROR 1

IN1

C

B

ROR 1

IN2

OUT

Figure 5.1: Block diagram of the pipelined multiplier by Agnew et al.

Multiplication/inversion unit, presented here, consists of two principal sub-
units, a multiplier and a shifter. Both these subunits may be scaled, i.e. ac-
celerated in the cost of an increased area. This allows the designer to tune the
multiplication/inversion unit for an optimum area, throughput, power, quality
factor, or other characteristics.

The proposed design of the multiplication/inversion unit was published in
[A.2].

5.1 Structure of the Unit

In Figure 5.1 we present a more precise block scheme of the bit-serial multiplier
by Agnew et al., which also considers the input of operands. The multiplication
is performed as follows: In the first step, both operands a and b are loaded
from inputs IN1 and IN2 to the registers A and B, respectively. Then, in m
clock cycles, both A and B registers are rotated one bit to the right in each
clock cycle (this is represented by the blocks ROR1) and the result c in the
register C is evaluated successively. After m clock cycles, the result c = a× b
is available at the output OUT . All registers and data paths are m bit wide.

In Figure 5.2 we present our modification of the multiplier by Agnew et
al. Modifications include extending the multiplexer preceding the register A

32

5.1. Structure of the Unit

A

Multiply
Logic

ROR 1

IN

C

B

ROR 1

OUT

Figure 5.2: Multiplication/inversion unit

from 2:1 to 3:1, and redirecting some data paths (see bold lines). By smart
handling of both data processing and data transfers inside the multiplier, we
can implement both the multiplication and the ITT inversion in boundaries of
this multiplier, and therefore we save additional registers and data transfers
outside the multiplier.

The modified multiplier by Agnew et al. has a dedicated control unit (see
Figure 5.3) based on a finite state machine and equipped with three counters
denoted as COUNT INV, COUNT MUL and COUNT K as well as one shift
register denoted as M . It implements the commands load op (load operand),
multiply and invert.

5.1.1 Multiplication

Multiplication is performed as follows: In the first two steps, both operands
a and b are successively loaded from the input IN to the registers A and B:
In the first step, the operand b is loaded from the input IN to the register
A. In the second step, the operand b is moved from the register A to the
register B and concurrently the operand a is loaded from the input IN to the
register A. The multiplication is then performed in m clock cycles. Execution
time is measured with a COUNT MUL register a in control unit. When

33

Chapter 5. Multiplication/Inversion Unit

control signals

2r-1 r 0

b
i

m-1

COUNT_K zero FSM

M

load_op

m

zero COUNT_MUL

multiply
invert

IN

ready

Multiplication/
Inversion Unit OUT

r

zero COUNT_INV

Figure 5.3: Control unit for a multiplication/inversion unit

multiplication is accomplished, the result c = a× b is loaded from the register
C to the register A and is available at the output OUT .

5.1.2 Inversion

The inversion algorithm of Itoh, Teechai and Tsujii [ITT86] has been outlined
in Algorithm 3.2. The ITT inversion algorithm is implemented in a multiplica-
tion/inversion unit according to Algorithm 5.1. Numbers of steps correspond
to those ones in Algorithm 3.2. See also Figures 5.2 and 5.3.

By exploring Algorithm 3.2, the following observation can be made. Let
m− 1 = brbr−1 . . . b1b0 be the binary representation of m− 1, where the most
significant bit br of m−1 is 1. Then the value of the variable k in Algorithm 3.2
corresponds to the value represented by bits br . . . bi in the i-th loop of the step
3. Note that the value of the index i is decremented between the loops starting
with the value r. This fact is utilized in our algorithm. At the beginning, we
store the value m − 1 into the shift register M . Between the loops of step 3,
the shift register is left-shifted in step 8. The value k = br . . . bi is present in
bits M2r−1 . . . Mr of the register M , from which it is loaded to the counter

34

5.1. Structure of the Unit

Algorithm 5.1 An implementation of the ITT inversion in a multiplica-
tion/inversion unit

Input: IN . . . value to be inverted;
m . . . the degree of the finite field GF (2m);
r . . . the order of the most significant bit in the binary representation of
m− 1, r = ⌊log(m− 1)⌋

Output: OUT . . . reciprocal IN−1

1: Mr . . . M0 ← m− 1
2: A ← IN ;
3: for COUNT INV = r downto 1 do
4: B ← A;
5: for COUNT K = M2r−1 . . . Mr downto 1 do
6: B ← B ror 1;
7: end for
8: C ← B ×A

A ← C
M ← M shl 1

9: if Mr = 1 then
10: B ← A

B ← B ror 1; A ← IN
C ← B ×A
A ← C

11: end if
12: end for
13: return A ← A ror 1;

COUNT K in step 4. The rotation capability of the register B is then used
for the computation of iterative squarings in steps 5 and 6.

As the register M is shifted, the bit bi, tested in step 9, is present in the
bit Mr of the register M in each loop of step 3. The counter COUNT INV
holds the current value of the variable i.

Note that the inverted value must be available at the input IN during
the whole process of inversion, as it is repeatedly loaded in step 10. After
completion of the inversion algorithm, the result is stored in the register A
and is available at the output OUT .

35

Chapter 5. Multiplication/Inversion Unit

5.1.3 Division

Division c = a
b

is implemented as multiplication by an inverse element of the
denominator b. In multiplication/inversion unit described here, the first inver-
sion of the denominator b is performed. After the completion of the inversion
algorithm the inverse element b−1 is stored in the register A. Subsequently,
the nominator a is loaded from the input IN to the register A and concur-
rently the inverse element b−1 is moved from the register A to the register B.
Then multiplication of a and b−1 is performed. When accomplished, the result
c = a

b
is loaded from the register C to the register A and is available at the

output OUT .

5.2 Throughput Improvement of the Unit

As discussed in Subsection 3.4.4, the ITT algorithm needs IM = ⌊log(m− 1)⌋+
w(m− 1)− 1 multiplications (Equation 3.13) and IIS = (m− 1)− w(m− 1)
iterative squarings in step 6 (Equation 3.14). If one squaring takes 1 clock
cycle, then the total number of clock cycles spent for one inversion is

CINV = IM × q + IIS + const

CINV = (⌊log(m− 1)⌋+ w(m− 1)− 1)× q + (m− 1)− w(m− 1) + const,

where q is the number of clock cycles necessary for one multiplication and
const represents the overhead caused by the data transfers and initialization.
In case of a bit-serial multiplier, for which q = m, the total number of clock
cycles spent for one inversion is

CINV = (⌊log(m− 1)⌋+ w(m− 1)− 1)×m + (m− 1)− w(m− 1) + const.

As we can see, the number of clock cycles necessary for the inversion is
O(m log m).

The basic ECC operation, namely the computation of a scalar point mul-
tiple (Definition 3.7), is performed by repeated point addition and point dou-
bling. If affine point coordinates are used, then, according to Equations 3.3
through 3.8, each of these operations needs 1 division and 1 multiplication, i.e.
1 inversion and 2 multiplications. It also needs 1 squaring and 6–9 additions,

36

5.2. Throughput Improvement of the Unit

but these operations are performed in one clock cycle. The number of clock
cycles necessary for one point addition or doubling is then

CPADD = (IM + 2)× q + IIS + const.

For a bit-serial multiplier we get:

CPADD = (⌊log(m− 1)⌋+ w(m− 1)− 1 + 2)×m+(m−1)−w(m−1)+const.

We can reduce the number of clock cycles CPADD in two ways:

• by accelerating the multiplications, i.e. by reducing the number q of clock
cycles necessary for one multiplication, and

• by reducing the number IIS of clock cycles necessary for the iterative
squaring.

For the acceleration of the multiplication, we use a digit-serial multiplier. For
the acceleration of the iterative squarings, we use a shifter unit.

5.2.1 Digit-Serialization of the Multiplier

The digit-serial multiplier has been discussed in paragraph 4.5. Its use in
a multiplication/inversion unit may dramatically reduce the number of clock
cycles.

Example 5.1. Let m = 180. Then m − 1 = 179 = 101100112. The
ITT inversion needs log 179+w(179)−1 = 7+5−1 = 11 multiplications.
Hence, the point addition needs 11+2 = 13 multiplications. In the case
of the bit-serial multiplier, 13×180 = 2340 clock cycles are necessary for
all multiplications during one run of the point addition. In the case of
the digit-serial multiplier for a digit D = 10, only 13× 180

10
= 234 clock

cycles are necessary.

The number of clock cycles necessary for one point addition or doubling is
for the digit-serial multiplier/inverter

CPADD = (⌊log(m− 1)⌋+ w(m− 1)− 1 + 2)×
⌈m

D

⌉
+(m−1)−w(m−1)+const.

Since more products are evaluated in one clock cycle, more combinational
logic is necessary. The area of the block COMB. LOGIC in Figure 5.2 is
proportional to D. The size of other blocks remains constant.

37

Chapter 5. Multiplication/Inversion Unit

As the combinational logic is more complex, the length of the critical path
τ grows proportionally to log D, τ ∝ log D. Since one multiplication needs m

D

clock cycles, the total time necessary for one multiplication is O(m
D

log D) and
the total time of one inversion (or point addition on an elliptic curve) is

TPADD ≈ const×
((m

D
log m + m

)
× log D

)
. (5.1)

5.2.2 Modification of the Shifter

Another way to improve the throughput of the ITT inversion is to reduce
the number of clock cycles necessary for the iterative squarings in step 5 of
Algorithm 5.1.

Example 5.2. Let m = 180. Then, the ITT algorithm is performed
in 7 cycles (step 3 of the algorithm). Register B is in these 7 cycles
right-rotated by 1, 2, 5, 11, 22, 44 and 89 bits (in steps 5). Each of
the rotations is performed exactly once in an inversion operation. The
total number of clock cycles necessary for execution of step 6 during
one ITT inversion is 1 + 2 + 5 + 11 + 22 + 44 + 89 = 174 clock cycles.
Note that this number is comparable to 234 clock cycles necessary for
all multiplications when D = 10, therefore reducing this number would
be beneficial.

Step 5 of Algorithm 5.1 is entered exactly r-times (r = ⌊log(m− 1)⌋) during
the execution of the ITT algorithm. The register B is by each entry rotated by
ki = br . . . bi bits to the right. We used the rotation capability of the register
B, represented by the block ROR1 to implement all these rotations. Formally
written:

Let m be the degree of the finite field GF (2m). Let (brbr−1 . . . b1b0) be the
binary representation of m− 1 such that the most significant bit br = 1. The
set of rotations required by the ITT algorithm is

K = {ki, i = r . . . 1; ki = (br . . . bi)} .

The binary representation of ki is br . . . bi. Each of the rotations ki is
performed exactly once in an inversion operation.

Instead of just one rotation block ROR1, we may use the set of r rotation
blocks, each one implementing exactly one rotation from the set K. All iter-
ative squarings take then exactly r clock cycles. But, this solution leads to a

38

5.2. Throughput Improvement of the Unit

Table 5.1: The number of clock cycles required for squarings in ITT algorithm
for various number of rotation blocks and for m = 131, 180 and 251.

rotation blocks
m 1 2 3 4 5

131 128 23 14 10 9
180 174 24 15 11 9
251 244 34 16 12 10

0

50

100

150

200

250

1 2 3 4 5
#rotation blocks

#c
loc

k c
ycl

es

.

m=251
m=180
m=131

Figure 5.4: The number of clock cycles spent in squarings for various number
of rotation blocks.

(r +1)-input multiplexer preceding the register B. Our measurements showed
that such a multiplexer would be very large — its area would be comparable
to the multiplier.

However, it is possible to trade-off between these two extreme approaches.
We may implement a limited set S of rotations and we can compose all rota-
tions from K using rotations from S. Even with a relatively small set S, clock
savings would be significant, as demonstrated in Table 5.1 and Figure 5.4 for
m = 131, 180 and 251. Blocks implementing “long distance” rotations are
shown in Figure 5.5.

Example 5.3. [a shifter with 2 rotation blocks] Let m = 180. Then
K = {1, 2, 5, 11, 22, 44, 89}. If S = {1,10} (blocks rotating by 1 bit and

39

Chapter 5. Multiplication/Inversion Unit

A

Multiply
Logic

ROR 1

C

B

ROR 1

OUT

ROR x

ROR y

IN

Figure 5.5: “Long distance” rotations ROR x and ROR y save clock cycles
necessary for squarings in ITT algorithm.

40

5.2. Throughput Improvement of the Unit

10 bits to the right), then all 7 rotations of the set K will be implemented
as follows:

K = {1×1; 2×1; 5×1; 1×10+1×1; 2×10+2×1; 4×10+4×1; 8×10+9×1}.

Hence, they will need IIS = 1+2+5+(1+1)+(2+2)+(4+4)+(8+9) = 39
clock cycles.

If S = {1,11} (blocks rotating by 1 bit and 11 bits to the right),
then all 7 rotations of the set K will be implemented as follows:

K = {1× 1; 2× 1; 5× 1; 1× 11; 2× 11; 4× 11; 8× 11 + 1× 1}.

Hence, they will need IIS = 1 + 2 + 5 + 1 + 2 + 4 + (8 + 1) = 24 clock
cycles.

Example 5.4. [a shifter with 3 rotation blocks] Let m = 180. Then
K = {1, 2, 5, 11, 22, 44, 89}. If S = {1,5,20}, then all 7 rotations of the
set K will be implemented as follows:

K = {1×1; 2×1; 1×5; 2×5+1×1; 1×20+2×1; 2×20+4×1; 4×20+1×5+4×1}.

Hence, they will need IIS = 1+2+1+(2+1)+(1+2)+(2+4)+(4+1+4) =
25 clock cycles.

If S = {1,5,22}, then all 7 rotations of the set K will be implemented
as follows:

K = {1× 1; 2× 1; 1× 5; 2× 5 + 1× 1; 1× 22; 2× 22; 4× 22 + 1× 1}.

Hence, they will need IIS = 1 + 2 + 1 + (2 + 1) + 1 + 2 + (4 + 1) = 15
clock cycles.

Previous examples show that the number of clock cycles IIS depends both
on the choice of elements in S and their number |S|. In Chapter 7 we discuss
in detail how to choose the set S. It shows that for the minimum number of
clock cycles it holds that S ⊆ K.

When an optimal S is chosen, then the number of clock cycles spent for the
iterative squarings may be approximated as IIS ≈ n n

√
m− 1, where n is the

number of rotation blocks, n = |S|. If the multiplexer in front of the register
B does not lie on a critical path, then the total time necessary for the point
addition is

TPADD ≈ const×
((m

D
log m + n n

√
m− 1

)
× log D

)
. (5.2)

41

Chapter 5. Multiplication/Inversion Unit

Time of point addition

0

5

10

15

20

25

0 5 10 15 20 25 30
digit width D

u
s

162
180

Figure 5.6: Time of point addition for different digit widths. No “long dis-
tance” rotation blocks are used.

5.3 Implementation Results

5.3.1 Effect of a Digit-Serialization of the Multiplier

The proposed multiplier/inverter has been implemented in the Xilinx Vir-
tex300 FPGA using the Synopsys FPGA Express synthesis tool and the Foun-
dation 3.3i implementation tool. Its functionality has been verified in the
ModelSim simulator.

Table 5.2 shows implementation results for m = 162 and m = 180 and
for a set of several digit widths D. No additional blocks performing “long
distance” rotations have been used in these cases. As expected, the area of
the multiplier/inverter grows with growing D and can be expressed as approx.
(2 + 0.5D)×m slices or (2 + 0.5D) slices per 1 bit.

The computation time does not depend on the digit width D in such a
straightforward manner. The results in the last column of Table 5.2 and in
Figure 5.6 correspond to Equation 5.1. Minimum time is obtained for D = 6.
Other local minima are caused by the granularity of the FPGA. Whenever
the capacity of a look-up table is exhausted, the length of the critical path
increases.

42

5.3. Implementation Results

Table 5.2: Implementation of the modified multiplier/inverter in the Xilinx
Virtex300

m D Freq #Slices #Slices Point addition
[MHz] per 1 bit [clocks] [µs]

162 1 104.504 406 2.51 2000 19.14
162 2 105.108 489 3.02 1109 10.55
162 3 101.266 569 3.51 812 8.02
162 6 93.906 814 5.02 515 5.48
162 9 61.244 1057 6.52 416 6.79
162 18 53.999 1836 11.33 317 5.87
162 27 40.193 2682 16.56 284 7.07
180 1 122.489 451 2.51 2582 21.08
180 2 102.533 544 3.02 1412 13.77
180 3 101.502 632 3.51 1022 10.07
180 4 100.492 724 4.02 827 8.23
180 5 97.069 815 4.53 710 7.31
180 6 94.153 903 5.02 632 6.71
180 9 64.008 1174 6.52 502 7.84
180 10 61.054 1265 7.03 476 7.80
180 12 54.174 1480 8.22 437 8.07
180 15 58.042 1798 9.99 398 6.86
180 18 44.607 2026 11.26 372 8.34
180 20 40.955 2248 12.49 359 8.77

43

Chapter 5. Multiplication/Inversion Unit

Time of point addition
m = 162

0

5

10

15

20

25

0 5 10 15 20 25 30
digit width D

u
s

n=1
n=2

Time of point addition
m = 180

0

5

10

15

20

25

0 5 10 15 20 25
digit width D

u
s

n=1
n=2

Figure 5.7: The effect of adding 1 rotation block, a) m = 162, b) m = 180.

5.3.2 Iterative Squarings Improvement in the Shifter

The blocks ROR 1, ROR q and ROR r in Figure 5.5 are permutations of wires.
A shifter with n = |S| rotation blocks is implemented just by a (n + 1)–input
multiplexer. The effect of adding one rotation block (i.e. n = 2) is illustrated
in Figures 5.7a and 5.7b. The expansion of multiplexers did not influence the
clock period, as they did not lie on the critical path.

This new design is systematically faster; for D = 6, the speedup is over
20%, while the area increased by 10%. Note that the speedup is based on the
minimization of the last term in Equation 5.2. In our case, this mechanism
caused the second local minimum on the original curve to prevail, where the
optimum digit width is D = 18 or 15 for m = 162 or 180, respectively. In both
cases the actual speedup is 37%.

5.4 Summary and Final Remarks

In this chapter we presented a normal basis multiplication/inversion unit. This
unit is based on the multiplier by Agnew et al. Hardware complexity has
increased slightly in comparison to the multiplier by Agnew et al. — one
input has been added to the multiplexer preceding the register A. We also
redirected some data paths. By a smart control of the execution and data

44

5.4. Summary and Final Remarks

transfers we are able to implement both multiplication and inversion, as well
as division in a normal basis.

The unit consists of two principal parts, the multiplier and the shifter.
Both these parts may be scaled. The multiplier may be scaled by a digit-
serialization, the shifter may be scaled by the number of rotation blocks.

A standard digit-serial normal basis multiplier may be created only for
such digit widths D that divide the number of bits m. Hence, in the examples
we considered only such number of bits m to scale the multiplier well. But,
this fact limits the designer options, particularly since m should be prime for
its increased cryptographic strength. For m being prime the standard digit-
serial multiplier cannot be created at all. Therefore, we developed several
architectures of digit-serial multipliers that can be scaled by any digit width
D, independently on the number of bits m. These architectures are presented
in the following Chapter 6

In Chapter 7 we will discuss the way how to implement optimum shifter in
the context of a digit-serialization of a multiplier. We will discuss the number
of rotation blocks to use and what size of rotations to implement in these
rotation blocks.

45

Chapter 5. Multiplication/Inversion Unit

46

Chapter 6

Digit-Serial Multipliers of a
General Digit Width

As stated before, m should be a prime number for cryptographic purposes.
Therefore, a digit-serial multiplier for such a digit width D that does not
divide m is necessary. The fact that D generally does not divide m brings
irregularity in the structure of the multiplier. We developed four architectures
of digit-serial normal basis multipliers that can be scaled by any digit width.
These architectures were denoted as the circular multiplier, linear multiplier,
end-correction multiplier and the circular multiplier with distributed overlap.
In this chapter, we describe these architectures, we compare them in terms of
area and throughput, and discuss their suitability for different digit widths.
In the abbreviations, G means general digit width, C circular, L linear, and
other characters distinguish between similar multipliers. Note that the usage
of multipliers is not limited to the arithmetic unit described in the previous
chapter. These multipliers can be used in any other system working with a
normal basis representation of the field elements. In the following text, the
notation introduced in Chapter 4 is used.

Part of the research described in this chapter was published in [A.6, A.7,
A.8, A.9, A.10].

47

Chapter 6. Digit-Serial Multipliers of a General Digit Width

1S0,k(2S0,k)

s0 s1 sq-2 sq-1 sm-1sq
1S1,k(2S1,k)

1Sq-2,k(2Sq-2,k)
1Sq-1,k 1Sq,k 1Sm-1,k

Figure 6.1: (Circular Multiplier, GC) Evaluation of the terms in the stages
of the register C in a circular digit-serial multiplier.

6.1 Circular Multiplier (GC)

In Figure 6.1 we describe a structure of a circular multiplier, concretely how
the terms are evaluated in the stages of the register C. To get a correct re-
sult, stages s0 . . . sq−2 must be able to evaluate two different groups of terms.
When holding partial results of any of the bits c0 . . . cq−2, they must evalu-
ate the first group (symbolized as 1S), but when holding partial results of
any of bits cm−q+1 . . . cm−1, they must evaluate the second group (2S). The
stages are step-by-step switched from the group 1S to the group 2S during
the computation in step with the partial results of the bits cm−q+1 . . . cm−1

successively moving to the stages s0 . . . sq−2. In the k-th clock cycle, stages
sk . . . sq−2 evaluate groups 1S, while stages s0 . . . sk−1 are switched to evaluate
groups 2S. Stages sq−1 . . . sm−1 do not switch and evaluate groups 1S during
the whole computation.

A shift register can be used to control a successive switching of the groups.
The shift register is initially cleared; during the computation series of ‘1’s is
step-by-step shifted in it.

The evaluation of the result takes q =
⌈

m
D

⌉
clock cycles.

Rule 6.1 (a circular digit-serial multiplier). Let q =
⌈

m
D

⌉
be the number of

clock cycles of one multiplication. Then, in the k-th clock cycle (0 ≤ k ≤ q−1),
the stage sr (0 ≤ r ≤ m− 1) evaluates the sum of terms Sr,k: if r ≥ k:

Sr,k = 1Sr,k =

vr∑

j=ur

Tr−k,j , (6.1)

where

ur = rD mod qD,

vr = min{ur + D − 1;m− 1}

48

6.1. Circular Multiplier (GC)

0,1
(10)

s0

2,3
(0,1)

s1

4,5
(2,3)

s2

6,7
(4,5)

s3

8,9
(6,7)

s4

10

s5

0,1

s6

2,3

s7

4,5

s8

6,7

s9

8,9

s10

Figure 6.2: Evaluation of the terms in the stages of the circular digit-serial
multiplier for m = 11 and D = 2. Values of the second indices j of the terms
Ti,j are introduced. Multiplication takes q = 6 clock cycles.

0,1,2
(9,10)

s0

3,4,5
(0,1,2)

s1

6,7,8
(3,4,5)

s2

9,10

s3

0,1,2

s4

3,4,5

s5

6,7,8

s6

9,10

s7

0,1,2

s8

3,4,5

s9

6,7,8

s10

Figure 6.3: Evaluation of the terms in the stages of the circular digit-serial
multiplier for m = 11 and D = 3. Values of the second indices j of the terms
Ti,j are introduced. Multiplication takes q = 4 clock cycles.

if r < k:

Sr,k = 2Sr,k =

vr∑

j=ur

Tr−k,j , (6.2)

where

ur = (r + m)D mod qD,

vr = min{ur + D − 1;m− 1}

(the values of the subscript indices are reduced modulo m).

The sum of terms Sr,k is added to the partial result of the bit cr−k,
which is, due to the rotation of the register C, present in the stage sr dur-
ing the k-th clock cycle. The result c0c1c2 . . . cm−1 is available in stages
sq−1sqsq+1 . . . sm−1s0 . . . sq−2 after q clock cycles.

Example 6.1. Let m = 11. It is shown in Figures 6.2 and 6.3 how
the terms are evaluated in the stages of the register C in a circular
digit-serial multiplier. Indices in parentheses belong to sets of terms 2S.

The circular multiplier drawback lies in the fact that q − 1 pipeline stages
must evaluate two different sets of logic. In other words, the circular multiplier
contains almost D + 1 pipeline blocks in contrast to D pipeline blocks at a

49

Chapter 6. Digit-Serial Multipliers of a General Digit Width

S0,k

s0 s1 sq-1 sm-1sq

S1,k Sq-1,k Sq,k Sm-1,k

sm

Sm,k

sm+q-2

Sm+q-2,k

Figure 6.4: (Linear Multiplier, GL) Evaluation of the terms in the stages
of the register C in a linear digit-serial multiplier. There is no loop in the
linear multiplier.

standard multiplier (see Section 4.5 for the definition of a pipeline block).
The pipeline blocks overlap in q − 1 stages (hence we also call it the circular
multiplier with a concentrated overlap). The multiplier must implement almost
(D+1)×m terms Ti,j . Moreover, we need q−1 multiplexers that also consume
a relatively large amount of area and may lie on the critical path. Also, the
necessity of a successive switching of the groups may slightly complicate the
control.

6.2 Linear Multiplier (GL)

Multiplexers, used for switching the groups in the circular multiplier, usu-
ally lie on the critical path and cause the clock period to increase. Another
disadvantage of this multiplier is the necessity of switching the multiplexers
successively (not at once). This led us to the development of another archi-
tecture of the multiplier.

Stages s0 . . . sq−2 are successively switched from the groups 1S to groups
2S in the circular multiplier. Instead of switching, we may evaluate groups
2S in additional q − 1 stages labeled sm . . . sm+q−2. The bit ci of the result is
successively evaluated in stages si . . . si+q−1, e.g. the last bit cm−1 is evaluated
in stages sm−1 . . . sm+q−2. Every set of q consecutive stages evaluates the
whole set of m terms in Equation 4.1. The resulting linear structure of the
multiplier is described in Figure 6.4. The evaluation of the result again takes
q =

⌈
m
D

⌉
clock cycles.

Before we propose the description of the linear multiplier, we will discuss the
groups 2S now evaluated in stages sm . . . sm+q−2 of the linear multiplier. These
groups of terms were evaluated in stages s0 . . . sq−2 in the circular multiplier.
This implies that Sr,k = 2Sr−m,k(∀r, m ≤ r ≤ m+q−2). Equations 6.1 and 6.2
imply that 2Sr−m,k = 1Sr,k. This fact leads to a simplified description of the
linear multiplier.

50

6.2. Linear Multiplier (GL)

Rule 6.2 (a linear digit-serial multiplier). Let q =
⌈

m
D

⌉
be the number of clock

cycles of one multiplication. Then, in the k-th clock cycle (0 ≤ k ≤ q − 1) the
stage sr (0 ≤ r ≤ m + q − 2) evaluates the sum of terms Sr,k:

Sr,k = 1Sr,k =

vr∑

j=ur

Tr−k,j , (6.3)

where

ur = rD mod qD,

vr = min{ur + D − 1;m− 1} (6.4)

(the values of the subscript indices of T are reduced modulo m).

The sum of terms Sr,k is added to the partial result of the bit cr−k,
which is, due to the shifting of the register C, present in the stage sr dur-
ing the k-th clock cycle. The result c0c1c2 . . . cm−1 is available in stages
sq−1sqsq+1 . . . sm−1sm . . . sm+q−2 after q clock cycles.

We do not provide the proof of correctness of the circular multiplier for
its relativity to the linear one, which was discussed above. I.e., if the linear
multiplier is correct, then also the circular one must be correct. As before, to
prove the correctness of the multiplier we have to show that the Equation 4.1
is satisfied for any ci.

Proof of correctness of the linear multiplier. Let i = r − k. From Rule 6.2 it
follows that in the k-th clock cycle the partial result of the bit ci is present in
the stage si+k. The stage si+k evaluates the sum of terms

Si+k,k =

vi,k∑

j=ui,k

Ti,j ,

where

ui,k = (i + k)D mod qD,

vi,k = min{ui,k + D − 1;m− 1}

51

Chapter 6. Digit-Serial Multipliers of a General Digit Width

The sum of terms Si+k,k is added to the partial result of ci present in the
stage si+k. As evaluation takes q =

⌈
m
D

⌉
clock cycles, then

ci =

q−1∑

k=0

Si+k,k =

q−1∑

k=0

vi,k∑

j=ui,k

Ti,j (6.5)

As obvious from Equation 6.5, all terms Ti,j have identical first index i.

We have to prove that every index j, 0 ≤ j ≤ m−1, appears in Equation 6.5
exactly once. Every bit ci is successively evaluated in q consecutive stages
si, . . . , si+q−1. From Equation 6.4 we get

ur+q = (r + q)D mod qD = rD mod qD = ur

and also

vr+q = min{ur+q + D − 1;m− 1} = min{ur + D − 1;m− 1} = vr

As ur+q = ur and vr+q = vr, the stages sr and sr+q evaluate terms Ti,j with
identical sets of second indices j. Therefore, it is sufficient to inspect any set
of q consecutive stages.

We choose stages s0, . . . , sq−1 (the bit c0 is evaluated here). For 0 ≤ r ≤ q−1
we get ur = rD. For 0 ≤ r ≤ q−2 we get vr = (r+1)D−1 = ur+1−1, i.e., in
stages s0 . . . sq−1 the indices j create a sequence of consecutive integers. The
lowest value of j is u0 = 0, the highest value of j is vq−1 = min{uq−1 + D −
1;m− 1} = min{qD − 1;m− 1} = m− 1.

When comparing the circular and linear multipliers, we find out that the
amount of combinational logic which evaluates terms is the same in both cases.
Also the number of flip-flops in the registers A and B is the same. The
register C needs q − 1 more flip-flops in the linear multiplier; on the other
hand, the shift register used to control multiplexers in the circular multiplier
consists of q − 1 flip-flops as well. The disadvantage of the circular multiplier
lies in the necessity of application of the multiplexers — the multiplexers
consume additional combinational logic and they may increase the critical path
length. It leads us to state that the linear multiplier is more advantageous in
comparison with the circular multiplier. Also the description of the multiplier
is simpler, as we can see from Rule 6.2.

Note that definition of the linear multiplier given in Rule 6.2 is just one
of possible definitions. The terms may also be distributed over the stages

52

6.2. Linear Multiplier (GL)

0,1

s0

2,3

s1

4,5

s2

6,7

s3

8,9

s4

10

s5

0,1

s6

2,3

s7

4,5

s8

6,7

s9

8,9

s10

10

s11

0,1

s12

2,3

s13

4,5

s14

6,7

s15

Figure 6.5: Evaluation of the terms in the stages of a linear digit-serial multi-
plier for m = 11 and D = 2. Values of the second indices j of the terms Ti,j

are introduced. Multiplication takes q = 6 clock cycles.

0,1,2

s0

3,4,5

s1

6,7,8

s2

9,10

s3

0,1,2

s4

3,4,5

s5

6,7,8

s6

9,10

s7

0,1,2

s8

3,4,5

s9

6,7,8

s10

9,10

s11

0,1,2

s12

3,4,5

s13

Figure 6.6: Evaluation of the terms in the stages of a linear digit-serial multi-
plier for m = 11 and D = 3. Values of the second indices j of the terms Ti,j

are introduced. Multiplication takes q = 4 clock cycles.

evenly, i.e. from any subset of q consecutive stages, exactly (qD−m) of them
would evaluate (D− 1) terms, while the remaining q− (qD−m) stages would
evaluate D terms. Also, permutations of the terms are possible. Generally,
when implementing the linear multiplier, two conditions must be satisfied:

1. In the k-th clock cycle, the stage sr will evaluate terms Ti,j with first
index i = r − k. This is satisfied by the rotation of the registers A and
B.

2. Let Q be any subset of q consecutive stages. Then

(a) The number of terms evaluated in Q must be m.
(b) For each j, 0 ≤ j ≤ m− 1, there will be the term Ti,j in Q.

Therefore the stages sr and sr+q evaluate terms with equal sets of the second
indices j.

Example 6.2. Let m = 11. It is shown in Figures 6.5 and 6.6 how the
terms are evaluated in the stages of the register C in a linear digit-serial
multiplier.

53

Chapter 6. Digit-Serial Multipliers of a General Digit Width

6.3 End-Correction Multiplier (GCEC)

In the end-correction multiplier calculation of the result takes again q =
⌈

m
D

⌉

clock cycles. Every stage evaluates a sum of exactly D terms in the first q− 1
clock cycles. In the last clock cycle, qD −m terms are switched off and the
stage evaluates the remaining m− (q − 1)D terms only.

Rule 6.3 (an end-correction multiplier). Let q =
⌈

m
D

⌉
be the number of clock

cycles of one multiplication. Then, in the k-th clock cycle (0 ≤ k ≤ q− 2), the
stage sr (0 ≤ r ≤ m− 1) evaluates the sum of terms

1Sr,k =

vr∑

j=ur

Tr−k,j , (6.6)

where

ur = rD,

vr = ur + D − 1

In the last clock cycle (k = q − 1), the stage sr (0 ≤ r ≤ m− 1) evaluates the
following subset of 1Sr,k

2Sr,k =

vr∑

j=ur

Tr−k,j , (6.7)

where

ur = rD mod m,

vr = ur + (m− (q − 1)D)− 1

(the values of the subscript indices are reduced modulo m).

The sum 1Sr,k (or the sum 2Sr,k) is added to the partial result of the bit
cr−k, which is, due to the rotation of the register C, present in the stage sr

during the k-th clock cycle. The result c0c1c2 . . . cm−1 is available in stages
sq−1sqsq+1 . . . sm−1s0 . . . sq−2 after q clock cycles.

54

6.3. End-Correction Multiplier (GCEC)

Proof of correctness of the end-correction multiplier. Let i = r − k. From
Rule 6.3 it follows that in the k-th clock cycle the partial result of the bit
ci is present in the stage si+k. The stage si+k evaluates the sum of terms

1Si+k,k =

vi,k∑

j=ui,k

Ti,j ,

where

ui,k = (i + k)D,

vi,k = ui,k + D − 1

for 0 ≤ k ≤ q − 2. In the last clock cycle (k = q − 1) the stage si+k evaluates
the sum of terms

2Si+q−1,q−1 =

vi,q−1∑

j=ui,q−1

Ti,j ,

where

ui,q−1 = (i + q − 1)D,

vi,q−1 = ui,q−1 + (m− (q − 1)D)− 1 = iD + m− 1

First, we have to show that vi,q−1 ≥ ui,q−1. We have q =
⌈

m
D

⌉
< m

D
+ 1.

Then

vi,q−1 = ui,q−1 + (m− (q − 1)D)− 1 = ui,q−1 + m− qD + D − 1

= ui,q−1 + m−
⌈m

D

⌉
D + D − 1 > ui,q−1 + m− (

m

D
+ 1)D + D − 1

= ui,q−1 + m−m−D + D − 1 = ui,q−1 − 1

We have got vi,q−1 > ui,q−1 − 1. As both vi,q−1 and ui,q−1 are integers, then
also vi,q−1 ≥ ui,q−1.

Second, we have to show that the Equation 4.1 is satisfied. The sum of
terms 1Si+k,k or 2Si+q−1,q−1 is added to the partial result of ci present in the
stage si+k. As evaluation takes q =

⌈
m
D

⌉
clock cycles, then

ci =

q−2∑

k=0

1Si+k,k + 2Si+q−1,q−1 =

q−2∑

k=0

vi,k∑

j=ui,k

Ti,j +

vi,q−1∑

j=ui,q−1

Ti,j (6.8)

55

Chapter 6. Digit-Serial Multipliers of a General Digit Width

comb.
logic 1

comb.
logic 2

2Sr,k

1Sr,k

control

Figure 6.7: The sum 2Sr,k contains the subset of the terms from the sum 1Sr,k,
2Sr,k ⊆ 1Sr,k. In the last clock cycle, some terms are switched off.

1S0,k(2S0,k)

s0 s1 sq-2 sq-1 sm-1sq
1S1,k(2S1,k)

1Sq-2,k(2Sq-2,k)
1Sq-1,k(2Sq-1,k)

1Sq,k(2Sq,k)
1Sm-1,k(2Sm-1,k)

Figure 6.8: (End-Correction Multiplier, GCEC) Evaluation of the terms
in the stages of the register C in the end-correction digit-serial multiplier.

As the indices j form a sequence, concretely ui,k = vi,k−1 +1, the equation 6.8
may be rewritten

ci =

q−2∑

k=0

vi,k∑

j=ui,k

Ti,j +

vi,q−1∑

j=ui,q−1

Ti,j =

vi,q−2∑

j=ui,0

Ti,j +

vi,q−1∑

j=ui,q−1

Ti,j

=

(i+q−1)D−1∑

j=iD

Ti,j +
iD+m−1∑

j=(i+q−1)D

Ti,j =
iD+m−1∑

j=iD

Ti,j

As the indices are reduced modulo m, the Equation 4.1 is satisfied.

The block structure of combinational logic in the stage sr is depicted in
Figure 6.7. The evaluation of the terms in the register C is described in
Figure 6.8.

56

6.3. End-Correction Multiplier (GCEC)

Note that we have found out that a circular structure of the general digit-
serial multiplier has been probably developed in [LL02]. Unfortunately, the
authors neither describe their solution, nor offer any reference. According to
a brief e-mail communication with the authors, their structure is similar to
the end-correction multiplier, however, it is more complex. They calculate the
product during q + 1 clock cycles using two sets of combinational logic. The
first set, that evaluates D terms in each stage (similarly to our solution), is used
during the first q clock cycles. In an additional clock cycle, the calculation is
switched to the second set, that subtracts superfluous terms. This set evaluates
(m mod D) terms in each stage.

In spite of the lack of information, we believe that the following comparison
of the end-correction multiplier and the multiplier [LL02] is not far from the
truth.

The necessity of the second set of logic increases the area of combinational
logic in [LL02] by the factor between 0% (for the cases where m mod D is close
to 0) and 100% (for the cases where m mod D is close to D) in contrast to our
solution of the end-correction multiplier. In average, the area of combinational
logic in [LL02] is 50% larger than the area of combinational logic in the end-
correction multiplier. In addition, the multiplexers used for alternating the
two sets of logic take larger area than AND gates performing similar function
in the end-correction multiplier. The number of flip-flops is the same in both
multipliers.

Moreover, the additional clock cycle increases the calculation time. This
fact is important mainly for larger Ds, e.g., if m = 173 and D = 22, then
the number of clock cycles spent for one multiplication in the end-correction
multiplier is q =

⌈
m
D

⌉
= 8, while the number of clock cycles spent in the mul-

tiplier [LL02] is q + 1 = 9. If both multipliers run at the same frequency, then
in this case the time of multiplication is 12.5% larger in the multiplier [LL02].

In other words, the end-correction multiplier is systematically both smaller
and faster than the multiplier briefly outlined in [LL02]. The area of combi-
national logic in the end-correction multiplier is about 0–50% smaller (33% in
average) than the area of the multiplier in [LL02]. While the multiplier [LL02]
needs q + 1 clock cycles for the calculation of one product, the end correction
multiplier needs q clock cycles only.

Example 6.3. Let m = 11. It is shown in Figures 6.9 and 6.10 how the
terms are evaluated in the stages of the register C in the end-correction

57

Chapter 6. Digit-Serial Multipliers of a General Digit Width

0,1
(0)

s0

2,3
(2)

s1

4,5
(4)

s2

6,7
(6)

s3

8,9
(8)

s4

10,0
(10)

s5

1,2
(1)

s6

3,4
(3)

s7

5,6
(5)

s8

7,8
(7)

s9

9,10
(9)

s10

Figure 6.9: Evaluation of the terms in the stages of the end-correction digit-
serial multiplier for m = 11 and D = 2. Values of the second indices j of terms
Ti,j are introduced. Multiplication takes q = 6 clock cycles. In the last clock
cycle, qD −m = 6 · 2 − 11 = 1 term is switched off in each stage; the stage
then evaluates remaining m− (q − 1)D = 11− 5 · 2 = 1 term.

0,1,2
(0,1)

s0

3,4,5
(3,4)

s1

6,7,8
(6,7)

s2

9,10,0
(9,10)

s3

1,2,3
(1,2)

s4

4,5,6
(4,5)

s5

7,8,9
(7,8)

s6

10,0,1
(10,0)

s7

2,3,4
(2,3)

s8

5,6,7
(5,6)

s9

8,9,10
(8,9)

s10

Figure 6.10: Evaluation of the terms in the stages of the end-correction digit-
serial multiplier for m = 11 and D = 3. Values of the second indices j of terms
Ti,j are introduced. Multiplication takes q = 4 clock cycles. In the last clock
cycle, qD −m = 4 · 3 − 11 = 1 term is switched off in each stage; the stage
then evaluates remaining m− (q − 1)D = 11− 3 · 3 = 2 terms.

digit-serial multiplier. The indices in parentheses belong to the sets of
terms 2S.

6.4 Circular Multiplier with Distributed Over-
lap (GCDIST and GCDO)

The design of this multiplier arises from the design of a circular multiplier (with
a concentrated overlap). In contrast to GC, the main idea of this multiplier
is to distribute the overlap, make it smaller and simplify the control. The
number of terms evaluated in this multiplier is the same as in the standard
one, i.e. D × m terms Ti,j . The area overhead insists in less than m

2 AND
gates in comparison with the standard multiplier.

As stated in Section 4.5, in case of a standard multiplier we may split the
multiplier into D pipeline blocks, each containing q consecutive stages. All D
pipeline blocks together create the whole multiplier, as D × q = m. This rule
can be satisfied only if D divides m. For such D that do not divide m, the
value q =

⌈
m
D

⌉
and for these cases D × q > m.

58

6.4. Circular Multiplier with Distributed Overlap (GCDIST and GCDO)

To divide the multiplier into D pipeline blocks as equally as possible, some of
pipeline blocks must contain q pipeline stages, while some other must contain
q−1 stages only. Exactly, (m mod D) pipeline blocks will contain q stages (we
denote them as long pipeline blocks), while the remaining (D − (m mod D))
pipeline blocks will contain q − 1 stages (we denote them as short pipeline
blocks).

The idea of this multiplier is to distribute calculation of all m terms Ti,j

among only q − 1 stages of each pipeline block, while the calculation would
again last q clock cycles. Therefore, if the pipeline block is q stages long
(a long pipeline block), then one of the stages will be empty (nothing will
be computed in this stage), while if the pipeline block is q − 1 stages long
(a short pipeline block), then the first q − 1 stages of the following block
will be switched-off in the last, q-th clock cycle (or, equivalently, the last
q − 1 stages of the previous pipeline block will be switched-off in the first
clock cycle) to “compute” the empty stage. Switching-off some stages is less
hardware complex than multiplexing between two different sets of logic —
while the multiplexer is relatively complex, the AND gate used for switching-
off is relatively simple. The evaluation of the result takes q =

⌈
m
D

⌉
clock cycles

and cannot be shortened — the empty stage appears at different clock cycles
for different partial results ci.

There are many possible definitions of the multiplier. One of them may as-
sume that the first (m mod D) pipeline blocks are q stages long (long pipeline
blocks), succeeded by (D − (m mod D)) pipeline blocks being q − 1 stages
long (short pipeline blocks). For such assumption we will present the following
description.

Rule 6.4 (a circular digit-serial multiplier with distributed overlap, GCDIST).
Let q =

⌈
m
D

⌉
be the number of clock cycles of one multiplication. Let Dx =⌈

m
q−1

⌉
be the maximum number of terms being evaluated in one stage. Let

F = ((m mod D) × q) be the number of stages of all long pipeline blocks.
Then, in the k-th clock cycle (0 ≤ k ≤ q − 1), the stage sr (0 ≤ r ≤ m − 1)
evaluates the sum of terms Sr,k:

(long pipeline blocks):

a) if ((r < F) ∧ (r mod q = 0)):

Sr,k = ∅

59

Chapter 6. Digit-Serial Multipliers of a General Digit Width

b) if ((r < F) ∧ (r mod q 6= 0)):

Sr,k =

vr∑

j=ur

Tr−k,j ,

where

ur = (r − 1 mod q)×Dx,

vr = min{ur + Dx − 1;m− 1}.

(short pipeline blocks):

c) if ((r ≥ F) ∧ (k = q − 1)):
Sr,k = ∅

d) if ((r ≥ F) ∧ (k 6= q − 1)):

Sr,k =

vr∑

j=ur

Tr−k,j ,

where

ur = ((r − F) mod (q − 1))×Dx,

vr = min{ur + Dx − 1;m− 1}.

The sum of terms Sr,k is added to the partial result of the bit cr−k,
which is, due to the rotation of the register C, present in the stage sr dur-
ing the k-th clock cycle. The result c0c1c2 . . . cm−1 is available in stages
sq−1sqsq+1 . . . sm−1s0 . . . sq−2 after q clock cycles.

This multiplier evaluates the same amount of terms as the standard multi-
plier. The area overhead lies in the excessive number of AND gates necessary
for switching-off certain stages in the last clock cycle. In the worst case, the
number of necessary AND gates could be almost m.

But, one more improvement in the area can be done. As mentioned above,
to implement the “empty stage” in short pipeline blocks, we can either switch-
off the first q−1 stages of the following block in the last clock cycle or switch-off
the last q− 1 stages of the previous block in the first clock cycle. Fortunately,
we can join these two approaches together. We do not need to switch-off all
short pipeline blocks in the last (or first) clock cycle; instead, we can switch-off

60

6.4. Circular Multiplier with Distributed Overlap (GCDIST and GCDO)

only all odd short pipeline blocks in the first and the last clock cycles, while
even blocks will not be switched at all. This approach a lot more minimizes
hardware resources. The number of additional AND gates is consequently less
than m

2 .

Rule 6.5 (an optimized circular digit-serial multiplier with a distributed over-
lap, GCDO). Let q =

⌈
m
D

⌉
be the number of clock cycles of one multiplication.

Let Dx =
⌈

m
q−1

⌉
be the maximum number of the terms being evaluated in

one stage. Let F = ((m mod D) × q) be the number of stages of all long
pipeline blocks. Then, in the k-th clock cycle (0 ≤ k ≤ q − 1), the stage sr

(0 ≤ r ≤ m− 1) evaluates the sum of terms Sr,k:

(long pipeline blocks):

a) if ((r < F) ∧ (r mod q = 0)):

Sr,k = ∅

b) if ((r < F) ∧ (r mod q 6= 0)):

Sr,k =

vr∑

j=ur

Tr−k,j ,

where

ur = (r − 1 mod q)×Dx,

vr = min{ur + Dx − 1;m− 1}.

(short pipeline blocks):

c) if (r ≥ F) ∧
((⌊

r−F
q−1

⌋
mod 2 = 0

)
∧ ((k = 0) ∨ (k = q − 1))

)
:

Sr,k = ∅

d) if (r ≥ F) ∧ ¬
((⌊

r−F
q−1

⌋
mod 2 = 0

)
∧ ((k = 0) ∨ (k = q − 1))

)
:

Sr,k =

vr∑

j=ur

Tr−k,j ,

61

Chapter 6. Digit-Serial Multipliers of a General Digit Width

∅

s0

0,1,2,3

s1

4,5,6,7

s2

8,9,10

s3

∅

s4

0,1,2,3

s5

4,5,6,7

s6

8,9,10

s7

0,1,2,3

(∅)

s8

4,5,6,7

(∅)

s9

8,9,10

(∅)

s10

Figure 6.11: Evaluation of the terms in the stages of circular digit-serial mul-
tiplier with a distributed overlap (GCDIST as well as GCDO) for m = 11 and
D = 3. The values of the second indices j of the terms Ti,j are introduced.
Multiplication logic is switched off in stages s8 through s10 in the last clock
cycle (denoted by ∅). Multiplication takes q = 4 clock cycles.

where

ur = ((r − F) mod (q − 1))×Dx,

vr = min{ur + Dx − 1;m− 1}

The sum of terms Sr,k is added to the partial result of the bit cr−k,
which is, due to the rotation of the register C, present in the stage sr dur-
ing the k-th clock cycle. The result c0c1c2 . . . cm−1 is available in stages
sq−1sqsq+1 . . . sm−1s0 . . . sq−2 after q clock cycles.

Example 6.4. Let m = 11 and D = 3. It is shown in Figure 6.11 how
the terms are evaluated in the stages of the register C in GCDIST and
GCDO multipliers. Coincidently, in this case, the multipliers contain
only one short pipeline block and hence the structure of both multipliers
is the same.

The difference between GCDIST and GCDO multipliers is illustrated
in Figures 6.12 and 6.13. The multipliers are constructed for m = 13 and
D = 3. The multipliers contain two short pipeline blocks. While both
short pipeline blocks s5 . . . s8 and s9 . . . s12 are equipped with switching-
off AND gates in the GCDIST multiplier, only one (the odd one) short
pipeline block s5 . . . s8 is equipped with AND gates in the GCDO mul-
tiplier.

6.5 Area and Critical Path Length

Let CN be the number of non-zero entries λij in a multiplication matrix M.
In Tables 6.1 and 6.2, we summarize and compare proposed 4 architectures of

62

6.5. Area and Critical Path Length

∅

s0

0,1,2,3

s1

4,5,6,7

s2

8,9,10,11

s3

12

s4

0,1,2,3

(∅)

s5

4,5,6,7

(∅)

s6

8,9,10,11

(∅)

s7

12

(∅)

s8

0,1,2,3

(∅)

s9

4,5,6,7

(∅)

s10

8,9,10,11

(∅)

s11

12

(∅)

s12

Figure 6.12: Evaluation of the terms in the stages of a circular digit-serial
multiplier with a distributed overlap (GCDIST) for m = 13 and D = 3. The
values of the second indices j of the terms Ti,j are introduced. Multiplication
logic is switched off in stages s5 through s12 in the last clock cycle (denoted
by ∅). Multiplication takes q = 5 clock cycles.

∅

s0

0,1,2,3

s1

4,5,6,7

s2

8,9,10,11

s3

12

s4

0,1,2,3

(∅)

s5

4,5,6,7

(∅)

s6

8,9,10,11

(∅)

s7

12

(∅)

s8

0,1,2,3

s9

4,5,6,7

s10

8,9,10,11

s11

12

s12

Figure 6.13: Evaluation of the terms in the stages of an optimized circular
digit-serial multiplier with a distributed overlap (GCDO) for m = 13 and
D = 3. The values of the second indices j of the terms Ti,j are introduced.
Multiplication logic is switched off in stages s5 through s8 in the first and last
clock cycles (denoted by ∅). Multiplication takes q = 5 clock cycles.

the general digit-width normal basis multipliers with the standard digit-serial
and the bit-serial multiplier. Below, we briefly comment on the tables.

6.5.1 Bit-Serial Multiplier

In the bit-serial multiplier each stage evaluates exactly one term Ti,j . Accord-
ing to Equation 4.2, each term is implemented by one AND gate and at most⌈

CN

m

⌉
XOR gates which form a tree with depth ≤

⌈
log
⌈

CN

m

⌉⌉
.

6.5.2 Standard Digit-Serial Multiplier

When D divides m, every stage evaluates exactly D terms; consequently, the
entire logic of the standard multiplier evaluates mD terms. Every term is
implemented by one AND gate and at most

⌈
CN

m

⌉
XOR gates, which form a

tree with depth ≤
⌈
log2

⌈
CN

m

⌉⌉
. The terms evaluated in one stage are summed

up by another tree of XOR gates with depth ⌈log2 D⌉.

63

Chapter 6. Digit-Serial Multipliers of a General Digit Width

6.5.3 Circular Digit-Serial Multiplier

The circular multiplier with a concentrated overlap contains additional logic
that in each of the first q − 1 stages evaluates an alternative sum of terms.
Each sum of terms consists of D terms at maximum. First q−1 stages contain
multiplexers that may lie on a critical path. Moreover, we need also additional
control logic for successive switching the first q − 1 stages. This control logic
may be implemented either by a shift register or by a counter with a decoder.

6.5.4 Linear Digit-Serial Multiplier

The linear digit-serial multiplier contains additional q − 1 stages. Every stage
evaluates at most D terms, and hence the critical path of the linear multiplier
is comparable with that of the standard multiplier.

6.5.5 End-Correction Digit-Serial Multiplier

In the end-correction digit-serial multiplier, exactly D terms are evaluated in
every stage; some of them are switched-off in the last clock cycle. To switch
them off, one AND gate is necessary in every stage, which may lie on the
critical path.

6.5.6 Circular Multiplier with Distributed Overlap

In this multiplier, each stage may evaluate at most 2D terms. We must note,
however, that this is a marginal case. Some stages contain one AND gate to
switch-off all logic in a stage. This AND gate may lie on a critical path. The
total number of additional AND gates is less than m in case of GCDIST or
less than m

2 in case of GCDO.

6.6 Implementation Results

We implemented the above multipliers in Xilinx Virtex 4 VLX25 FPGA with
Leonardo Spectrum 2005 and ISE 7.1i. We measured the area of the design by
the number of slices used, and observed the minimum clock period. The time
of multiplication is a product of the minimum clock period and the number of
clock cycles. The quality factor is a reciprocal of the time area product.

64

6.6. Implementation Results

Table 6.1: Hardware resources

AND XOR MUX flip-flops
bit-serial (D = 1) m ≤ CN 0 3m
standard digit-serial mD ≤ CND 0 3m
GC < mD + m < CND + CN q − 1 3m + q − 1
GL < mD + m < CND + CN 0 3m + q − 1
GCEC mD + m ≤ CND 0 3m
GCDO < mD + m

2 ≤ CND 0 3m

Table 6.2: Critical path length

AND XOR MUX
bit-serial (D = 1) 1 ≤ ⌈log ⌈CN/m⌉⌉ 0
standard digit-serial 1 ≤ ⌈log ⌈CN/m⌉⌉+ ⌈log D⌉ 0
GC 1 ≤ ⌈log ⌈CN/m⌉⌉+ ⌈log D⌉ 1
GL 1 ≤ ⌈log ⌈CN/m⌉⌉+ ⌈log D⌉ 0
GCEC 1− 2 ≤ ⌈log ⌈CN/m⌉⌉+ ⌈log D⌉ 0
GCDO 1− 2 ≤ ⌈log ⌈CN/m⌉⌉+ ⌈log D⌉+ 1 0

65

Chapter 6. Digit-Serial Multipliers of a General Digit Width

To compare digit-serial multipliers of a general digit width with the standard
multiplier, we have chosen the degree as a composite number m = 180. Since
the structure of the circular (GC) and the end-correction multiplier (GCEC) is
the same as the structure of a standard multiplier, whenever the digit width D
divides the degree m (in these cases sums 1S and 2S are identical), we worked
out another set of experiments for a prime number m = 173. In this set, we
compared the architectures of general digit-serial multipliers only.

Implementation results for the first twenty values of D are summarized in
Tables 6.3 and 6.4. As we expected, the linear multiplier (GL) is systemati-
cally better than the circular multiplier (GC). As the GC multiplier contains
additional multiplexers that lie on a critical path, it has both greater area and
longer critical path. For that reason, we omit results for GC in the following
diagrams. We will note that we can compare only cases where the digit width
D does not divide the degree m. If D|m, then the GC multiplier is identical
with the standard one.

The dependencies of multiplication time on the digit width D for the com-
posite degree m = 180 and for the prime degree m = 173 are available in
Figure 6.14. As expected, multiplication time decreases with growing D. Note
that results for the standard multiplier and Ds not dividing the degree m
cannot exist.

The dependencies of the quality factor on the digit width D are available in
Figure 6.15. The quality factor here is evaluated as the throughput/area ratio
of the multiplier itself. It decreases with the growing D as the achievable clock
frequency decreases for the larger Ds. However, when using the multiplier in
a cryptographic system, the critical paths may lie in other units outside the
multiplier. For such cases, the quality factor of the whole system may increase
with growing D unless the critical path transfers to the multiplier. Also, the
fixed area of other units (a controller, registers, etc.) used in a cryptographic
system causes a shift of the optimum of the quality factor to higher values of
D.

We observed that in case of the end-correction multiplier, our synthesis
tools produced the structure shown in Figure 6.16 instead of the structure
from Figure 6.7. Hence the critical path length was greater than that assumed
in Table 6.2. We tried to synthesize the end-correction multiplier with other
(older) versions of Leonardo Spectrum and ISE, but the results were almost
identical.

Except of the length of the critical path in the end-correction multiplier,
the implementation results correspond to the theoretical values introduced in

66

6.6. Implementation Results

m=180

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 5 10 15 20 25 30
digit width D

mu
ltip

lica
tio

n t
im

e [
us

]

standard
GL
GCEC
GCDO

m=173

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 5 10 15 20 25 30digit width D

mu
ltip

lica
tio

n t
im

e [
us

]

GL
GCEC
GCDO

Figure 6.14: Time spent for the calculation of one product for variable digit
widths

67

Chapter 6. Digit-Serial Multipliers of a General Digit Width

m=180

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

0 5 10 15 20 25 30
digit width D

qu
ali

ty
fac

tor

standard
GL
GCEC
GCDO

m=173

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0 5 10 15 20 25 30
digit width D

qu
ali

ty
fac

tor

GL
GCEC
GCDO

Figure 6.15: Quality factor as a function of the digit width

68

6.6. Implementation Results

comb.
logic 1comb.

logic 2

2Sr,k

1Sr,k

control

Figure 6.16: Combinational logic synthesized in the stage of the end-correction
multiplier

Tables 6.1 and 6.2. They confirm that the general digit-serial multipliers are
of the same quality as the standard one. In other words, we do not pay much
for the added flexibility.

In the linear multiplier, the number of additional stages is large for small
Ds. This causes the excess in area of the GL multiplier over the GCEC and
GCDIST multiplier for smaller Ds. For larger Ds, the area of all multipliers is
comparable, while the length of the critical path in the GCEC and GCDIST
multiplier prevails. Generally, the GCEC and GCDIST multipliers have a
better quality factor for smaller Ds (D < 6), while the GL multiplier is better
for larger Ds (D > 6). In particular, for the results presented in Tables 6.3
and 6.4 and in Figures 6.14 and 6.15, the end-correction multiplier had 30%
better quality factor than the linear one for D = 3, while the linear was 50%
better for D = 14.

69

C
h
ap

ter
6.

D
igit-S

erial
M

u
ltip

liers
of

a
G

en
eral

D
igit

W
id

th

Table 6.3: Implementation results for m = 180

Time of Multiplication [us] Area [slices] Quality factor
D std GC GL GC GC std GC GL GC GC std GC GL GC GC

EC DO EC DO EC DO

1 0.80 0.82 0.94 0.82 0.90 365 365 457 365 455 3.44 3.35 2.32 3.35 2.43
2 0.49 0.49 0.64 0.59 0.57 455 455 560 455 508 4.45 4.48 2.78 3.73 3.46
3 0.45 0.44 0.49 0.49 0.44 640 643 675 642 643 3.44 3.53 3.04 3.17 3.51
4 0.34 0.38 0.44 0.38 0.40 736 735 756 731 757 3.95 3.57 2.98 3.61 3.29
5 0.34 0.32 0.35 0.32 0.36 912 910 926 911 912 3.19 3.44 3.06 3.41 3.05
6 0.31 0.29 0.36 0.32 0.33 997 1013 1031 997 1045 3.24 3.37 2.73 3.14 2.86
7 0.30 0.25 0.29 0.30 1223 1201 1177 1113 2.77 3.35 2.97 3.03
8 0.27 0.26 0.30 0.27 1370 1369 1224 1272 2.71 2.77 2.75 2.89
9 0.25 0.23 0.24 0.22 0.25 1361 1368 1384 1363 1411 2.98 3.17 3.02 3.38 2.82

10 0.22 0.21 0.23 0.20 0.23 1451 1458 1474 1449 1494 3.10 3.32 3.01 3.47 2.89
11 0.22 0.22 0.28 0.21 1699 1699 1638 1634 2.62 2.62 2.21 2.91
12 0.18 0.19 0.20 0.19 0.21 1725 1731 1741 1721 1768 3.14 3.10 2.92 3.01 2.68
13 0.18 0.18 0.21 0.18 1921 1901 1897 1863 2.84 2.85 2.56 3.02
14 0.17 0.18 0.18 0.17 2088 2078 1987 1967 2.75 2.71 2.73 2.94
15 0.16 0.16 0.17 0.17 0.16 2079 2081 2093 2081 2128 3.02 3.02 2.78 2.80 2.97
16 0.16 0.16 0.20 0.16 2054 2062 2261 2216 3.07 3.12 2.19 2.80
17 0.16 0.16 0.19 0.16 2379 2381 2527 2343 2.69 2.63 2.12 2.71
18 0.13 0.14 0.14 0.15 0.15 2442 2442 2449 2440 2485 3.06 3.01 2.90 2.67 2.70
19 0.15 0.15 0.21 0.17 2419 2424 2617 2589 2.75 2.84 1.84 2.33
20 0.13 0.15 0.14 0.13 0.13 2713 2712 2719 2714 2712 2.85 2.54 2.62 2.80 2.74

70

6.6.
Im

p
lem

en
tation

R
esu

lts

Table 6.4: Implementation results for m = 173

Period [ns] Time of Mult. [us] Area [slices] Quality factor

D GC GL GC GC GC GL GC GC GC GL GC GC GC GL GC GC
EC DO EC DO EC DO EC DO

1 4.86 4.97 4.57 4.93 0.84 0.86 0.79 0.85 352 440 352 438 3.38 2.64 3.59 2.67
2 7.41 7.20 6.55 6.13 0.64 0.63 0.57 0.53 619 524 533 487 2.51 3.05 3.29 3.85
3 10.86 8.04 7.33 8.23 0.63 0.47 0.43 0.48 725 723 618 615 2.19 2.96 3.81 3.41
4 13.15 8.03 8.30 8.23 0.58 0.35 0.37 0.36 815 799 699 724 2.12 3.54 3.92 3.81
5 9.83 9.29 9.19 8.98 0.34 0.33 0.32 0.31 989 986 872 872 2.94 3.12 3.56 3.65
6 12.19 9.15 9.48 11.07 0.35 0.27 0.27 0.32 1100 1066 960 969 2.57 3.53 3.79 3.21
7 12.05 10.56 10.69 11.03 0.30 0.26 0.27 0.28 1173 1147 1131 1068 2.83 3.30 3.31 3.40
8 12.61 11.24 12.74 11.61 0.28 0.25 0.28 0.26 1319 1316 1218 1215 2.73 3.07 2.93 3.22
9 14.02 11.02 12.01 12.23 0.28 0.22 0.24 0.24 1396 1372 1309 1340 2.56 3.31 3.18 3.05

10 14.15 11.53 14.90 12.53 0.25 0.21 0.27 0.23 1475 1458 1488 1432 2.66 3.30 2.50 3.10
11 14.24 11.58 12.44 12.73 0.23 0.19 0.20 0.20 1661 1652 1563 1557 2.64 3.27 3.22 3.15
12 14.41 12.47 13.92 13.02 0.22 0.19 0.21 0.20 1729 1711 1772 1669 2.68 3.12 2.70 3.07
13 14.02 12.23 15.22 13.56 0.20 0.17 0.21 0.19 1781 1769 1826 1778 2.86 3.30 2.57 2.96
14 13.16 12.70 18.70 14.39 0.17 0.17 0.24 0.19 1946 1941 1999 1914 3.00 3.12 2.06 2.79
15 13.36 13.76 18.64 15.09 0.16 0.17 0.22 0.18 2058 2038 2171 2003 3.03 2.97 2.06 2.76
16 14.86 14.14 13.48 13.99 0.16 0.16 0.15 0.15 2176 2157 2170 2135 2.81 2.98 3.11 3.04
17 16.71 14.81 15.59 15.19 0.18 0.16 0.17 0.17 2219 2217 2253 2260 2.45 2.77 2.59 2.65
18 14.42 14.10 17.09 14.61 0.14 0.14 0.17 0.15 2382 2368 2515 2342 2.91 3.00 2.33 2.92
19 14.99 14.79 15.08 14.05 0.15 0.15 0.15 0.14 2345 2336 2430 2474 2.84 2.89 2.73 2.88
20 17.51 14.44 18.30 16.15 0.16 0.13 0.16 0.15 2614 2614 2776 2576 2.43 2.94 2.19 2.67

71

Chapter 6. Digit-Serial Multipliers of a General Digit Width

72

Chapter 7

Scalable Shifter Synthesis

Our arithmetic unit (AU) design (Figure 7.1) is dominated by the multiplier
in both area and time. Moreover, the multiplier has a natural scaling param-
eter, namely the digit width. We consider the design of the multiplier to be
a primary task. This leaves us to consider the design of the shifter to be a
dependent task, that is, the shifter will be optimized in a scope of the domi-
nating block. Our aim is to develop a procedure where the digit-width controls
the design of the entire AU.

Surprisingly, the problem of an optimum shifter design exhibits a rich struc-
ture and complex solution space. Although the solution presented here is
heuristic, proving some problem-specific theorems played a role in the decom-
position of the problem.

We tried to solve the task by behavioral synthesis software; however, we
never persuaded the synthesizers to decompose the rotations in time and space
as described below.

The problem of the synthesis of an optimum shifter in the frame of a normal
basis arithmetic unit was published in [A.4].

7.1 Problem Formulation

Let m be the degree of the finite field we work in, GF (2m). Let

(brbr−1 . . . b1b0)

73

Chapter 7. Scalable Shifter Synthesis

A

Multiply
Logic

ROR 1

C

B

ROR 1

OUT

ROR x

ROR y

MULTIPLIER:
scaled by digit width

SHIFTER:
scaled by No. of rotations

IN

Figure 7.1: Arithmetic unit contains 2 scalable subunits, the multiplier and
the shifter

74

7.1. Problem Formulation

be the binary representation of m−1 such that the most significant bit br = 1.
The set of rotations required by the ITT algorithm is

K = {ki, i = r . . . 1; ki = (br . . . bi)} (7.1)

The binary representation of ki is br . . . bi. Each of the rotations is performed
exactly once in an inversion operation.

The task is to synthesize a shifter which implements all rotations in the
set K and which, when combined with the rest of the AU, gives the optimum
throughput/area ratio.

When any unit is scaled, its area A and time t vary in opposite directions.
The time t depends on the number of clock cycles T spent in a given calculation
and on the critical path length τ in hardware.

The area A can be measured by any metric used for the rest of the unit.
The number of primitive gates is the most common measure; a technology-
dependent measure such as the number of transistors or programmable blocks
is also suitable.

Similarly, the critical path length τ can be given either as the number of
logic levels, or in the units of time as appropriate.

To compare differently scaled units, we use the quality measure

Q = At = ATτ

which should be minimized.

Let A, T , and τ be the area, the total number of clock cycles spent in
rotations, and the critical path length of the shifter. Let A0, T0, and τ0 be the
area, the total number of clock cycles spent in multiplications, and the critical
path length of the rest of the AU. The measure of quality of the entire unit,
and hence our optimization criterion, is

Q = (A + A0)(T + T0) max {τ, τ0} (7.2)

This equation also shows the two dependencies between the shifter and the
multiplier. Firstly, the ratio of the shifter area and time must be “the right
one”. For each A0, T0 and τ0, the area and number of clock cycles of the
shifter should be adjusted to achieve a minimum Q of the entire unit.

Secondly, the shifter may slow down the AU clock. In this case, not only
the rotation time T0 is longer, but also the multiplication time is longer —

75

Chapter 7. Scalable Shifter Synthesis

Step 2: obtain Tijby dynamic programming

Step 1: choose set of sjby genetic algorithm
(or by fast heuristic)

{ki }

{sj }

{sj Tij }

muxes

Q

τ, A

Ttim
e d

o m
a in

sp
ac e

do

m a
in

Figure 7.2: Approach overview.

T0τ instead of T0τ0. As the multiplier dominates, this penalty may become
unacceptable.

7.2 Approach Overview

To scale the shifter, we first find a limited set S = {sj , 1 ≤ j ≤ n, n ≤ r} of n
rotations to be implemented in hardware and their combinations which realize
the given set K of rotations requested by the ITT algorithm. This is the time
domain subproblem. Then, we construct the hardware — the space domain
subproblem. We approximate the hardware as an n–input multiplexer.

An iterative process (a genetic algorithm in this case) chooses a set of ro-
tations. Then, a dynamic programming procedure finds the number of clock
cycles required for the whole computation in O(m2 log m) time, which is ac-
ceptable for the given range of m. The rotations compose modulo m, which
makes many more rotation sets feasible.

Finally, the area and critical path length of the shifter are estimated, giving
the value of the optimization criterion of the iterative process. The block
diagram of the process is depicted in Figure 7.2

76

7.2. Approach Overview

7.2.1 Sub-optimum Rotation Set by a Genetic Algorithm

In the time-domain problem, we seek n ≤ r hardware-implemented rotations.
Configuration is given by n values si, 0 ≤ si, m. This is the phenotype of
the genetic algorithm. The genotype (chromosome) is a fixed structure with
a simple decoder. Constrained optimization is implemented by a penalty for
each rotation ki which the individual in question cannot implement.

The rest of the genetic algorithm is quite classical, with single-point
crossover and linear scaling of the fitness values. The adaptive nature of the
linear scaling causes the convergence to remain unchanged even in the presence
of a large area and time of the multiplier, where the differences in evaluations
are relatively small.

7.2.2 Sub-optimum Rotation Set by a Fast Heuristic

Based on the observation of the genetic algorithm result, we designed a much
faster heuristic procedure for finding rotation set:

1. Find nmax such that the critical path length of an nmax-input multiplexer
is not bigger than that of the multiplier.

2. For i = 1 . . . nmax do:

(a) Implement rotation by 1.

(b) If i < r
2 , implement every

⌈
r
i

⌉
-th rotation.

(c) If there are still less than i implemented rotations, pick the rest at
random.

(d) Obtain the number of clock cycles by dynamic programming.

(e) Compute the quality measure and record.

3. Choose the best solution.

The random assignment in Step 2.c is justified by the fact that using more
distinct rotations than r

2 does not bring much improvement. The complexity

of this algorithm is O(m2 log2 m).

77

Chapter 7. Scalable Shifter Synthesis

7.3 Results

The optimizer was implemented using the GAlib C++ library [Wal]. A number
of experiments has been performed, with m in the range interesting for elliptic
curve cryptography, that is, from 160 to 250. The following Observations were
made for the procedure using a genetic algorithm:

1. The solution found by the algorithm was an optimum one (where an
optimum found by other methods was available)

2. Any realized rotation in an optimum solution was identical to a given
rotation (i.e. S ⊆ K in optimum case of S), although even slightly sub-
optimum solutions did not have this property.

3. No optimum and only a few of sub-optimum solutions employed the
modularity of the rotation composition.

4. When the modularity was not used, the search space became discon-
nected, and more time was needed to achieve equivalent results.

5. All optimum solutions were best implemented by a multiplexer.

6. With the population size of 100, the algorithm required cca. 3000 gen-
erations to converge at m = 160, rising to 4000 at m = 250.

Table 7.1 illustrates the influence of the multiplier size on the shifter. The
results were obtained for m = 163, where the required set of rotations is
K = {1, 2, 5, 10, 20, 40, 81}. The area of an n–input multiplexer was 1.5n and
the critical path of the unit was outside the shifter.

The procedure using the fast heuristics gave the results almost identical to
the other for the “normal” cases, i.e. for n ≤ 3. Beyond that, the results were
worse, in average, by 15%.

7.3.1 Future Work

The biggest challenge for the future is definitely Observation 2. If it was true
in general, the search space of the problem would be drastically reduced. The
proof would have to state the existence of an optimum solution with certain
characteristics, and we are not aware of many techniques for such a proof.

78

7.3. Results

Table 7.1: Shifters Adjusted to Different Multipliers

Multiplier Shifter
digit width A0 T0 A T optimum set of

rotations S = {sj}
1 489 1956 244 159 {1}
6 2934 326 488 24 {1, 10}
– 0 0 976 10 {1, 5, 20, 81}

In the case that Observation 2 does not hold in general, an almost obvi-
ous experiment to perform is to encourage the genetic algorithm to produce
solutions for which better implementations than multiplexers exist.

A weaker assertion that might be eventually proven is Observation 3, how-
ever, it does not benefit the solution immediately (cf. Observation 4).

7.3.1.1 Reformulating the Observation 2

To better understand the problem of Observation 2 we bring a popular example
involving heaps of coins.

We are given a number m. We should create several heaps of coins. The
last heap should contain the coins of total volume kr =

⌊
m−1

2

⌋
, the previous

one should contain the volume kr−1 =
⌊

kr

2

⌋
, etc., that is, the i-th heap has

a volume ki−1 =
⌊

ki

2

⌋
, until k1 = 1. The heaps should be created with coins

of only n nominal values. The problem is to select the nominal values such
that the total number of all coins in all heaps would be minimal. Observation
2 says that the selected nominal values should be equal to some volumes of
heaps, i.e., there are exactly n heaps with exactly 1 coin. In other words, when
creating the set S of nominal values, the search space can be limited only to
the set K, which significantly reduces the complexity of the search algorithm.

Example 7.1. For m = 180 we should create the heaps with volumes
K = {1, 2, 5, 11, 22, 44, 89}. If we can use coins of n = 2 nominal values,
then the optimum selection would be S = {1, 11}, as illustrated in Fig-
ure 7.3a, while for n = 3 the nominal values should be S = {1, 5, 22}, as
illustrated in Figure 7.3b. In both cases S ⊂ K.

79

Chapter 7. Scalable Shifter Synthesis

11

11

11

11

11

11

11

11

1

11 11

11

11

11

11

11

1

1

1

1

1

1

1

1

89442211521
11

11

11

11

11

11

11

11

1

11 11

11

11

11

11

11

1

1

1

1

1

1

1

1

89442211521

22
22
22
22
1

5 22
22

225
5
1

1
1

1

89442211521

Figure 7.3: Heaps of coins for a) 2 nominal values and b) 3 nominal values of
coins and for m = 180.

80

7.4. Summary

We also have made an extensive search for values of m = 129 . . . 256 and for
number of rotations n = 2 . . . 5. For those values the Observation 2 was always
satisfied. Nevertheless, it is still not sure if the Observation 2 holds for general
values m and n. We presented this problem to the group of mathematicians
at the Workshop on Factoring Large Numbers, held in Essen in April 2008,
however, the problem still remains open.

7.4 Summary

In this chapter, we have presented a process which optimizes a block in a
scope of another, dominating block with strong interdependences in the area
and time of computation.

We decomposed the problem into time- and space-domain subproblems. A
part of the time-domain problem is solved exactly and repeatedly inside the
genetic algorithm. The solution of the space-domain subproblem was approx-
imated and the approximation verified.

The results show that formally proving certain properties of the circuit
can dramatically reduce the search space. Such proofs, although problem-
dependent and hard to construct, could improve the performance of EDA
software.

81

Chapter 7. Scalable Shifter Synthesis

82

Chapter 8

Conclusions of Part I

We have developed an arithmetic unit working over elements of a finite field
GF (2m) with a normal basis representation of the field elements. This arith-
metic unit is able to perform two crucial operations, multiplication and in-
version in a normal basis. The unit is applicable in smart cards and other
public-key cryptography systems based on elliptic curves.

For its potential use in smart cards and embedded systems, we designed the
unit to be as small as possible; actually, it is slightly bigger than the multiplier
itself. The arithmetic unit contains two principal subunits, a multiplier and
a shifter used in an inversion algorithm. As the application area requires the
systems to be scalable, we developed methods that allow both subunits to
scale as much as necessary. This extended scalability allows the designer to
tune the cryptographic system to fit the design constraints optimally.

The multiplier is scaled by the digit width. As the standard normal basis
multiplier may be scaled only for such digit widths D that divide the length of
arguments m, we developed four architectures (i.e. methods) of the multiplier
that can be scaled by any digit width. Some architectures give better results
for smaller digit widths, some are better for the bigger ones. That again
allows the designer to choose the architecture that matches design constrains
better. Generally, general digit-serial multipliers are of the same quality as the
standard ones. In other words, we do not pay much for the added flexibility.

The shifter is scaled by the number of rotations. It shows that only a small
number of rotations should be implemented to obtain the best possible results.

83

Chapter 8. Conclusions of Part I

We observed that the quality factor of isolated parts of the cryptographic
system can be misleading in case when the system contains parts that are
scaled differently or cannot be scaled at all (e.g. a control unit). In such cases,
the parts must be manipulated differently to achieve the optimum quality
factor of the entire system.

84

Part II

COPACOBANA-Assisted
Attacks on GSM
Communication

85

Chapter 9

Introduction to Part II

GSM, Global System for Mobile communication, originally Groupe Spécial Mo-
bile, is the most widely used system for mobile phone communication. It is
estimated that more than 3 billion subscribers all over the world use mobile
phones based on this system.

GSM was developed in 1980s for the use in Europe. The GSM standard
defines algorithms for authentication as well as for data encryption. The en-
cryption algorithms are denoted as A5/1 and A5/2. The original cipher, A5/1,
is used within Europe and in most other countries, while the A5/2 cipher has
been developed later — due to the export restriction — for deploying GSM
outside Europe.

Initially, the designs of both ciphers were kept secret, however the general
design was leaked by Anderson in 1994 [And94]. The designs of both A5/1
and A5/2 were entirely reverse engineered by Briceno in 1999 [BGW99]. Im-
mediately after the reverse engineering the intentionally weaker cipher A5/2
was cryptanalyzed by Goldberg, Wagner and Green [GWG99].

In this work we focus on the stronger GSM cipher A5/1. The cipher has
been extensively analyzed [And94, Gol97, Bab95, KS01, PS00, Gol00, BSW01,
BS00, BBK03, BBK06]. Previous work done in cryptanalysis of A5/1 we
summarize in Section 10.2. To the best of our knowledge, many of the proposed
attacks against A5/1 have never been fully implemented and/or they lack from
practicability.

Here we present two known-plaintext attacks against A5/1 that we devel-
oped and fully implemented. They represent the first real-world implementa-

87

Chapter 9. Introduction to Part II

tions of attacks against A5/1 reported in open literature. To implement both
attacks, we used a special-purpose hardware, COPACOBANA, however, the
attacks are different.

The first attack belongs to the general group of the brute-force attacks,
more precisely the guess-and-determine attacks. We utilized special properties
of A5/1 to make the attack very efficient. The approach we used is applicable
with some modifications also to some other stream ciphers. The attack reveals
the internal state of A5/1 in about 6 hours on average (and about 12 hours
at the worst-case). To mount the attack only 64 consecutive bits of a known
keystream are required and we do not need any precomputed data. We also
propose an optimized version of the attack. Both plain and optimized version
of the attack have been fully implemented and tested on our target platform.

The second attack belongs to the general group of the time-memory trade-
off attacks. With certain probability it is able to reveal the internal state of
the cipher in a matter of minutes. COPACOBANA is used in both the pre-
computation phase and the online phase of the attack. The engine generating
the time-memory trade-off tables has been tailored and optimized to ideally
utilize the properties of FPGA chips used in COPACOBANA. This approach
provides very high performance at a relatively low cost. Here proposed design
approach can be reused when designing similar attacks against other stream
ciphers.

The text is structured as follows: In Chapter 10 we describe the A5/1 ci-
pher, we bring an overview on proposed attacks on A5/1 and we describe the
special-purpose computing platform COPACOBANA. In Chapter 11, we de-
scribe our guess-and-determine attack implemented in COPACOBANA. Chap-
ters 12 and 13 are dedicated to the time-memory trade-off attack. In Chap-
ter 12, we present an overview on time-memory trade-off and time-memory-
data trade-off attacks. Then, in Chapter 13, we describe our implementation
of the time-memory-data trade-off attack implemented for COPACOBANA.
In Chapter 14, we discuss method for backtracking (reverse clocking) of the
A5/1 cipher. Last Chapter 15 summarizes the results and concludes this work.

88

Chapter 10

Background

10.1 A5/1 Cipher

A5/1 is a synchronous stream cipher. The keystream y produced by A5/1
engine is bitwise added modulo 2 to the plaintext, producing the ciphertext.
Communication between the mobile phone and the base transceiver station
(BTS) is divided into frames, each being 114 bits long. For each frame, the new
keystream is produced. All frames of one phone call share the same session key
K = (k0, . . . , k63) ∈ GF (2)64, which is exchanged between the mobile phone
and the BTS at the beginning, when the phone call is established. The 22-bit
initialization vector IV = (v0, . . . , v21) ∈ GF (2)22 is unique for each frame of
the phone call, however, it is equal to the 22-bit frame number FN which is
publicly known.

A5/1 cipher consists of 3 linear feedback shift registers (LFSRs) R1, R2
and R3 being 19, 22 and 23 bits long, as depicted in Figure 10.1. The taps
of each register correspond to the coefficients of a primitive polynomial of
a given length, hence each LFSR produces a sequence of a maximum pe-
riod. Most significant bits of all 3 registers are added modulo 2 to produce
one bit of a keystream per clock cycle. The registers are clocked irregu-
larly; bits R1[8], R2[10] and R3[10] are used as clocking bits (CBs), where
CB1 = R1[8], CB2 = R2[10], CB3 = R3[10]. At each clock cycle, major-
ity M of all three clocking bits is calculated, M = maj(CB1, CB2, CB3) =
CB1CB2 + CB1CB3 + CB2CB3. The register Ri is clocked if its associated
clocking bit CBi is equal to the majority of all three clocking bits (CBi = M),

89

Chapter 10. Background

19

0123456791011121415

01234567891112131415161718

19 0123456891112131415161718

13161718

2021

22 2021 7

8

10

10

Output
Keystream

Majority of
R1[8], R2[10], R3[10]

clk

XOR

XOR

XOR

XNORen

en XNOR

XNOR

clk

clk

en

XOR

Figure 10.1: A5/1 cipher

otherwise it is stopped. According to Table 10.1, either 2 or 3 registers are
clocked at each clock cycle. The probability of clocking a register is equal to 3

4 .

The algorithm of the generation of one keystream is as follows: At the
beginning, all 3 registers R1, R2 and R3 are reset. Then the initialization
phase follows. During the initialization phase the clocking rule is not applied,
i.e. all three registers are clocked regularly. In 64 clock cycles, the registers
are initialized with a 64 bit key K; in an i-th clock cycle, 0 ≤ i ≤ 64, the i-th
bit of key is added modulo 2 to the least significant bit of each register and the
registers are clocked (shifted to the left by one bit). The key K is followed by
a 22 bit wide initialization vector IV which is again bit-by-bit added modulo
2 to the least significant bits of all 3 registers and the registers are clocked.

After initialization phase, the warm-up phase follows. During this phase the
registers are already clocked irregularly. The cipher is clocked for 100 clock
cycles and the output is discarded. After that, during the executional phase,
228 bits of keystream are produced, 114 of them are used to encrypt uplink
traffic and 114 are used to decrypt downlink traffic. The algorithm of A5/1 is
depicted in Figure 10.2.

90

10.1. A5/1 Cipher

Table 10.1: Clockcontrol of A5/1

CB of R1: R1[8] 0 0 0 1 0 1 1 1
CB of R2: R2[10] 0 0 1 0 1 0 1 1
CB of R3: R3[10] 0 1 0 0 1 1 0 1

Majority 0 0 0 0 1 1 1 1
Clock R1?

√ √ √
– –

√ √ √
Clock R2?

√ √
–

√ √
–

√ √
Clock R3?

√
–

√ √ √ √
–

√

1. (Reset) Set all 3 registers R1, R2 and R2 to 0

2. (Initialization) Load 64 bit key K followed by a 22 bit frame number
FN to all 3 registers

• Registers clocked regularly

• K and FN are bit-by-bit XORed to the least significant bits of the
registers R1, R2 and R3.

3. (Warm-up) Clock for 100 clock cycles and discard the output

• Registers clocked irregularly

4. (Execution) Clock for 228 cycles, generate 114+114 bits of keystream
(for each direction)

• Registers clocked irregularly

5. Repeat for the next frame

Figure 10.2: Algorithm of A5/1

91

Chapter 10. Background

10.2 Previous Work

Cryptanalysis of block ciphers is, in most cases, focused on finding the key used
for an encryption. The key is also used in case of stream ciphers, however,
cryptanalysis of stream ciphers is mostly focused on finding the internal state
of the cipher [Gol97, BS00], i.e. the content of the internal registers at certain
time of execution. Once the internal state is revealed, the cipher may be run
forward, decrypting the remainder of the ciphertext. In some cases the cipher
may be also run backwards, which is e.g. the case of A5/1.

During last 15 years the security of A5/1 has been extensively analyzed.
Pioneering work in this field was done by Anderson [And94], Golic [Gol97],
and Babbage [Bab95].

10.2.1 Guess-and-Determine Attacks

Anderson’s basic idea was to guess the complete content of the registers R1
and R2 and about half of the register R3. In this way the clocking of all three
registers is determined and the second half of R3 can be derived given 64 bits of
keystream. In the worst-case each of the 252 determined state candidates (i.e.,
candidates for Sw) needs to be verified against the keystream which imposes
a high workload when done in software.

The hardware-assisted attack by Keller and Seitz [KS01] is based on An-
derson’s idea. However, they proposed a way to exclude a significant fraction
of possible candidates at a very early stage of the verification process. The
authors claim that their approach reduces the attack complexity to 241 · (3

2)11

with an expected computing time of 14 clock-cycles per guess. This results in
a worst-case complexity of 251.24 clock cycles. They implemented the attack
on a Xilinx XC4062 FPGA. The FPGA is hosting seven instances of the guess-
ing algorithm and operates at a frequency of 18.65 MHz leading to an attack
time of about 236 days. Unfortunately, the approach given in [KS01] does not
only immediately discard wrong candidates but a priori restricts the search for
candidates to a certain subspace. This fact is not explicitly mentioned in the
paper. Moreover, no complete analysis of the attack is given. Our analyses
in Section 11.1 show that the success probability of their attack is only about
18% and the expected computing time for a guess is slightly higher than the
stated one.

The key idea of Golic’s attack [Gol97] is to guess the lower half of each reg-
ister (these bits determine the register clocking in the first few clock-cycles)

92

10.2. Previous Work

and clock the cipher until the guessed bits “run-out”. Each output bit imme-
diately yields a linear equation in terms of the internal state bits belonging to
the upper halves of three registers. Then we continue guessing the clocking
sequence yielding again other linear equations that describe the output of the
majority function. Whenever 64 linearly independent equations are obtained
in this way the system is solved using Gaussian elimination. The complexity
of this attack is O(240) steps. However, each step is fairly complex since it
comprises to compute the solution of an 64× 64 LSE (and the verification of
the corresponding state candidate).

Pornin and Stern proposed a SW/HW tradeoff attack [PS00] that is based
on Golic’s approach but in contrast to Golic they are guessing the clocking
sequence from the very first step, similarly to [Gol00]. These guesses create a
tree with 4 branches in each node (each branch represents one clocking combi-
nation, cf. Table 10.1). While traversing a path down the tree, three equations
are obtained at each node (similarly to the second phase of Golic’s method),
namely two equations describing the clocking and one equation describing the
output. Hence, after n steps (in depth) one collected 3n equations. The trade-
off parameter n is chosen such that 3n < 64. Thus, each path in the tree leads
to an underdetermined LSE that is solved in software resulting in a parametric
solution on the internal state. The basis of the corresponding linear subspace
containing all solutions to such an LSE consists of (64 − 3n + 1) 64-bit vec-
tors. These vectors are sent to the hardware, where a brute force attack is
performed, i.e., each of the 264−3n elements of the subspace is generated and
loaded to the A5/1 instance. The instance is run after each load to verify
the obtained output keystream against the given keystream. The authors es-
timated an average running time of 2.5 days when using an XP-1000 Alpha
station for the software part and two Pamettes 4010E for the hardware part
of the attack (where n = 18).

The authors consider to place twelve A5/1 instances into one Xilinx 4010E
FPGA, occupying 12×36 = 432 CLBs out of 576 (75% of the FPGA). Unfortu-
nately, any details (especially the area) of the unit generating 264−3n internal
states are missing which makes it hard to verify the stated figures. However,
these figures do not seem to be based on real measurements and we consider
them as too optimistic; we expect that the generator unit occupies a relatively
large area. For instance, when choosing n = 18 the transmitted basis consists
of 11 vectors, i.e., 11× 64 = 704 bits. Since the deployed Xilinx 4010E FPGA
contains only 1152 flip-flops, more than 60% of them would be used just for
holding the coefficients of the basis. So there seems not to be enough space

93

Chapter 10. Background

to place twelve A5/1 units (needing further 12 × 64 = 768 flip-flops) on the
FPGA as stated in the paper.

10.2.2 Time-Memory-Data Trade-off Attacks

Finally, there is a whole class of time-memory-data tradeoff (TMDTO) at-
tacks on A5/1 which share the common feature that a large amount of known
keystream must be available and/or huge amounts of data must be precom-
puted and stored in order to achieve reasonable success rates and workloads
for the online phase of these attacks. Simple forms of such attacks have been
independently proposed by Babbage [Bab95] and Golic [Gol97].

Recently, Biryukov, Shamir, and Wagner presented an interesting (non-
generic) variant of an TMDTO [BSW01] (see also [BS00]) utilizing a certain
property of A5/1 (low sampling resistance). The precomputation phase of this
attack exhibits a complexity of 248 and memory requirements of only about
300 GB, where the online phase can be executed within minutes with a success
probability of 60%. However, 2 seconds of known keystream (i.e., about 25000
bits) are required to mount the attack making it impractical.

Another important contribution in this field is due to Barkan, Biham, and
Keller [BBK03] (see also [BBK06]). They exploit the fact that GSM employs
error correction before encryption — which reveals the values of certain lin-
ear combinations of stream bits by observing the ciphertext — to mount a
ciphertext-only TMDTO. However, in the precomputation phase of such an
attack huge amounts of data need to be computed and stored; even more than
for known-keystream TMDTOs. For instance, if we assume that 3 minutes of
ciphertext (from the GSM SACCH channel) are available in the online phase,
one needs to precompute about 50 TB of data to achieve a success probability
of about 60% (cf. [BBK06]). There are 2800 contemporary PCs required to
perform the precomputation within one year.

These are practical obstacles making actual implementations of such attacks
very difficult. In fact, to the best of our knowledge no full implementation of
TMDTO attack against A5/1 has been reported yet.

94

10.3. COPACOBANA — A Cost-Optimized Parallel Code Breaker

10.3 COPACOBANA — A Cost-Optimized
Parallel Code Breaker

Cryptanalysis of modern cryptographic algorithms demands for a high com-
putation power, which can be provided by

• Supercomputers, like IBM BlueGene, Cray or SGI.

• Distributed computing

• Application specific integrated circuits (ASICs)

• Field-programmable gate arrays (FPGAs)

Supercomputers tend to provide sophisticated options for high speed com-
munication and large portions of distributed memory that are mostly not re-
quired for simple cryptanalytical number crunching. Unfortunately, the avail-
ability of these features increases the costs of theses systems significantly, re-
sulting in a nonoptimal cost-performance ratio of an attack on a cipher.

Distributed computing with loosely coupled processors connected via the
Internet is a popular approach, e.g., demonstrated by the SETI@home project
[Uni05]. However, this has the disadvantage that the success strongly depends
on the number of participating users. Hence, distributed computing usually
results in an unpredictable runtime for an attack since the available computa-
tional power varies due to the dynamically changing number of contributors.

The high non-recurring engineering costs for ASICs have put most projects
for building special-purpose hardware for cryptanalysis out of reach for com-
mercial or research institutions. One of the most notable ASIC-based projects
was the DES hardware cracker called Deep Crack built in 1998 by Electronic
Frontier Foundation (EFF). Running the exhaustive key search it found the
DES key within 56 hours [Ele98]. Their DES cracker consisted of 1, 536 custom
designed ASIC chips at a cost of material of around US$ 250,000 and could
search 88 billion keys per second.

With the improvements in FPGA technology, reconfigurable computing has
emerged as a cost-effective alternative for certain supercomputer applications.
Unlike standard CPUs the reconfigurable circuits offer much higher comput-
ing performance at comparable price. They do not reach the performance of
dedicated ASICs, however, their reprogrammability allows for using them for
different projects. Also the non-recurring costs are much lower if FPGAs are
used rather than special-purpose ASIC is designed. Therefore, special-purpose

95

Chapter 10. Background

cryptanalytical machines have now become a possibility outside government
agencies.

The Cost-Optimized Parallel Code Breaker (COPACOBANA) is a high-
performance, low-cost cluster consisting of 120 Xilinx Spartan3-XC3S1000 FP-
GAs. It has been jointly developed by the Christian Albrechts University of
Kiel and the Ruhr University in Bochum in 2006 [KPP+06]. Currently, CO-
PACOBANA appears to be the only reconfigurable parallel FPGA machine
optimized for code breaking tasks reported in the open literature. Depend-
ing on the actual algorithm, its parallel hardware architecture can outperform
conventional computers by several orders of magnitude. COPACOBANA has
been designed under the assumption that the typical cryptanalytical task is
characterized by following properties:

• computational-costly operations are parallelizable,

• parallel instances have only a very limited need to communicate with
each other,

• the demand for data transfers between host and nodes is low due to the
fact that computations usually dominate communication requirements
and

• typical cryptographic algorithms and their corresponding hardware no-
des demand very little local memory which can be provided by the on-
chip RAM modules of the FPGA.

These characteristics were utilized in the design of COPACOBANA. To
achieve minimum building costs, the architecture based on a common bus
interconnecting all FPGAs with a central controller has been used. COPA-
COBANA also does not contain any external memory modules.

COPACOBANA consists of a controller card, up to 20 DIMM modules, and
the backplane, as depicted in a diagram at Figure 10.3. Every custom-made
DIMM module hosts six Xilinx Spartan3-XC3S1000-4FT256 FPGAs and a
DC-DC converter providing core voltage for the FPGAs. The backplane hosts
20 DIMM connectors for the DIMM modules and one special connector for the
controller. The controller card connects COPACOBANA with a host computer
via its interface. Two types of controllers have been developed; the first one
is equipped with USB interface, while the second one uses 1 Gbit Ethernet
interface. The host computer can either communicate with a single FPGA or
broadcast the data to all FPGAs. Besides data transfers, the controller card
also allows for the configuration of the FPGAs.

96

10.3. COPACOBANA — A Cost-Optimized Parallel Code Breaker

All modules are interconnected with a common 64 bit data bus. The address
bus has 16 bits; 5 bits are used to address the DIMM module (combinations
00000 and 11111 are used to address none and all modules, respectively), 6
bits are used to address the FPGA in the DIMM module (one-hot encoding is
used) and 5 bits are used to select addresses inside the FPGA. If the Ethernet
controller is used, then, due to pin limitations, the address has just 12 bits,
leaving only 1 bit to select addresses inside the FPGA.

A clock signal of 20 MHz is generated in the controller card and distributed
via the backplane. If a circuit implemented on the FPGA is required to run
at a frequency other than 20 MHz, then the frequency is multiplied/divided
using a Digital Clock Manager (DCM) inside each FPGA. According to the
datasheet [Xil07], the circuits implemented in Spartan 3 FPGAs can reach an
operational frequency of up to 300 MHz, however, our experience shows that
maximum frequencies achievable in practical circuits do not exceed 160 MHz.

COPACOBANA is placed into a 3 units high, standard 19” rack module,
as shown in photo in Figure 10.4. When configured with a design occupying
97 % of area of each FPGA, running at 100 MHz, and equipped with all 20
DIMM modules, the whole machine has a power consumption of about 600 W.

COPACOBANA has been primarily developed for implementation of brute
force attacks. However, it may be used for many other cryptanalytical tasks.
For example, en efficient implementation of Pollard-Rho for the discrete log-
arithm problem over elliptic curves has been proposed in [GPP07]. Besides
cryptanalysis, COPACOBANA finds also other application areas, like the mas-
sively parallelized DNA motiff search [SWPS08], and others.

97

Chapter 10. Background

DIM
M

Module
2

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

l

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

backplane

data

address
bus

64
16

DIM
M

Module
1

DIM
M

Module
20

U
S

B

Contro
lle

r

FPGA

contro
lle

r

card
host

Figure 10.3: Architecture of COPACOBANA.

Figure 10.4: Photo of COPACOBANA. Courtesy of SciEngines GmbH

98

Chapter 11

Smart Brute-Force Attack
on A5/1

As discused in Section 10.2, many of the proposed attacks against A5/1 lack
from practicability and/or have never been fully implemented. In contrast
to these attacks, we present a real-world attack revealing the internal state
of A5/1 in about 6 hours on average (and about 12 hours in the worst-case)
using an existing low-cost special-purpose hardware device COPACOBANA.
To mount the attack only 64 consecutive bits of a known keystream are re-
quired and we do not need any precomputed data. Also the communication
requirements with the host computer are relatively small.

On the theoretical side, we present a modification and analysis of the ap-
proach sketched in [KS01]. Furthermore, we propose an optimization of the
attack implementation leading to an improvement of about 13% in compu-
tation time compared to a plain implementation. Both plain and optimized
version of the attack have been fully implemented and tested on our target
platform.

This has been a collaborative work with Timo Gendrullis and Andy Rupp.
This work has been published in [A.11].

99

Chapter 11. Smart Brute-Force Attack on A5/1

11.1 Analysis and Modification of Keller and
Seitz’s Approach

The approach is based on a simple guess-and-determine attack proposed by
R. Anderson in 1994 where the shorter registers R1 and R2 are guessed and
the longer register R3 is to be determined. But because Anderson neglected
the asynchronous clocking of the registers at first, only the 12 most significant
bits of R3 can be determined from the known keystream while the remaining
bits have to be guessed as well.

Keller and Seitz’s attack can be divided into two phases, into the deter-
mination phase in which a possible state candidate consisting of the three
registers of A5/1 after its warm-up phase is generated and into a subsequent
postprocessing phase in which the state candidate is checked for consistency.

11.1.1 Analysis

In the determination phase, Keller and Seitz try to reduce the complexity of the
simple guess-and-determine attack further by early recognizing contradictions
that can occur by guessing the clocking bit (CB) of R3 such that R3 will not
be clocked. Therefore, they first completely guess the registers R1 and R2 and
then derive register R3 in the following manner. Let Ri(t)[n] denote the n-th
bit of register Ri at a time t, where t = 0 is immediately after the warm-up
phase of A5/1 and increases by 1 every clock-cycle. Then, foremost compute
the first most significant bit (MSB) of R3, which is R3(0)[22], immediately
out of R1(0)[18] and R2(0)[21] and the first bit of the known keystream (KS).
Then inspect the clocking bits of registers R1 and R2, which are R1(0)[8] and
R2(0)[10], and guess the first clocking bit of R3, namely R3(0)[10]. If R1(0)[8]
and R2(0)[10] are not equal, R3 will be clocked in either way and so both
possibilities for R3(0)[10] have to be checked. But if the CBs of R1 and R2
are identical then at least these two registers will be clocked. Assume now
the CB of R3 is chosen to be different from the ones of R1 and R2, i.e.,
R3(0)[10] 6= R1(0)[8], and as a consequence R3 will not be clocked. Now in one
half of these cases the generated output bit of the MSBs of all three registers
(which are R1(1)[18] = R1(0)[17], R2(1)[21] = R2(0)[20], R3(1)[22] = R3(0)[22])
does not match the given keystream bit and a contradiction occurs. As a
consequence the CB of R3 has to be guessed in a way that R3 will be clocked
together with R1 and R2, i.e., the CB of R3 is to be chosen equal to the CBs
of R1 and R2, so that a new MSB can be computed.

100

11.1. Analysis and Modification of Keller and Seitz’s Approach

By early recognizing this possible contradiction while guessing R3(t)[10], all
arising states of this contradictory guess neither need to be computed further
on nor checked afterwards. To further reduce the complexity of the attack
they do not only discard these described wrong possibilities for the CB of R3
in case of a contradiction but they also limit the number of choices to the one
of not-clocking R3 if this is possible without any contradiction. After having
computed the first MSB of R3 the process of guessing a CB and computing
another MSB of R3 is repeated until R3 is completely determined which is
after having clocked R3 for 11 times.

This heuristic reduces the number of possibilities for R3(t)[10] in one half
of all cases from two to one. The number of possible state candidates to be
checked decreases thus from 211 to (2 − 1

2)11 = (3
2)11 ≈ 26.43 ≈ 86 for every

fixed guess of registers R1 and R2 in general. This results in 241 ·26.43 = 247.43

possible state candidates. But because they discard some valid states as well as
states leading to a contradiction they have only a low success probability. The
number of all valid state candidates for one fixed guess of R1 and R2 is (2 −
1
4)11 = (7

4)11 ≈ 28.88 ≈ 471. Thus, the number of state candidates inspected by
Keller and Seitz in proportion to the number of valid state candidates results
in a success probability of only 86

471 ≈ 0.18 = 18%.

Immediately after the determination phase, the A5/1 is performed with the
generated state candidate in the postprocessing phase and the generated out-
put bits are checked against the remaining bits of the 64 bit known keystream.
Keller and Seitz just state that this consistency check in the postprocessing
phase will proceed fast and that both, determining a state candidate and
checking it against the known keystream, will take 14 ≈ 23.81 clock-cycles.
This leads to a complexity of 247.43 · 23.81 = 251.24 clock-cycles. But with this
expected amount of clock-cycles they underestimated the time complexity as
will be shown in Section 11.1.2.

One instance of Keller and Seitz’s guessing algorithm occupies 313 out of
the 2304 configurable logic blocks (CLBs) of the XC4062 FPGA. It is hard to
estimate how fast the original Keller-Seitz attack would be when implemented
on COPACOBANA, since the architecture and the performance of the XC4062
[Xil99] and the Spartan-3 XC3S1000 [Xil07] FPGAs are different. For example,
one XC4000 CLB only roughly corresponds to one Spartan-3 slice, because it
contains two 4-input look-up tables (LUT), one 3-input LUT and two flip-
flops (FF), while a Spartan-3 slice contains only two 4-input LUTs and two
FFs. Because the available number of slices on a Spartan-3 XC3S1000 FPGA
is 7680 and if we assume that one instance of the guessing algorithm would
occupy 313 slices, a maximum number of 24 instances could be implemented

101

Chapter 11. Smart Brute-Force Attack on A5/1

on one FPGA. This leaves just 168 slices for other circuits for controlling the
instances. According to the datasheets the “internal performance of XC4000
family chips can exceed 150 MHz” while the “maximum toggle frequency of
Spartan-3 chips is 630 MHz”. That represents a performance ratio of less
than 4.2. Out of these figures we estimate that the attack would not be faster
than 24

7 × 4.2 × 120 = 1728 times when run on COPACOBANA. This yields
to a minimum of 3.27 hours to perform the search of Keller and Seitz. But
if we recall again that (i) the attack searches only through 18% of the valid
states, the search through all valid states would take at least 18.19 hours, (ii)
the number of guessing instances implemented in one FPGA would be less
than 24 since at least an additional control logic has to be implemented, and
(iii) Keller and Seitz underestimate the time complexity as will be shown in
Section 11.1.2, the computation time is expected to increase significantly.

11.1.2 A Slight Modification

Our algorithm is similar to the one proposed by Keller and Seitz except that we
only discard wrong possibilities for R3(t)[10] that would immediately lead into
a contradiction. But if no contradiction appears we still check both possibilities
for R3(t)[10], which means clocking and not-clocking R3. Because of this, we
take every possible state candidate into account and therefore will find unlike
Keller and Seitz the correct state candidate in any case. This reduces only in
1
4 of all cases the number of choices from two to one and, hence, the expected
number of possibilities for R3 that need to be checked is approximately 471
for every fixed guess of registers R1 and R2 (cf. Section 11.1.1).

A flowchart of the decisions during the determination phase and the post-
processing phase shows Figure 11.1. A more detailed overview of a highlighted
block, i.e. how R3(t)[10] is guessed and how certain subtrees are discarded, is
given in Figure 11.2.

Example 11.1. An example for the first steps of the reduction of
possibilities performed by the algorithm is given in Figure 11.3. It shows
next to the first 4 bits of a known keystream the first 4 MSBs and the
first 3 CBs of the guessed registers R1 and R2 and of the derived register
R3. The algorithm proceeds as follows.

1. Compute R3(0)[22] = R1(0)[18]⊕R2(0)[21]⊕KS[0] = 0.

2. R1(0)[8] 6= R2(0)[10]: Choose R3(0)[10] = 0 6= R1(0)[8] first and
clock registers R2 and R3.

102

11.1. Analysis and Modification of Keller and Seitz’s Approach

is R3

clocked less than

11 times?

compute R3(t)[22]

R3 is completely deter-

mined: continue with

checking against KS

NO

guess R3(t)[10]

is R3 clocked?
clock registers with

applied clocking-rule

do generated

and given KS bits

match?

discard subtree with

R3(t)[10] = not R1(t)[8]

YES

YES

NO

do generated

and given KS bits

match?

clock registers

with applied

clocking-rule

is A5/1

clocked less than

64 times?

YES

NO

key-candidate

found

contradiction during

postprocessing:

discard derived R3

NO

NO

YES

YES

Start

Figure 11.1: Flowchart of the FSM of a guessing-engine

103

Chapter 11. Smart Brute-Force Attack on A5/1

R1(t)[8] = R2(t)[10] ?

R3(t)[22]

! R1(t+1)[18]

! R2(t+1)[21]

= KS(t+1) ?

R3(t)[10] = not R1(t)[8]:

only clock R1 & R2

R3(t)[10] = R1(t)[8]:

clock R1, R2, R3

discard subtree with

R3(t)[10] = not R1(t)[8]

subtree with

R3(t)[10] = not R1(t)[8]

already checked?

R3(t)[10] = R1(t)[8]:

only clock R1 & R3

R3(t)[10] = not R1(t)[8]:

only clock R2 & R3

YES

YES

NO

NO

YES

NO

YES NO

subtree with

R3(t)[10] = not R1(t)[8]

already checked?

Figure 11.2: Guessing the clocking bit of R3 in detail

0 110 10 0

0 11101 0

010 1101

R1

R2

R3

KS = 0, 1, 1, 0, ...

22 21 20 19 18 17 16 ... 10 9 8 7 615

Figure 11.3: An example for a generated state candidate after 3 times guessing
R3(t)[10]

104

11.1. Analysis and Modification of Keller and Seitz’s Approach

b
(t)

: R3
(t)

[10] = R1
(t)

[8]

a
(t)

: R3
(t)

[10] ! R1
(t)

[8]
a

(0)

a
(1)

a
(2)

b
(0)

b
(1)

b
(2)

b
(2)

b
(2)

b
(1)

Figure 11.4: An example for a reduced binary decision tree of R3(t)[10]

3. Compute R3(1)[22] = R3(0)[21] = R1(0)[18]⊕R2(0)[20]⊕KS[1] = 0.

4. R1(0)[8] = R2(0)[9]: Not clocking register R3 would result in a
contradiction because R1(0)[17]⊕R2(0)[19]⊕R3(0)[21] 6= KS[2].
Hence, discard the possibility R3(1)[10] = 0 = R3(0)[9] 6= R1(1)[8],
instead choose R3(1)[10] = 1 = R3(0)[9] = R1(0)[8], and clock all
registers R1, R2, R3.

5. Compute R3(2)[22] = R3(0)[20] = R1(0)[17]⊕R2(0)[19]⊕KS[2] = 1.

6. ...

The example ends here because it is apparent from Figure 11.4, which
shows the binary decision tree for R3(t)[10] up to a depth of 3, that
discarding possibilities for R3(t)[10] results in cutting whole subtrees.
In the example above we chose edge a(0) = R3(0)[10] = 0 6= R1(1)[8] at
the root node first and then discarded the possibility a(1) = R3(1)[10] =
0 6= R1(1)[8] at the corresponding node of depth 1.

Time Complexity of the Attack. Generating one possible state candi-
date during determination phase takes one clock-cycle for deriving R3(0)[22]
and then eleven times clocking register R3 to determine the remaining MSBs
of the register. With a probability of Pclk = 3

4 for clocking a register of A5/1 it
takes an expected number of 1+ 4

3 ·11 = 152
3 clock-cycles to generate the state

candidate for fixed registers R1 and R2 and the known keystream. Because
every clock-cycle one bit of the known keystream is inspected, the expected
number of needed known keystream bits to generate a state candidate corre-
sponds to the number of clock-cycles needed for this process.

105

Chapter 11. Smart Brute-Force Attack on A5/1

After having generated one state candidate it needs to be checked in the
postprocessing phase further on against the remaining bits of the known
keystream. To be able to perform this check immediately after the deter-
mination phase we additionally compute the feedback bits of register R3 with
its linear feedback function. We start with this computation from the time
when R3(3)[10] = R3(0)[7] is guessed. So we already computed 8 of the 11
feedback bits of R3 when the state candidate is generated. The remaining 3
feedback bits are computed in parallel and we continue with performing A5/1.
Now, the produced output is compared to the known keystream. A contra-
diction between the generated output and a known keystream bit is expected
to occur with a probability of α = 1

2 in the first clock-cycle of postprocessing.
Every cycle the algorithm is clocked further on, the probability of a contradic-
tion is again 1

2 . Generally speaking, it is αn = 1
2n for the n-th cycle after the

determination phase and the algorithm will clock on with an expected value of
1
α

= 2 further needed clock-cycles to inspect the output. If it is clocked with-
out any contradiction up to the 64-th bit of the known keystream we found a
valid state candidate for reconstructing the session key.

So, we get an expected number of T = 15 2
3 + 2 = 17 2

3 clock-cycles to deter-
mine a state candidate and check it for consistency with the given keystream
instead of just 14 clock-cycles as stated by Keller and Seitz. Thus, the time
complexity of our whole attack is C ≈ 241 · (7

4)11 · 17 2
3 ≈ 254.02.

11.2 Hardware Architecture for
COPACOBANA

This section presents an efficient implementation of a guessing-engine in hard-
ware which performs the determination phase and the postprocessing phase of
the attack. On every FPGA, several instances of this guessing-engine will be
implemented. Therefore, we will additionally introduce a hardware-software-
interface controlling these instances and providing intercommunication.

11.2.1 The Guessing-Engine

Figure 11.5 shows an overview of the guessing-engine with its different compo-
nents. A large part of the architecture for implementing this guessing-engine
consists of flip-flops (FFs) for storing the content of different registers. This
is in detail the state candidate register, storing the computed register R3 and

106

11.2. Hardware Architecture for COPACOBANA

the fixed guess of registers R1 and R2 in 64 bits. Additionally, we need FFs
to store the 64 bits of known keystream and an additional simple shift register
to evaluate a different known keystream bit every clock-cycle. To perform the
consistency check in the postprocessing phase, all three A5/1 LFSRs have to be
implemented, too. But the most important part of this architecture is the finite
state machine (FSM) performing the determination phase and the postpro-
cessing phase. Its functionality was already presented in Figures 11.1 and 11.2.
The shown process is repeated until all possible state candidates, i.e., the whole
binary decision tree of R3(t)[10], for one fixed guess of registers R1 and R2 have
been checked. The fact, that the guess R3(t)[10] 6= R1(t)[8] is always checked
first corresponds to the binary decision tree of Figure 11.4. This binary deci-
sion tree storing the discarded or already checked possibilities is mapped into
the branching state register.

The most straightforward way of mapping such a binary decision tree with
a certain height h into hardware, is to use an h-bit wide binary counter. In
our case all leaves are at a depth of d = h = 11. Turning left at a node of the
tree, i.e., R3(t)[10] 6= R1(t)[8], is represented by 0 in the corresponding counter
bit and turning right at a node, i.e., R3(t)[10] = R1(t)[8], is represented by 1.
Now, to reach all leaves from the leftmost unto the rightmost one by one, we
initialize the 11-bit wide counter to all 0 and read it in 11 clock-cycles bit by bit
from the most significant bit (MSB) to the least significant bit (LSB). When
having reached the leftmost leaf in such a manner, we increase the register
by one and restart reading bit by bit at the MSB again. This will lead us
to the second leaf from the left. To reach the rest of the leaves we count
through this 11-bit wide register up to all bits being 1. Now it is claimed by
the attack that certain subtrees of the binary decision tree are discarded (cf.
Section 11.1.2). To be able to do that while passing through the tree, we have
to set the corresponding bits of the 11-bit wide counter manually to 1 with an
1-to-11 bit demultiplexer. The FSM does this with bit number b every time
a contradiction is detected at a node of depth d = b + 1 and a possibility of
R3(t)[10] is discarded. This results in the reduced number of leaves of the
binary decision tree of (7

4)11 ≈ 471 meaning the amount of possible state
candidates for a fixed guess of R1 and R2.

11.2.2 The Control-Interface

Because several instances of the guessing-engine are implemented on one
FPGA they need to be controlled continuously. This is done by the control-
interface and there is exactly one instance of it implemented on each FPGA of

107

Chapter 11. Smart Brute-Force Attack on A5/1

State Candidate

Registers:

R1, R2, R3

FSM

A5/1 LFSRs:

R1, R2, R3

Branching State

Register

Figure 11.5: An overview of the guessing-engine

COPACOBANA. It accepts the 64 bit known keystream and a sub-searchspace
which has to be searched by the FPGA. By sub-searchspace we mean a certain
amount of fixed guesses for registers R1 and R2. Therefore, a software divides
the searchspace consisting of the 241 possibilities into these sub-searchspaces
and transmits to each FPGA another one of them together with the known
keystream. The control-interface of the FPGA then counts through this sub-
searchspace and provides each guessing-engine with a fixed guess of registers
R1 and R2 to be searched. Every time a guessing-engine finishes its search
it sends a report to the control-interface whether it was successful or not on
finding a state candidate and requests for another fixed guess of registers R1
and R2 out of the current sub-searchspace. In case of success the valid state
candidate is propagated to the software. This is repeated until the whole sub-
searchspace is searched by the FPGA. During the search, the software retrieves
regularly at reasonable intervals the status information of each FPGA and as-
signs a new sub-searchspace to an FPGA if requested. The search is finished
when all state candidates that can be generated with the 241 possibilities for
guessing R1 and R2, i.e., the whole searchspace, are checked for consistency.

11.2.3 Optimization: Storing Intermediate States

When completely passing through a binary decision tree, edges near the root
node are traversed much more often than edges near the leaf nodes. The
number of cycles R3 needs to be clocked to reach any leaf of the tree is 11 (cf.

108

11.2. Hardware Architecture for COPACOBANA

Section 11.2.1). For example, when inspecting the two leftmost leaves we have
to go bit by bit through the states 00000000000 and 00000000001 of the 11-bit
wide counter corresponding to the tree. Apparently, the first ten edges up to
the node of depth 10 for both leaves are identical. Therefore, we can create
recovery points at some depth in the search tree. More precisely, it is possible
to store the intermediate state (i.e., the content of all A5/1 registers) at such
a point (node of tree) and search the subtree starting at this recovery point
instead of starting at the root node. This apparently demands a larger area,
but saves a certain amount of clock-cycles.

Let us assume that reloading takes exactly one clock-cycle. If we store and
reload the intermediate states at depth d = 10, then the number of clock-cycles
for R3 reduces from 11 to 11+1+1

2 = 6.5 on average: 11 times clocking R3 to
reach the first leaf, one clock-cycle reloading the intermediate state, and one
time clocking R3 to reach the next leaf from the reloaded state. If we store
the intermediate states at depth d = 9, the corresponding subtree has 4 leaves.
To reach the leftmost one takes 11 clock-cycles, but to reach the other 3 leaves
will take just 1 + 2 = 3 clock-cycles each. Therefore, the average number of
times R3 needs to be clocked is in this case only 11+3+3+3

4 = 8+3·4
4 = 5.

Generalizing this approach of storing and reloading intermediate states at a
depth of d = 10 or d = 9 to a depth of d = b + 1, where b denotes the number
of the bit in the 11-bit wide counter consecutively numbered from 0 to 10, we
need to clock R3

f(b) =
b + (11− b) · 2(10−b)

2(10−b)
(11.1)

times on average to reach one leaf. The function has a minimum of 4.875 times
clocking R3 on average to reach a leaf for storing and reloading intermediate
states at a depth of bmin = 7 for b ∈ N.

Taking also into account that some subtrees are discarded while passing
through the tree (cf. Section 11.1.2) and the number of possibilities is reduced
from 2 to 7

4 for every guess, the function needs to be adapted:

g(b) =
b + (11− b) · (7

4)(10−b)

(7
4)(10−b)

. (11.2)

Both functions f(b) and g(b) are shown in Figure 11.6. The value for the
minimum of the function g(b) now changes to approximately 5.31 at bmin = 7

109

Chapter 11. Smart Brute-Force Attack on A5/1

f(b)

g(b)

b

0 2 4 6 8 10

4

5

6

7

8

9

10

11

Figure 11.6: Functions f(b), g(b): The average number of cycles clocking R3
to generate a state candidate with reloading intermediate states at recovery
position b

for b ∈ N. Therefore, the expected number of clock-cycles for generating and
checking one state candidate is now

Topt = 1 +
4

3
· 5.31 + 2 ≈ 10.10 ≈ 23.33

instead of T = 172
3 (cf. Section 11.1.2). This results in an optimized time

complexity of

Copt ≈ 241 · 28.88 · 23.33 ≈ 253.21

and reduces the previous complexity of C ≈ 254.02 by 0.81 bit. But when com-
paring the time complexities of the standard and the optimized guessing-engine
we additionally have to take the required area into account. The optimized
guessing-engine is expected to occupy a larger area because of the storing el-
ements for intermediate states of several registers. Hence, we will be able to
place less instances on one FPGA. This comparison of time-area products is
done after the implementation process and will be discussed in Section 11.3.

110

11.3. Implementation Results for COPACOBANA

Table 11.1: Implementation results for the control-interface and the guessing-
engines

slices flip-flops look-up fmax

tables [MHz]

control-interface 371 304 254 123.19
standard guessing-engine 202 179 256 112.84
optimized guessing-engine 311 312 412 115.01

11.3 Implementation Results for
COPACOBANA

We used Xilinx ISE Foundation 9.2i to synthesize and implement all compo-
nents for a Xilinx Spartan3-XC3S1000-FT256 FPGA used in COPACOBANA.
The simulation of the hardware model was done in MentorGraphics ModelSim
SE 6.3d.

First, we implemented and tested one single instance of the standard and
optimized guessing engine together with the control-interface for one instance.
Therefore, Table 11.1 shows the post place& route results of the implementa-
tion process for a single instance of the control-interface and both guessing-
engines.

To decide whether it is worth or not implementing the optimized guessing-
engine in spite of the increased area consumption we calculated the time-area
product. Table 11.2 shows a comparison of the computing time T and Topt in
clock-cycles (cf. Sections 11.1.2 and 11.2.3), the number of slices needed, and
the time-area product in clock-cycles·slices for our standard and optimized
implementation of the guessing-engine. The last row shows the quotient of the
values of both designs. The quotient of the time-area products shows an overall
improvement of about 12% for one single optimized guessing-engine compared
to the standard one. We omitted considering the operating frequencies in
the time-area product because both implementations run at nearly the same
speed.

After having tested a single instance of each guessing-engine together with
the control-interface on one of the Spartan3-XC3S1000 FPGAs we attempted
to maximize the utilization ratio of the available hardware resources. For
this purpose, we implemented as many instances as possible of both types of

111

Chapter 11. Smart Brute-Force Attack on A5/1

Table 11.2: Comparison of the implementation results of both guessing-engines

computing-time slices time-area product
[clock-cycles] [clock-cycles × slices]

optimized 10.10 311 3,141.10
standard 17.67 202 3,568.73
optimized
standard

0.57 1.54 0.88

Table 11.3: Implementation results of the maximally utilized designs

slices FFs LUTs fmax ftest
[MHz] [MHz]

1 control-engine &
◦ 36 standard 6,953 (91%) 10,730 10,576 81.85 72.00
◦ 32 standard 6,614 (86%) 9,636 9,417 102.42 92.00
◦ 23 optimized 7,494 (98%) 10,141 10,562 104.65 92.00
guessing-engines
Spartan3-1000 7,680 (100 %) 15,360 15,360 300.00 —

guessing-engines with one instance of the control-interface. We were able to
place & route 36 instances of the standard engine on one of the target FP-
GAs. However, the complexity of the control-interface grows with the number
of guessing-engines. For 36 such engines the critical path was transfered to
the control-interface creating the bottle-neck of the design. Therefore, the
achieved maximum frequency of 81.13 MHz was relatively low. So we decided
to implement less engines at a higher frequency instead. The best trade-off for
the standard guessing-engine was to implement 32 instances at a maximum
frequency of 102.42 MHz. In case of the optimized guessing-engine we were
able to implement 23 instances running at 104.65 MHz. The implementation
results of both complete designs are shown in Table 11.3. Additionally, the
available resources of one FPGA are listed, too.

Table 11.3 also shows the frequencies the designs were tested with. Thus, we
can calculate a preliminary estimation of the computation time to determine
and check all possible state candidates. For the slow design with the standard

112

11.4. Summary

guessing-engine and a time complexity of C = 254.02 (cf. Section 11.1.2) we
expect a computation time of

test =
254.02

120 · 36 · 72 · 106
· 1

3600
h ≈ 16.31 h.

This is an estimation for a fully equipped COPACOBANA with 120 FPGAs.
In accordance to the previous calculation, the preliminary estimation of the
computation time for the smaller but faster standard design (32 instances
@ 92 MHz) is t′est ≈ 14.36 h. For the optimized guessing-engine (23 optimized
instances @ 92 MHz) with a time complexity of Copt = 253.21 we expect a
computation time of t′′est ≈ 11.40 h.

Time measurements of several extended test runs on COPACOBANA
showed an average computation time of t′ = 13.58 h for the small and fast stan-
dard design to perform a complete search for a given 64 bit known keystream.
Comparing this result to the estimation of the computing time t′est shows that
the complexity differs only by 0.08 bit from our measurements. The optimized
design took an average computation time of t′′ = 11.78 h for a full search.
This equals a variation of only 0.05 bit between the estimated and the mea-
sured computation time. Because these were the computation times for a full
search (i.e., the worst case) the expected average time for finding the valid
state candidate is 6.79 h for the standard design and 5.89 h for the optimized
design, respectively.

11.4 Summary

In this Chapter we presented a guess-and-determine attack on the A5/1 stream
cipher running on the special-purpose hardware device COPACOBANA. It re-
veals the internal state of the cipher in less than 6 hours on average demand-
ing only 64 bits of known keystream. We like to stress that our attack is also
very attractive with regard to financial costs which is a significant factor for
the practicability of an attack: The acquisition costs for COPACOBANA are
about 10,000 e. Since COPACOBANA has a maximum power consumption of
only 600 W, the attack also features very low operational costs. For instance,
assuming 10 cent per kWh the operational costs of an attack are only 36 cents.

We like to note that we just provided a machine efficiently solving the
problem of recovering a state of A5/1 after warm-up given 64 bits of known
keystream. To break the GSM communication, the cipher needs to be tracked
back to evaluate the internal state in which the cipher appeared just after

113

Chapter 11. Smart Brute-Force Attack on A5/1

loading the session key K. Albeit, this backtracking can be done efficiently
and in a fraction of time on almost any platform, as discussed in Chapter 14.

Further technical difficulties will certainly appear when it actually comes
to eavesdropping GSM calls. This is due to the frequency hopping method
applied by GSM which makes it difficult to synchronize a receiver to the desired
signal. Also the problem of obtaining known plaintext is still under discussion
in pertinent news groups and does not seem to be fully solved. However, these
are just some technical difficulties that certainly cannot be considered serious
barriers for breaking GSM.

114

Chapter 12

Time-Memory Trade-off
Attacks

The method of a time-memory trade-off (TMTO) attack was introduced by
Martin Hellman in 1980 [Hel80]. The goal of the method was to reduce the
time necessary to break the cipher, which is particularly important if such an
attack is repeated frequently. The attack is accelerated by certain data which
are precomputed in advance and stored in tables (denoted as TMTO tables).

The method was originally invented for block ciphers, namely for DES.
Since then some improvements and modifications have been proposed. To save
the number of memory accesses during the attack, which become the bottle-
neck of the method, Rivest [D. 82] proposed a modification based on so-called
distinguished points. Biryukov and Shamir [BS00] combined the Hellman’s
method with an attack on stream ciphers developed by Babbage [Bab95] and
Golic [Gol97]. The result of this combination is a time-memory-data trade-off
(TMDTO) method, applicable particularly to stream ciphers. In 2003 Oech-
slin [Oec03] introduced so-called rainbow tables which are currently considered
to be the most efficient variant for block ciphers. However, this variant is infe-
rior to the original Hellman’s approach in case of multiple input data (which
is the case of stream ciphers). Recently, Barkan, Biham and Shamir [BBS06]
presented a modification of rainbow tables, called the thin-rainbow tables. The
thin-rainbow tables enable efficient implementation of the attack even in the
case of multiple input data.

115

Chapter 12. Time-Memory Trade-off Attacks

In the following text we bring an overview of the above mentioned methods.
We follow and extend the summary introduced in [Rup08]. We start from the
description of the Hellman’s approach targeted to block ciphers, followed by the
description of the Rivest’s variant. Then we introduce Biryukov’s and Shamir’s
idea of adopting the method to stream ciphers and finally we conclude with
the rainbow tables and thin-rainbow tables methods. The discussion on the
method which was finally selected for an attack on A5/1 and was implemented
in COPACOBANA is presented in Chapter 13.

12.1 Original Hellman’s Approach

Let P ∈ P be the plaintext, k ∈ K be the key, and C ∈ C be the ciphertext.
The encryption function is a one-way function

E : P×K 7→ C.

We denote
C = E(k, P) = Ek(P). (12.1)

A common problem in cryptanalysis is to invert the encryption function E,
i.e. for the given ciphertext C, and known corresponding plaintext P , to find
a key k, s.t. Equation 12.1 holds.

Let
N = |K|

be the cardinality of the search space.

Brute-Force Attack. One approach to invert the encryption function is to
perform the brute-force attack, i.e. to encrypt the known plaintext P with all
potential values of the key k until the match between the result of encryption
and the given ciphertext C is obtained. This approach is (repeatedly) appli-
cable only for ciphers with relatively short key sizes, since it demands a long
computation time T = N . For example, a brute force attack on DES (which
has a key being 56 bits long) takes approx. one week on average when run on
COPACOBANA [KPP+06].

Table Look-Up. It is also possible to select certain plaintext P0 which is
likely to appear in the encrypted data. Such a plaintext can be e.g. the
header of a file with a certain format, the sequence of spaces in the text files,

116

12.1. Original Hellman’s Approach

k0
E→ C0

R→ k1
E→ C1

R→ k2
E→ C2

R→ k3 . . . kt−1
E→ Ct−1

R→ kt

Figure 12.1: One chain in the Hellman TMTO

etc. For a selected fixed plaintext P0 all pairs key-ciphertext {ki, Ci} are
then precomputed and stored in the memory, sorted by the ciphertext. When
performing the actual attack, the ciphertext is looked up in the memory and
the key is simply retrieved. The precomputation phase (the offline phase)
demands a high computation power, but this phase is run just once. The attack
itself (also called the online phase) is then very fast, T = 1. However, this
approach has an extreme space (memory) complexity, M = N . For example,
in case of DES, the table would occupy 256× (64+64) bits, which is 260 bytes,
or 220 TB.

12.1.1 Basic Idea

Hellman’s original idea [Hel80] was to make a compromise between the above
two extreme approaches. The cryptanalysis is again divided into two phases,
the offline phase, and the online phase. During the offline phase a huge amount
of calculations is performed, but only some results are stored in the memory
(tape, disk, . . .). This phase may last weeks, months or even years. During
the online phase, i.e. the actual attack, the encryption function is inverted in
a relatively short time with the help of the results precomputed and stored in
the memory.

12.1.2 Offline Phase

In the offline phase, one tries to precompute (ideally all) pairs key-ciphertext
{ki, Ci}. To reduce memory requirements, the pairs are organized in chains —
ciphertext Ci, which is the product of the encryption P0 under the key ki, is
used to generate the key ki+1 for the next encryption, as shown in Figure 12.1.
The encryption function E might be considered as a pseudo-random function.
Consequently, a pseudo-random walk in a key space K is performed.

The key ki+1 is generated from the ciphertext Ci using so-called reduction
and re-randomization function R. This function modifies Ci e.g. by permuting
some bits (if the key and the ciphertext are of the same length) and/or omits
some bits of Ci (if the key is shorter than the ciphertext). The composition of

117

Chapter 12. Time-Memory Trade-off Attacks

SP1 = k10
f→ k11

f→ k12
f→ · · · f→ k1,t−1

f→ k1,t = EP1

SP2 = k20
f→ k21

f→ k22
f→ · · · f→ k2,t−1

f→ k2,t = EP2

SP3 = k30
f→ k31

f→ k32
f→ · · · f→ k3,t−1

f→ k3,t = EP3

...

SPm = km0
f→ km1

f→ km2
f→ · · · f→ km,t−1

f→ km,t = EPm

Figure 12.2: Time-memory trade-off table

an encryption function E and a re-randomization function R forms so-called
step function f :

f(k) = R(Ek(P0)).

It also holds
ki+1 = f(ki). (12.2)

As a part of the precomputation phase, m unique keys k10, k20, . . . , km0 ∈ K

are chosen. Those keys serve as start points SP1, SP2, . . . , SPm of chains as
shown in Figure 12.2. Then, the step function f is t-times iteratively applied
to each start point SPj , generating t keys kji in each chain. The last generated
element of each chain is called the end point EPj :

EPj = f t(SPj).

The intermediate results are discarded and only the pairs {SPj , EPj} are
stored, sorted by the end points. With the knowledge of the start point and
the end point, the whole chain can be reconstructed later.

12.1.3 Online Phase

In the online phase, the cryptanalyst is given the ciphertext C0. The task is
to find a key K s.t.

C0 = EK(P0).

To do so, first the re-randomization and reduction function R is applied to
C0 and the result

y1 = R(C0) = R(EK(P0)) = f(K)

118

12.1. Original Hellman’s Approach

is compared to all end points. If a match is found, y1 = EPj , then either,
according to Equation 12.2, the searched key is K = kj,t−1, or the end point
EPj has multiple inverse images (this case is called a false alarm). To restore
the value of kj,t−1, the chain is recomputed, i.e. the step function f is applied
(t− 1)-times starting from SPj .

If no match is found or if a false alarm appears, then a new result

y2 = f(y1) = f(R(C0))

is calculated and compared to all end points again. If a match is found now,
then the key kj,t−2 = f t−2(SPj) is recalculated and its validity is verified (e.g.
by encrypting P0 with kj,t−2 and comparing the result with C0). This ap-
proach is iteratively applied, i.e. the new results yi = f(yi−1) are successively
calculated and compared to all end points until either valid match is found or
until i ≥ t. If the match is found in the i-th step, yi = EPj , then the candidate
for the key K is kj,t−i = f t−i(SPj).

12.1.4 Characteristics

In many real examples, the step function f is non-injective. This is caused
either by non-injectivity of the re-randomization and reduction function R
(e.g. in case of DES, the 64-bit ciphertext is reduced to the 56-bit key) and/or
by non-injectivity of the encryption function E itself (e.g. in case of A5/1
several distinct internal states can produce the same keystream). The non-
injectivity of f leads to multiple occurrences of some keys kji in the table
shown in Figure 12.2. However, even if the step function f were injective,
then there is still certain probability that some generated key kji matches a
start point SP .

Multiple occurrences of some keys lead to chain merges and chain loops.
The chain merge appears if a duplicate key is generated in two distinct chains.
From that moment on, both chains continue with generating the same sequence
of keys. The chain loop appears if some key is generated twice in the same
chain. Starting from the duplicate key, the chain repeats the sequence of
already generated keys.

Both chain merges and chain loops cause reduced coverage of the key space
K. Hellman proved that it is not worth increasing the number of generated
chains m, or the length of chains t, beyond the point, where

mt2 = N, (12.3)

119

Chapter 12. Time-Memory Trade-off Attacks

since the coverage does not increase too much then. Equation 12.3 is called the
matrix stopping rule. Hellman recommends to set m = N

1

3 and t = N
1

3 . As
the table contains less than m · t = N

2

3 keys, Hellman recommends to generate
r = N

1

3 tables, each having its unique re-randomization and reduction function
R.

The following formulas are based on the analysis done in [Hel80].

Success Probability. The success probability of a single table was calcu-
lated by Hellman to be

Ptable =
1

N

m∑

i=1

t−1∑

j=0

(
N − (i · t)

N

)j+1

.

The success probability of r generated tables is approximated by

Ptotal = 1− (1− Ptable)
r
.

Precomputation Time. This time is proportional to a total number of
applications of the step function f . Therefore it is

PT = m · t · r.

Memory Complexity. Only the start point and the end point are stored
out of each chain. If the start points were chosen to be e.g. consecutive
numbers, then we need at least bSP = ⌈log2(m)⌉ bits to unambiguously identify
each start point. To store information about the end point, we need bEP =
⌈log2(N)⌉ bits. We generate r tables, each containing m chains, therefore the
total memory complexity would be

M = r ·m · bpair,

where
bpair = bSP + bEP = ⌈log2(m)⌉+ ⌈log2(N)⌉ .

Online Time. As described above, the search through a single table requires
one application of R and up to t− 1 applications of f . If neglecting the time

120

12.2. Distinguished Points

to handle false alarms, we get the worst case estimation for the search through
r different tables as

T = r · t.

Table Accesses. After each application of R or f , the result is looked up
in the tables. Therefore the maximum number of table accesses is

TA = T = r · t.

Parameters Choice. For recommended values of m = t = r = N
1

3 , we
obtain PT = N applications of f in the precomputation phase, M = N

2

3

pairs {SP, EP} to be stored, and T = N
2

3 applications of f followed by the

same number TA = N
2

3 of table accesses in the online phase.

12.2 Distinguished Points

An extreme number of table accesses TA in the online phase may jeopardize
the attack. For example, in case of DES, the number of table accesses would
be TA = N

2

3 = 237 1

3 . If we assume that one table access takes 1 ms on average
(currently stated values of an average disk access time are about 8 ms), then
we would need 5.5 years to finish up the online phase.

To handle this problem, Rivest [D. 82] in 1982 proposed the modification
of the original Hellman’s approach, based on so-called distinguished points. A
distinguished point (DP) is a key with a certain property which is easy to
verify, e.g. a key having the 20 most significant bits being all zeros. The
DP-property is usually characterized by a mask with the length of d bits.

12.2.1 Offline Phase

In the offline phase, each chain is generated until some distinguished point
is reached. Therefore, the end point is always a distinguished point. Conse-
quently, the chains do not have constant length; the parameter t on a length of
chain is replaced by the specification of the DP-property, which usually states
that DP is a point having d most significant bits being zero. The DP-property
is usually combined with the range [tmin, tmax] defining a minimum required
and a maximum allowed length of the chain. The chains that do not reach the
minimum required length tmin do not contribute significantly to the coverage

121

Chapter 12. Time-Memory Trade-off Attacks

of the table and hence such chains are discarded to save memory requirements.
The chains exceeding the maximum allowed length tmax are likely to run into
the chain loop and for this reason such chains are discarded as well. Only the
chains having the length within the specified boundaries are stored. Out of
each chain, the triple {SPj , EPj , lj} is stored, where lj is a length of the chain.
However, the information on the length of chain can be omitted, as will be
shown below.

Chain merges and loops. The detection of chain merges is very easy in this
case. If two chains merge, then both chains end up in the same distinguished
point — the end point. As both chains contain the same sequence of keys from
the point of merge, only one chain is stored to save memory requirements.
Obviously, it is the longer chain which is stored since it contributes to the
coverage of the table more. Chain loops are prevented by setting the condition
on the maximum allowed chain length tmax, as discussed above.

12.2.2 Online Phase

The online phase is similar to the online phase of the original Hellman’s
method. First, the re-randomization and reduction function R is applied to
the given ciphertext C0:

y1 = R(C0).

Since all end points are DPs, then the result y1 is looked up in the table
only when it is a DP. Otherwise, further results

yi = f(yi−1) (12.4)

are iteratively calculated until the DP is reached or until i ≥ tmax.

If the DP is reached but no match in the table is found, then the iterative
calculation described in Equation 12.4 is not continued, since there is no chance
of any further match (each chain contains exactly one DP — the end point).
Instead, the next table is processed.

If the DP is reached in the i-th step and the result yi matches to the end
point EPj , then the candidate for the key K is retrieved as

kj,lj−i = f lj−i(SPj),

122

12.2. Distinguished Points

where lj is a length of the chain which has been stored in the triple
{SPj , EPj , lj}.

If the length of the chain has not been stored, then the step function f is
iteratively applied starting from SPj

kj,ℓ = f ℓ(SPj), ℓ = 1, 2, . . .

until kj,ℓ ≡ y1. Then the candidate for the key K is the point kj,ℓ−1.

12.2.3 Characteristics

The fact that chains do not have constant length, as well as the fact that
some chains are discarded due to the chain merges, lead to more complicated
evaluation of the characteristics of the method. The following overview is
based on the analysis made in [SRQL02].

Let m be the number of start points in one table, r be the number of
tables, k be the bit-length of points in the table, d be the number of mask
bits defining the DP-property and [tmin, tmax] be the minimum and maximum
allowed length of chain.

The probability that a chain leads into a DP in less than l iterations of the
step function is

P1(l) = 1−
l−1∏

i=0

(
1− 2k−d

2k − i

)
≈ 1−

(
1− 2k−d

2k − l−1
2

)l

.

Since l ≪ 2k , the probability P1(l) can be further approximated

P1(l) ≈ 1−
(

1− 2k−d

2k

)l

= 1−
(

1− 1

2d

)l

, (12.5)

however, this approximation is not used in [SRQL02].

Chain Length. The average chain length can be calculated as

lavg =

∑tmax

l=tmin
l × P (DP in exactly l iterations)

∑tmax

l=tmin
P (DP in exactly l iterations)

. (12.6)

123

Chapter 12. Time-Memory Trade-off Attacks

The denominator of Equation 12.6 represents the ratio between the number
of chains having the length l ∈ [tmin, tmax] and the total number of chains. It
is expressed as

γ = P1(tmax)− P1(tmin − 1)

≈
(

1− 2k−d

2k − tmin−2
2

)tmin−1

−
(

1− 2k−d

2k − tmax−1
2

)tmax

.

Consequently, the number of chains having the length tmin ≤ l ≤ tmax is

m′ = m · γ

≈ m ·

(

1− 2k−d

2k − tmin−2
2

)tmin−1

−
(

1− 2k−d

2k − tmax−1
2

)tmax

 .
(12.7)

As some chains are sorted out if chain merge appears, the final number m̂ of
chains in one table is further reduced, m̂ ≤ m′.

The average chain length is approximated as

lavg ≈

(
(1− x)

tmin−2 (
tmin + 1−x

x

)
− (1− x)

tmax−1 (
tmax + 1−x

x

))

γ
,

where

x =
2k−d

2k − tmax+tmin

4

.

As some chains are sorted out if the chain merge appears, the actual average
chain length l′avg differs from lavg. Since longer chains are more likely to merge
than shorter chains, the actual average length l′avg is lower than lavg, as will
be confirmed later in Section 13.3. The actual average chain length l′avg is
decreasing with growing m′ since chain merges are more frequent.

Success Probability. The number of distinct keys covered by one table has
been approximated as

s(γm) ≈ N ·
(

1−
(

N

−lavgγm + l2avgγm + N

) 1

lavg−1

)
.

124

12.2. Distinguished Points

Therefore the success probability of one table is

Ptable =
s(γm)

N
≈ 1−

(
N

−lavgγm + l2avgγm + N

) 1

lavg−1

.

Having r tables the total success probability can be approximated by

Ptotal ≈ 1− (1− Ptable)
r
.

Precomputation Time. The average number of the step functions applied
to one chain during the precomputation phase is

δ = tmax · (1− P1 (tmax)) + lavg · P1 (tmax)

= tmax + (lavg − tmax) · P1 (tmax) .
(12.8)

As there are r ·m chains to be precomputed, the precomputation time is

PT = r ·m · δ

≈ r ·m ·

tmax + (lavg − tmax) ·

1−
(

1− 2k−d

2k − tmax−1
2

)tmax

step functions.

Memory complexity. Each table contains s(γm)
l′avg

chains. To store informa-

tion on chains from r tables, we need

M =
s(γm)

l′avg

· r · btriple ≈
s(γm)

lavg

· r · btriple

bits of memory, where

btriple = (⌈log2(m)⌉) + (⌈log2(N)⌉ − d) + (⌈log2(tmax)⌉)

is the least number of bits necessary to store information on one triple
{SPj , EPj , lj}.

Online Time. The online time may be lower bounded by

T ≤ r · l′avg ≈ r · lavg.

125

Chapter 12. Time-Memory Trade-off Attacks

Table Accesses. The maximum number of table accesses may be bounded
by a number of tables

TA = r,

since there is at most one look-up per one table.

12.3 Time-Memory-Data Trade-off Attacks

The idea of a time-memory-data tradeoff attack, suitable for stream ci-
phers, was independently introduced by Babbage [Bab95] and Golic [Gol97].
Biryukov and Shamir [BS00] later combined this approach with the original
Hellman’s method.

Let g be the function mapping each one of N internal states x ∈ X of the
stream cipher to the output prefix y ∈ Y. Output prefix y here is the string
consisting of the first log2(N) bits produced by the cipher from this internal
state

g : X 7→ Y.

We denote
y = g(x). (12.9)

The typical cryptanalytical task in case of stream ciphers is to invert the
function g, i.e. for the given output prefix y to find such x that Equation 12.9
holds.

Let w be the number of the available keystream bits. Since sometimes
w > log2(N), it is possible to derive D = w − log2(N) + 1 output prefixes
y0, y1, · · · yD−1 from the keystream, as shown in Figure 12.3. To break the
stream cipher, it is sufficient to find the internal state xi for any of the D
output prefixes yi. When the internal state xi is found, then the cipher can
be run forward to derive the remainder of the keystream. In some cases, the
cipher can also be run backwards, as shown in Chapter 14 for the case of A5/1.

The birthday paradox says that two subsets of the space with N points are
likely to intersect if the product of their sizes exceeds N . The idea of Babbage
and Golic was to apply this property to the table look-up attack, which was
described in Section 12.1. As we have D output prefixes available, then the
size of the table is reduced to a fraction of ≈ N

D
pairs {x, y}.

126

12.4. Rainbow Tables

y0

x0

y1

x1

y2

x2

y3

x3

0100111101101010110100101010010100010010100010011110110001

y0

x0

y1

x1

y2

x2

y3

x3

y0

x0 y0y0

x0

y1

x1 y1y1

x1

y2

x2 y2y2

x2

y3

x3 y3y3

x3

0100111101101010110100101010010100010010100010011110110001

Figure 12.3: Sampling the keystream into D output prefixes

The idea of Biryukov and Shamir was to apply this approach to the Hell-
man’s method. Consequently, the number of generated tables is D times
smaller, rD = r

D
, which saves both the precomputation time

PTD =
PT

D

and the memory

MD =
M

D
.

The online complexity remains unchanged — for each data point we have to
perform calculations and table look-ups over the reduced number of tables rD,
however these operations are repeated for each of D data points. Therefore
the online time is

TD = D · T

D
= T

and the number of table accesses is

TAD = D · TA

D
= TA.

12.4 Rainbow Tables

The idea of the rainbow tables, introduced in 2003 by Oechslin, is to apply
a different re-randomization and reduction function Ri in each step of chain
generation. The method was first described for the use with block ciphers.

127

Chapter 12. Time-Memory Trade-off Attacks

12.4.1 Offline Phase

The step function f changes from step to step creating the sequence of t
different step functions in each chain

f1f2f3 . . . ft

Chain loops are completely prevented since each step function is used exactly
once. Chain merges are possible only if two identical data points are generated
in the same column of the table, i.e. after application of the same step function
fi in two distinct chains. Since the probability of chain merges is significantly
reduced in comparison to the Hellman’s approach, the number m of chains
contained in one table can be increased to the value for which m · t ≈ N .
Consequently, a single table or just a few tables are typically generated in the
precomputation phase.

12.4.2 Online Phase

The online phase differs from the Hellman’s approach as there are different
reduction functions used in each step of the chain generation. For a given
ciphertext C0, first the result Rt(C0) is calculated and compared to all end
points. If no match is found, then the result ft(Rt−1(C0)) is calculated and
looked up in the table, then the result ft(ft−1(Rt−2(C0))), etc. If a match
is found, then, similarly to the Hellman’s method, the corresponding chain is
reconstructed to retrieve the candidate for the key.

12.4.3 Characteristics

The following results have been adopted from the analysis provided in [Oec03].

Success Probability. The success probability of one table has been esti-
mated as

Ptable = 1−
∏(

1− mi

N

)
,

where m1 = m and mn+1 = N
(
1− e−

mn
N

)
. The success probability of r tables

is, similarly to Hellman, estimated as

Ptotal = 1− (1− Ptable)
r
.

128

12.4. Rainbow Tables

Precomputation Time. The precomputation time is estimated in the same
way like for Hellman’s method

PT = m · t · r.

Memory Complexity. Also the estimation of memory complexity is similar
to Hellman’s method

M = r ·m · bpair,

where
bpair = bSP + bEP = ⌈log2(m)⌉+ ⌈log2(N)⌉

is the number of bits necessary to store one pair {SP, EP}.

Online Time. In the i-th iteration of the online phase, 0 ≤ i ≤ t−1, we first
apply the function Rt−i, followed by i step functions ft−i+1, ft−i+2, · · · ft−1, ft.

The maximum number of calculations for one table is then t(t+1)
2 and the worst

case time to search through r tables is then

T = r · t(t + 1)

2
.

However, as mentioned above, the number of tables r is typically a very small
number.

Table Accesses. Each iteration of the online phase is finished with a table
look-up. Therefore the maximum number of table accesses into one table is
equal to t, and the worst case number of the accesses into r tables is

TA = r · t.

Parameters Choice. For recommended values of m = N
2

3 , t = N
1

3 and
r = 1, we obtain PT = N applications of f in the precomputation phase,

M = N
2

3 pairs {SP, EP} to be stored, and T = N
2

3

2 calculations with TA =

N
1

3 table accesses in the online phase.

129

Chapter 12. Time-Memory Trade-off Attacks

12.5 Thin-Rainbow Tables

The rainbow tables method is inferior to the standard Hellman’s method,
whenever multiple data points are available, as has been shown in [BBS06].
Therefore, a pure rainbow method is not suitable for cryptanalysis of the
stream ciphers.

The fact of having multiple data points enables to save precomputation time
and memory, similarly to the Hellman’s TMDTO described in Section 12.3.
However, the online complexity is increased. The online time is

TD = D ·
⌈ r

D

⌉
· t(t + 1)

2

and the number of table accesses is

TAD = D ·
⌈ r

D

⌉
· t,

where D is the number of data points. Since typically r < D (in many cases
r = 1), then the product D ·

⌈
r
D

⌉
> r, which indicates the increased online

complexity.

To cope with this problem, Barkan, Biham and Shamir [BBS06] proposed
a modified scheme called the thin-rainbow method. In this scheme, the shorter
rainbow sequence consisting of S different step functions is t-times repeated
during the generation of one chain, as shown below:

f1f2 . . . fSf1f2 . . . fS f1f2 . . . fS .

Each chain contains t rainbow sequences, each rainbow sequence consists of
S different step function. Consequently, each chain consists of tS + 1 points
(including the start point and the end point). By keeping t to be greater than
D, t ≥ D, the optimum trade-off may be reached whenever the multiple data
is available. If multiple tables are generated, then each table has its unique
rainbow sequence f1f2 . . . fS . Let us note that by setting S = 1 we obtain the
standard Hellman’s method (with multiple data) as described in Section 12.3.

12.5.1 Thin-Rainbow Tables with Distinguished Points

The method can be combined with the Rivest’s approach of the distinguished
points to reduce the number of table accesses. In this case the DP-property

130

12.5. Thin-Rainbow Tables

is not checked after each application of the step function, but only after each
application of fS , which is the last step function of each rainbow sequence. In
the following text we focus on this variant.

12.5.2 Offline Phase

Similarly to previously described methods we generate m chains in each of r
tables. As the distinguished points approach is applied, the chains do not have
a constant length. Therefore, the definition of t is replaced by the definition
of the DP-property being specified by a d-bit mask. We also set the region
[tmin, tmax] of a minimum required and a maximum allowed length of the chain,
which is here expressed in the number of rainbow sequences. Only the chains
that reach the DP after tmin ≤ l ≤ tmax applications of a rainbow sequence
are stored in the table. If two chains merge (which is again detected by equal
end point), then the shorter one is sorted out.

12.5.3 Online Phase

In the online phase we are given D data points y. Let’s focus on one data point
yi, and one table. First, we calculate RS(yi) and check it for the DP-property.
If a DP has been reached, then we look-up the table. If not, then we follow
with ℓ iterations of the rainbow sequence f1f2 . . . fS until DP is reached or
until ℓ > tmax. In the second step we calculate fS(RS−1(yi)) first, check it for
the DP-property and, if necessary, we continue the calculation by ℓ rainbow
sequences. In the next step, we start calculation with fS(fS−1(RS−2(yi))),
etc. In the last step, we start the calculation with fS(fS−1 . . . f2(R1(yi)))),
followed by ℓ rainbow sequences, if necessary.

If the table has been completely processed/searched for the data point yi,
and no success has been reached yet, then we follow the search with the same
data point yi in the next table. After having processed the last table, the
whole procedure is repeated for other data points y. If a match is found, then,
similarly to the Hellman’s method, the corresponding chain is reconstructed
to retrieve the candidate for the key/internal state.

12.5.4 Characteristics

The analysis of this method has been presented in [A.12]. This analysis is
based on approaches used in [SRQL02] and [Oec03]. The analysis in [A.12] is

131

Chapter 12. Time-Memory Trade-off Attacks

made for one table, here we present the results for r tables. However, in many
cases, r = 1.

Success Probability. To approximate the probability that the DP is
reached in less than l applications of a rainbow sequence (or, in other words,
in less then l applications of fS), we use Equation 12.5:

P1(l) ≈ 1−
(

1− 1

2d

)l

.

The average length of a chain (in the number of rainbow sequences) is, from
Equation 12.6, approximately

lavg ≈
∑tmax

l=tmin
l ×
((

1− 1
2d

)l−1 −
(
1− 1

2d

)l)

(
1− 1

2d

)tmin−1 −
(
1− 1

2d

)tmax
. (12.10)

The number of chains having the length tmin ≤ l ≤ tmax rainbow sequences
(or, in other words, having the length tminS ≤ lS ≤ tmaxS step functions) is,
similarly to Equation 12.7, approximately

m′ ≈ m ·
((

1− 1

2d

)tmin−1

−
(

1− 1

2d

)tmax

)
. (12.11)

As mentioned above, due to the chain merges the final number m̂ of chains
in one table is lower, m̂ ≤ m′, since the shorter ones of the merged chains
are sorted out. To evaluate the number of chains m̂, we used the iterative
expression for mi, which represents the number of distinct points in the i-th
column of the table

mi =

N −
⌊ i

S ⌋∑

k=1

mi−kS

(

1−
(

1− 1

N

)mi−1
)

≈

N −
⌊ i

S ⌋∑

k=1

mi−kS

(
1− e

mi−1

N

)
.

(12.12)

132

12.5. Thin-Rainbow Tables

Upon setting m1 = m′ we obtain m̂ = mlavgS+1. Then the success proba-
bility of one table and one data point y is approximately

Ptable ≈
m̂lavgS

N

and the success probability of r tables and D data points y consequently is
approximately

Ptotal ≈ 1−
(

1− m̂lavgS

N

)rD

. (12.13)

Precomputation time. Similarly to Equation 12.8 the average number of
rainbow sequences applied to one chain is again equal to

δ = tmax · (1− P1 (tmax)) + lavg · P1 (tmax) . (12.14)

Since (i) each rainbow sequence is S step functions long, (ii) we (initially)
generate m chains in each table, and (iii) we generate r tables, then the precom-
putation time (expressed in the number of step functions) can be approximated
as

PT ≈ r ·m · δ · S. (12.15)

Memory Complexity. Each table contains m̂ chains. To store information
on the chains from r tables we need

M = m̂ · r · btriple (12.16)

bits of memory, where

btriple = (⌈log2(m)⌉) + (⌈log2(N)⌉ − d) + (⌈log2(tmax)⌉)

is the least number of bits necessary to store information on one triple
{SPj , EPj , lj}.

Online Time. For one data point and one table we have to compute at most
S chains, each being about S · δ step functions long. Therefore, for D data
points and r tables, we obtain the worst case online complexity to be

T = r ·D · S · S · δ = r ·D · S2 · δ. (12.17)

133

Chapter 12. Time-Memory Trade-off Attacks

Table Accesses. Calculation of each chain is finished by one table look-up
(if the DP is reached before tmax iterations of the rainbow sequence). There-
fore, the worst case number of the table accesses is

TA = r ·D · S. (12.18)

Parameters Choice. Let assume that only one table is generated, r =
1. We set such a DP-criterion and the region [tmin, tmax] to obtain lavg ≈
D. If P1(tmax) > 0.5, then, according to Equation 12.14, we may roughly
approximate δ ≈ lavg ≈ D. The length of one rainbow sequence we set as

S ≈ N
1

3

D
. The number of chains to be precomputed is set as m ≈ N

2

3

D
.

After substitution to Equations 12.13–12.18, we obtain a success probability

Ptotal ≈ 1 −
(
1− 1

D

)D ≈ 1 − 1
e
, precomputation time PT ≈ N

D
, memory

complexity M < N
2

3

D
triples {SP, EP, l}, online time T ≈ N

2

3 and the number

of table accesses TA ≈ N
1

3 . As obvious from these very rough estimations,
on careful selection of the parameters, the characteristics of the thin-rainbow
DP TMDTO method are comparable to the Hellman’s DP TMDTO method,
discussed in Sections 12.2 and 12.3.

134

Chapter 13

Time-Memory-Data
Trade-off Attack on A5/1

In this chapter we describe our implementation of TMDTO attack on A5/1.
COPACOBANA is used to perform calculations in both the precomputation
and the online phase.

In the first part we focus on the precomputation phase. Upon analysis made
in Chapter 12 we make a selection of the method to be implemented in CO-
PACOBANA. After that we analyze potential design approaches for hardware
architecture and we select the approach that permits achievement of maximum
performance. Then the description of the architecture for the table precom-
putation follows. We continue with a description of a method for the fast sort
of disk-stored TMTO tables. The first part we conclude with implementation
results which we obtained after the test run of the precomputation phase. We
compare theoretical and practical results and we identify some of potential
sources making differences between them.

In the second part we focus on the online phase. We describe the archi-
tecture of the online engine which has been implemented in COPACOBANA.
The online engine is more complex than the precomputation one. After that,
we discuss the method used for the fast look-up in disk-stored TMDTO table.

This has been a collaborative work with Andy Rupp. Some results of this
work have already been published in [A.12].

135

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

13.1 Table Precomputation

To make our attack realistic, we assume that the number of known consecutive
keystream bits is relatively small, but still we consider that we know at least
one whole keystream block of 114 bits. Hence, we have D = 114− 64+1 = 51
data points available to break the cipher.

13.1.1 Chosen Method

Both Hellman’s original tradeoff and rainbow tables are well suited for par-
allelization in hardware. Since the chains have a fixed length, the control of
the calculation in the precomputation phase is simple. However, as discussed
above, the Hellman’s method requires a large number of disk accesses during
the online phase, and the rainbow table tradeoff curve is inferior to Hellman’s
one whenever we have multiple data [BBS06].

Ergo, we considered two candidates for the implementation: the Hellman’s
DP TMDTO method, described in Sections 12.2 and 12.3, and the thin-
rainbow DP TMDTO method described in Section 12.5. Both methods provide
comparable characteristics with regard to success probability Ptotal, precom-
putation time PT , memory complexity M , online time T , as well as a low
number of table accesses TA. Nevertheless, there is a certain important dif-
ference in both methods: in case of the Hellman’s DP method, the chain can
reach its end point after any application of the step function f , while in case
of the thin-rainbow DP method, the chain can reach its end point only after
application of the last step function of the rainbow sequence, fS . In other
words, in case of the Hellman’s DP we have to test the DP-property after
each application of f , while in case of the thin-rainbow DP, we have to test it
after fS only. By exploiting this property we may save considerable amount of
hardware resources necessary for the units testing the DP-property, and there-
fore we may gain higher performance. Hence, for our implementation, we have
selected the thin-rainbow DP method. In the case of multiple data this ap-
proach allows simple and efficient hardware implementation, while exhibiting
a low number of disk accesses during the online phase.

13.1.2 Design Approach

Most designs realized in FPGAs usually do not fully use flip-flops available on
the chip. Typically, the designs are limited by the number of combinational

136

13.1. Table Precomputation

Look-up

Table
Flip-

flop

Look-up

Table
Flip-

flop

Figure 13.1: Simplified diagram of Xilinx FPGA slice

resources (look-up tables, LUTs) available. In case of A5/1 it is different: a
demand for flip-flops prevails a demand for combinational logic.

As generally known, the best performance may be gained by exploiting the
properties of a target architecture. Let’s focus on it now. Xilinx Spartan 3-
1000 FPGA used in COPACOBANA contains 7680 slices [Xil07]. Each slice
contains 2 LUTs and 2 flip-flops (and other circuits, like the fast carry logic or
dedicated multiplexers), see Figure 13.1. Look-up tables are used to implement
combinational logic, but in some slices the LUTs can also be configured to
work as a shift register with a maximum length of 16 bits (denoted as SRL16).
This property enables to implement much bigger shift-register-based circuits.
For example, using all 15360 flip-flops we may build the circuit containing
equivalent of 15360/64 = 240 A5/1 cores (without any controller and other
circuits). On the other hand, using SRL16s we can implement up to 480
A5/1 cores, still leaving enough LUTs and flip-flops for a controller and other
necessary circuits.

However, the usage of SRL16s brings some limitations to the circuit design.
To allow the synthesis tool to utilize this property, we have to avoid any parallel
input or output to the shift register, using only serial input and output. Hence
we rejected the idea of building the pipeline as at the DES engine [KPP+06],
since such a pipeline would require parallel access to all bits of registers in
each pipeline stage. Instead, we decided to implement an array of small,
encapsulated, independent processing units (we call them TMTO elements),
each having one serial input and one serial output.

137

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

XOR

A5/1 core #1

A5/1 core #2 XOR

load

load/run_2

load/run_1

re-randomization function

Figure 13.2: TMTO element — a processing unit calculating one chain of the
table

13.1.3 The TMTO Element

The diagram of the TMTO element is shown in Figure 13.2. The element
consists of two modified A5/1 cores, which can be operated either in RUN
mode, or in LOAD mode. In RUN mode the Core operates as a standard
A5/1 unit, i.e. it produces the keystream. When switched to LOAD mode,
the registers R1, R2 and R3 are interconnected to create one large 64-bit shift
register with one serial input and one serial output.

Each TMTO element is calculating one chain of points, i.e. one row in the
TMTO table. It works like a two-stroke two-piston engine. In odd steps of the
rainbow sequence, the Core #1 produces the keystream yj,i that is on-the-fly
re-randomized and loaded to the Core #2 as the new internal state xj,i+1.
In even steps of the rainbow sequence, the functionalities of both cores are
swapped — now the Core #2 is in RUN mode, while the Core #1 is in LOAD
mode. When the rainbow sequence is finished (i.e. after application of fS), the
result stored in the Core #1 is shifted out to be checked for the DP-property.
As obvious, our design requires the rainbow sequence to be even number of
steps long (S must be an even number), however, this fact does not represent
any significant limitation.

As a source of re-randomization, we use the output of the long-period LFSR.
The output of LFSR is XORed with the keystream.

138

13.1. Table Precomputation

13.1.4 Architecture of the Table Precomputation Engine

An architecture of the precomputation engine, occupying one FPGA, is pre-
sented in Figure 13.3. Since COPACOBANA hosts up to 120 FPGA, we may
place the same number of precomputation engines in one COPACOBANA.

We were able to place 234 TMTO elements into one FPGA. The TMTO
elements are depicted in the upper part of the diagram. To gain the maximum
frequency, we rejected the idea of parallel access to the TMTO elements, since
the number of them is relatively large. Instead, we connected all TMTO
elements into one large chain. The communication overhead, increased due to
the serial access, still represents only a small fraction of the overall computation
time, which is more than compensated by the increased frequency.

All TMTO elements share one DP checker depicted on the left side of the
diagram. After the application of fS , the results held in TMTO elements are
shifted out to be checked for the DP-property by this unit.

The 64-bit start point generator consists of a 40-bit register holding the
static value of upper bits, and a 24-bit counter generating the value of lower
bits. By incrementation, the counter generates the sequence of consecutive
start points. Upon startup of COPACOBANA the start point generator is
initialized with a certain initial value; each precomputation engine (i.e. each
FPGA) is assigned its unique initial value by the host computer. Besides that,
each precomputation engine is also assigned the range of the start point values
to be generated. When this range is exhausted, the host computer assigns a
new range — and a new initial value of the start point generator — to the
precomputation engine, and the engine is reset.

The point register is a 64-bit shift register with a parallel load. Newly
generated start point is loaded from the start point generator to the point
register, from which it is then shifted out to the corresponding TMTO element.

The timer is incremented at the beginning of each rainbow sequence. It is
used to determine the length of each generated chain, as discussed below.

For each chain, generated in the specific TMTO element, a value of its start
point and its ‘birthdate’ is stored in the chain memory. The ‘birthdate’ is a
value of the timer at time of start point generation.

As discussed above, we use the long-period LFSR as a re-randomization
function generator. This unit is again shared by all TMTO elements, since all
TMTO elements use the same re-randomization function Ri at the same time.

139

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

XOR

A5/1 core #1

A5/1 core #2 XOR

load

load/run_2

load/run_1

re-randomization function

TMTO

element

TMTO

element

TMTO

element

point register

start point generator

CONTROLLER

re-randomization

function

generator

chain memory

(start point,

birthdate)

FIFO

DP

checker

timer

C
O

N
T

R
O

L
 &

 E
V

A
L
U

A
T

IO
N

E
X

E
C

U
T

IO
N

Figure 13.3: Architecture of an A5/1 precomputation engine

140

13.1. Table Precomputation

The information on the start point, the end point and the length of each
successfully generated chain is collected in a FIFO, from which it is read in
bursts by the host computer.

How It Works. After the reset, the controller runs the initialization phase,
during which all TMTO elements are initialized with start points. This phase is
run exactly once. After that, during a standard operation, phases of execution
are alternated with phases of evaluation.

Initialization. During initialization the TMTO elements are switched to
build, together with point register, one large shift register. Start points gener-
ated for all TMTO element are loaded to the point register and shifted to the
corresponding TMTO elements. The values of start points and their ‘birth-
dates’ (time of their generation) are concurrently stored in the chain memory.
Besides that the timer, the re-randomization function generator and some
other auxiliary circuits are initialized.

Execution. Execution itself is performed in TMTO elements. One phase of
execution lasts exactly one rainbow sequence. The function has been already
described in Subsection 13.1.3.

Evaluation. When the rainbow sequence is finished, all TMTO elements
are again switched into one large shift register and the results are shifted-out.
The results are on-the-fly checked for the DP-property, and the length l of
each chain is calculated as a difference between a ‘current date’ (which is the
current value of the timer) and the ‘birthdate’ of the corresponding chain,
which is stored in the chain memory. For each chain one of the following four
cases may appear:

1. If the result satisfies the DP-property (it is the end point) and if the
length l of the chain is within bounds, tmin ≤ l ≤ tmax, then the chain
information (start point, end point, length) is stored into FIFO — the
value of the end point is acquired from the point register and the value
of the start point is acquired from the chain memory.

Concurrently, a new start point is generated, as a new chain will be
calculated in the corresponding TMTO element. This new start point
replaces the end point in the point register. At the same moment, both
the new start point and the ‘birthdate’ are stored in the chain memory.

141

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

Information stored in FIFO is later read out by the host computer and
stored on the disk.

2. If the end point has been achieved, but the chain is too short, l <
tmin, then the chain is discarded and the generation of a new chain is
initiated in the same TMTO element — the procedure is the same as
above (the new start point is generated, loaded into the point register
and, together with a ‘birthdate’, stored in the chain memory), but the
chain information is not stored in FIFO.

3. If the chain becomes too large, l > tmax, then again the chain is discarded
and the generation of a new chain is initiated in the same TMTO element.

4. In all other cases (i.e. the end point has not been achieved and the
chain is not too long yet) the result is simply shifted back to the TMTO
element to continue with the next rainbow sequence.

During the phase of evaluation we also initialize the re-randomization func-
tion generator to generate the same rainbow sequence in the next phase of
execution.

13.1.5 Data Transfer from COPACOBANA to the Host
Computer

The host computer regularly polls every FPGA, reads out the chains informa-
tion collected in FIFO, and stores it on the disk. As evident from the diagram
of COPACOBANA (see Figure 10.3), the data is transfered via the bus and
the interface. For its electrical properties the bus represents relatively high
risk of data corruption.

As clear from the previous discussions, all stored data must be correct,
otherwise they may lead to incorrect results during the online phase of the
attack. On the other hand, lost of any chain information does not represent
any significant problem — a new chain may be calculated instead.

We have chosen a Hamming code to secure the correctness of the transfered
data. The 64-bit start points and end points are encoded with the Hamming
code(72, 64) and the length l is encoded with the Hamming code(16, 11).
Though these codes are commonly used as SEC-DED (single error correction,
double error detection) codes, we use them as TED (triple error detection)
code for further improvement in the error resistance. If an error appears, then
the chain information is simply discarded. Besides the detection of 100% of

142

13.2. Fast Sort of Disk Stored TMTO Tables

single, double and triple errors, the variant of the Hamming code(72, 64) used
ensures also the detection of 99.19% of all quadruple errors [Hsi70].

13.1.6 Selection of Parameters

The A5/1 table precomputation engine can run at a maximum frequency of
156 MHz. Computing the step-function fi takes 64 clock cycles. One FPGA
contains 234 TMTO elements (each consisting of two A5/1 cores), hence the
whole COPACOBANA can perform approximately 236 step-functions per sec-
ond. In contrast to that, a contemporary PC can execute just about 222

step-functions per second [BBK06]. The performance of COPACOBANA in
the online phase is about 234.65 step-functions per second, see Section 13.4.

To select the TMDTO parameters (like the length S of the rainbow se-
quence, the number d of bits defining the DP-criterion, the interval Il =
[tmin, tmax] defining the minimum and maximum number of rainbow sequence
applications as well as the number m of start points) requires special atten-
tion, since this highly influences the precomputation time (PT), the disk usage
(M), as well as the time needed in the online phase for the chain computa-
tions (T), the number of table accesses (TA) and the success rate (Ptotal).
Table 13.1 summarizes the results for different sets of parameter choices. In
all cases we consider generation of just one table (r = 1). The estimations
are based on the analysis presented in Subsection 12.5.4 under the assumption
that D = 64. Furthermore, we assumed that COPACOBANA is used also for
the online phase. Due to this, it is worth trading higher online complexity,
e.g., for lower demand for disk space (compare rows 4 and 5).

For our implementation, we have selected the set of parameters presented
in the third row, since it produces a reasonable precomputation time and a
reasonable size of the tables, as well as a relatively small number of table
accesses. The success rate of 63% may seem to be small, but it increases
significantly if more data samples are available: For instance, if four frames of
known keystream are available, then D = 4 · 51 = 204 and thus the success
rate is increased to 96%.

13.2 Fast Sort of Disk Stored TMTO Tables

The generated TMDTO table has to be sorted according to the end points.
The average disk access time disables implementation of any “random access”
sorting algorithm like QuickSort, HeapSort etc. on the TMDTO table stored

143

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

Table 13.1: A5/1 TMDTO: Expected runtimes and memory requirements

m S d Il PT M T TA Ptotal

[days] [TB] [secs]
1 241 215 5 [23,26] 337.5 7.49 70.5 221 0.86
2 239 215 5 [23,27] 95.4 3.25 92.0 221 0.67
3 240 214 5 [24,27] 95.4 4.85 27.6 220 0.63
4 240 214 5 [23,26] 84.4 7.04 17.7 220 0.60
5 239 215 5 [23,26] 84.4 3.48 70.5 221 0.60
6 240 214 5 [24,26] 84.4 5.06 21.5 220 0.55
7 237 215 6 [24,28] 47.7 0.79 186.3 221 0.42
8 236 216 6 [24,28] 47.7 0.39 745.3 222 0.42

on the disk. For example, let assume that we will sort 4.85 TB of data,
representing about 238.5 triples {SP, EP, l} (row 3 in Table 13.1). To sort m̂ =
238.5 data records, we need to perform about m̂×log2(m̂) = 238.5×38.5 ≈ 243.8

data comparisons and transfers. If we assume that the average access time is
just 1 ms (currently stated values of the average access time are about 8 ms),
then we would need about 233.8 seconds (more than 450 years) to sort the
table.

Standard RadixSort [Knu98], sometimes also denoted as LSD (least signif-
icant digit) RadixSort, is more suitable in this case. Let R denotes the value
of radix used in the algorithm. Sorting in RadixSort consists of several passes
(iterations) during which all data is transfered from one disk to other disk.
In each pass, the transfered data is distributed among R files in the target
disk; each file contains all data sharing the same value of the digit in currently
inspected order of their keys. The number of passes k = ⌈logR(N)⌉ depends
on the range N of values used as a key in the algorithm, and the radix R.

To minimize fragmentation of target files, which minimizes the number of
disk seeks, it is worth implementing a set of buffers in a computer RAM, as
shown in Figure 13.4. The sorted data is distributed among the buffers; when
a buffer is full, then the whole contents of the buffer is at once transfered to the
disk and the buffer is emptied. The performance of RadixSort is then limited
by the disk data transfer rate, which is stated to be about fB = 100 MB/s at
maximum (however, we measured the transfer rate of about 50 MB/s only).

144

13.2. Fast Sort of Disk Stored TMTO Tables

…0…

…1…

…2…

…F…

...

Partially

sorted table

FilesBuffers

...

…0…

…1…

…2…

…F…

Figure 13.4: Memory buffers minimize the fragmentation of files in RadixSort

Example 13.1. Let’s focus on the set of parameters presented in the
third row of Table 13.1. One pass, i.e one transfer of overall data, lasts
at least Tpass = M

fB
= 4.85 TB

100 MB/s
= 48500 seconds ≈ 13.5 hours in this

case. However, in reality, this time would be at least four times longer
(≈ 54 hours). It is for two reasons: (i) the real transfer rate is just 50
MB/s and (ii) reading from the source disk and writing to the target disk
are not performed concurrently. At any time, we either read the data
from the source disk and sort them among memory buffers, or we empty
a memory buffer to the target disk. Concurrent reading and writing is
also feasible, however, it demands for sophisticated control.

Since we use end points as the keys for the sorting algorithm, then
N = 264−d = 264−5 in our case, where d is the number of bits defining
the DP-property. If we choose R = 16, then the number of passes
is k = 15, and a complete sort of the table will last at least Tsort =
k × Tpass = 15 × 48500 = 727500 seconds ≈ 8.4 days. However, as
discussed above, we expect this time to be at least four times longer, i.e.
Tsort ≈ 33.7 days. If we choose R = 256, then k = 8 and the sort time
is at least 4.5 days (or 18 days).

We would like to stress that the value of radix R should be carefully chosen.
Too small value of R leads to enormous number of passes k. On the other hand,
too big value of R increases fragmentation of target files (hence the number of
disk seeks), since the memory buffers are too small in this case.

145

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

13.2.1 Implemented Method

The speed of RadixSort algorithm is limited by the disk data transfer rate.
Hence the minimization of the data volume to be transfered from/to disk rep-
resents the way to accelerate the sorting of the data stored on the disk. In our
implementation we have decided to use the combination of MSD (most signif-
icant digit) RadixSort and any “RAM-efficient” standard sorting algorithm.
This enables sorting the table in k passes, where k = 3 for typical sizes M of
TMDTO tables (between 1 TB and 10 TB) and typical installed capacities of
RAM (at least 1 GB).

In the first k−1 passes, we split the data records from the unsorted TMDTO
table into n files according to the most significant digits of end points, as shown
in Figure 13.5. In the first pass we split the unsorted table into R1 ≈ k−1

√
n

files according to the most significant digit of end points, in the second pass
we split each of R1 files into R2 ≈ k−1

√
n smaller files according to the second

most significant digit, etc. To minimize fragmentation of the target files we
again use memory buffers shown in Figure 13.4. Since the values of end points
are almost evenly distributed, the target files obtained after (k − 1)-th pass
are of similar sizes, which are ≈ M

n
. The number n is chosen sufficiently big

to ensure that the size of each file is smaller than the size of a RAM installed
in the computer. Files splitting typically cannot be performed in just one pass
because the number n is relatively large (some operating systems have the limit
on the number of concurrently open files; moreover, with increasing number of
files the size of memory buffers is decreasing, which leads to increased number
of disk seeks, etc.).

Each of n target files can be then sorted in a RAM (which is faster than the
sorting via disk data transfers) using any standard sorting algorithm (Radix-
Sort, QuickSort, HeapSort, etc.). This is done during the k-th pass — the
whole files are successively loaded to the memory, sorted (using HeapSort in
our case), shorter chains with duplicate end points are rejected, and the results
are merged on the target disk. The time necessary to sort the TMDTO table
using presented combination of MSD RadixSort and “RAM-efficient” standard
sorting algorithm is equal to the time of k passes of RadixSort plus the time
of RAM-efficient sorting algorithm.

Example 13.2. We will again focus on the set of parameters presented
in the third row of Table 13.1. Let assume that the computer is equipped
with RAM of capacity 2 GB. Then we may choose n = 4096, k = 3 and
R1 = R2 = 64. The size of each file will be then 4.85 TB

4096
≈ 1.2 GB.

146

13.3. Implementation Results — the Precomputation Phase

0…

1…

2…

F…

10…

11…

1F…

...

...
...

...
...

Unsorted

table

Splitted files

after 1st pass

Splitted files

after 2nd pass

Figure 13.5: Splitting an unsorted table into files according to the MSDs of
the key

The expected sort time is at least Tsort = k × Tpass + TRAMsort =
3 × 48500 + TRAMsort = 145500 seconds + TRAMsort ≈ 1.68 days (or
≈ 6.73 days) +TRAMsort, where TRAMsort is the time for RAM-oriented
sorting algorithm.

13.3 Implementation Results — the Precom-
putation Phase

As mentioned in Subsection 13.1.5, chain information is encoded with the
Hamming code before transportation over the COPA bus (which has 64 data
lines). Moreover, some status information is added, too. Therefore, the infor-
mation on triple {SP, EP, l} of each successfully generated chain is transfered
in three 64-bit words (192 bits).

For the set of parameters presented in the third row of Table 13.1, we obtain
the following results: The number of chains having the lengths between 24 and
27 rainbow sequences is m′ ≈ 239.27. The precomputation time is Tpr ≈ 222.97

seconds, therefore, COPA generates about 216.30 chains per second on average,
which represents the data rate of 216.30 × 192 ≈ 15.5 Mbits/s.

147

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

To connect COPACOBANA with a host computer, two versions of an in-
terface have been developed: the USB interface and the 1 Gbit/s Ethernet
one. Unfortunately, for some technical problems, none of them provides suffi-
cient data throughput; the maximum measured data rate of the USB interface
is about 10 kbits/s, and the maximum measured data rate of the Ethernet
interface is about 300 kbits/s. Since the technical problems do not seem to
be solvable (the problems are likely caused by a third-party hardware and/or
software modules), a new interface is currently under development.

To partially compensate limited throughput of the interface, we have de-
cided to use a set of parameters presented in the eighth row of Table 13.1 for
our initial implementation. A prolonged rainbow sequence (S = 216) and a
higher value of d ensure the generation of longer chains, which in turn rep-
resents lower demand for transfered data. Concretely, during Tpr ≈ 221.97

seconds COPA generates m′ ≈ 235.63 chains having the length between 24

and 28 rainbow sequences, which represents the demand for the data rate of
235.63

221.97 × 192 ≈ 2.5 Mbits/s. This is still well beyond the possibilities of the
interface, however, the ratio between captured data and all generated data
increases from about 2 % to about 12 %. On the other hand, for this improve-
ment we pay by an increased number of table accesses in the online phase.

We used two COPACOBANAs, COPA1 and COPA2, for table precom-
putation. Both machines were running for a couple of months. During this
time we have successfully collected 14117445263 ≈ 233.717 chains generated
by COPA1 and 11772717296 ≈ 233.455 chains generated by COPA2 (alto-
gether 25890162559 ≈ 234.592 chains). The chains were sorted according to
their end points, and in cases of duplicate end points, the shorter chains
were sorted out. We would like to stress that all chains acquired from CO-
PACOBANAs have their length in the range of

[
24, 28

]
rainbow sequences;

hence the number of them corresponds to number m′. Chains having their
length out of this range are discarded inside COPACOBANAs. Let us note
that it is impossible to verify the correctness of Equation 12.11, as many
chains were lost due to the slow communication interface. Concretely, ac-
cording to Equation 12.11, the number of chains generated in COPA2 will be
m ≈ 11772717296/0.772 ≈ 15252470254 ≈ 233.828 chains. However, during its
running time COPA2 generated m = 107305012412 ≈ 236.643 chains, which is
about 7 times more.

An average chain length calculated by Equation 12.10 is lavg ≈ 73.459
rainbow sequences. An average length of chains acquired from COPA2 was
lavg = 73.389 rainbow sequences — it differs from the theoretical value by

148

13.3. Implementation Results — the Precomputation Phase

≈ 0.1%. Unfortunately, we have not measured this length in the set of chains
acquired from COPA1.

As discussed in Section 12.2, the average chain length l′avg decreases after
rejection of chains with duplicate end points. To investigate the dependency of
l′avg on the number m̂ of chains with unique end points, and also to investigate
the dependency of m̂ on the number of generated chains m′, we split the data
generated by COPA2 into 10 sets 0, 1, . . . 9 of volumes 225, 225, 226, 227,
228, 229, 230, 231, 232 and 231.568 chains. Each set was separately sorted, the
shorter chains with duplicate end points were rejected, and both the number
of chains m̂ and their average length l′avg were measured. Then the sets were
successively merged, until all sets were united. After each merge shorter chains
with duplicate end points were again rejected and the values m̂ and l′avg were
measured. Since some unions of sets have the same volumes m′ as some single
sets (e.g. the union of sets 0 and 1 has the same volume as the set 2), we
obtain multiple measurements for some volumes m′. Finally, we added the set
generated by COPA1.

All results are summarized in Table 13.2. As visible from Table 13.2 and
from Figure 13.6, the average chain length l′avg is decreasing with growing m̂,
as has been discussed in Subsection 12.2.3.

Table 13.2 brings also theoretical values of m̂, calculated by iterative Equa-
tion 12.12. As evident from Table 13.2, as well as from the chart in Figure 13.7,
the real measured values of m̂ are smaller than the theoretical ones. This is
mainly caused by the difference of assumptions under which Equation 12.12
has been derived, and a real behavior of the step functions f together with the
real operating conditions.

Equation 12.12 is based on the assumption that the step function fi has
probabilistic behavior, i.e. every data point can be produced with the same
probability. However, this does not conform to the real behavior of the step
function composed from the encryption function g of the A5/1 cipher and
the re-randomization function Ri. The main problem lies in the non-injective
and non-surjective behavior of the A5/1 cipher [Gol97] (see also Chapter 14),
which reduces the set of points generated by the step function fi.

We also considered all start points to be randomly chosen, or, more precisely,
we considered the choice of start points not to be influencing the number m̂.
However, in our implementation, the start points are generated as a sequence
of consecutive values. This fact, together with the non-injectivity of A5/1
cipher, causes (at least) 1

8 of generated chains to be merging another chain

149

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

Table 13.2: Theoretical and measured values of the number of chains in the
table (m̂) and their average length (l′avg) after rejection of chains with duplicate
end points. Values presented here are for different volumes of sets m′ (sets
with chains having their length in range

[
24, 28

]
rainbow sequences).

Measured Theoretical
values values

sets m′ l′avg m̂ m̂
m′

m̂ m̂
m′

COPA2

0 225 73.383 224.828 0.887 225 1
1 225 73.424 224.836 0.893 225 1
0–1 226 73.399 225.829 0.888 226 1
2 226 73.408 225.878 0.919 226 1
3 227 73.39 226.939 0.959 227 1
2–3 227.585 73.382 227.502 0.944 227.582 0.998
0–3 228 73.372 227.893 0.928 227.997 0.998
4 228 73.381 227.95 0.966 227.997 0.998
5 229 73.33 228.914 0.942 228.992 0.995
4–5 229.585 73.292 229.502 0.944 229.574 0.992
6 230 73.226 229.903 0.935 229.985 0.99
7 231 73.064 230.887 0.925 230.97 0.979
9 231.568 72.915 231.432 0.91 231.523 0.97
6–7 231.585 72.904 231.446 0.908 231.54 0.969
4–7 231.907 72.79 231.752 0.898 231.851 0.962
0–7 232 72.752 231.837 0.893 231.94 0.959
8 232 72.743 231.84 0.895 231.94 0.959
8–9 232.8 72.29 232.578 0.857 232.696 0.931
0–9 233.455 71.708 233.154 0.812 233.293 0.894

COPA1 233.717 71.329 233.351 0.776 233.523 0.874
COPA1 234.592 70.043 234.049 0.687 234.243 0.785

& COPA2

150

13.3. Implementation Results — the Precomputation Phase

69.5

70

70.5

71

71.5

72

72.5

73

73.5

74

0 5000000000 10000000000 15000000000 20000000000

A
v

e
ra

g
e

 c
h

a
in

 l
e

n
g

th

69.5

70

70.5

71

71.5

72

72.5

73

73.5

74

10000000 100000000 1000000000 10000000000 1E+11

A
v

e
ra

g
e

 c
h

a
in

 l
e

n
g

th

Figure 13.6: The average length of the chain after the rejection of the duplicate
end points is decreasing with growing number of chains a) linear scale b) semi-
logarithmic scale.

151

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

after the first step function, as shown below. Other chain merges occur due to
other reasons.

13.3.1 Chains Merging One Step after the Start Point

It is easy to find two internal states (data points) x that produce the same
keystream y. If such two data points appear in the same column of the
TMDTO table, then their chains inevitably merge in the next step. Fig-
ure 13.8 gives an example of such two internal states, xa and xb. Both states
have the same successor, the internal state xc. While in the state xa all three
registers are clocked, in the state xb only registers R2 and R3 are clocked and
the register R1 is stopped.

The states are constructed in a following way: The internal state xa is a
state, where

R3a[10] = R2a[10] = R1a[8] 6= R1a[7] (clocking bits). (13.1)

The internal state xb is constructed from the state xa by setting

R3b = R3a,

R2b = R2a,

R1b = “clocked” R1a,

(13.2)

i.e. R1b[i] = R1a[i−1], 1 ≤ i ≤ 18 and R1b[0] = R1a[18]⊕R1a[17]⊕R1a[16]⊕
R1a[13]. This ensures that both states have the same successor xc, and, there-
fore, starting from the second bits, the keystreams ya and yb are inevitably
identical .

To ensure also the equality of the first bits of the keystreams ya and yb,
ya[0] = yb[0], the most significant bits of R1a and R1b have to be equal,

R1a[18] = R1b[18] ≡ R1a[17]. (13.3)

Every 16th internal state satisfies conditions defined in Equations 13.1
and 13.3, i.e. for 1

16 of all internal states we can construct the “partner”
states (xb) by the above described method.

In our implementation, the internal state x is represented as a concatenation
of the registers R3&R2&R1. Since the start points are generated as a sequence
of consecutive values, then, according to Equation 13.2, the pairs {xa, xb} are

152

13.3. Implementation Results — the Precomputation Phase

0

0.2

0.4

0.6

0.8

1

1.2

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10 3E+10

m'

Theoretical values

Measured values

0

0.2

0.4

0.6

0.8

1

1.2

10000000 100000000 1000000000 10000000000 1E+11

m'

Theoretical values

Measured values

Figure 13.7: The ratio between the number of chains after rejection of the
duplicate end points, and the number of generated chains a) linear scale b)
semi-logarithmic scale.

153

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

R1

0123456789101112131415161718

1111111011111111100 R1

0123456789101112131415161718

1111111011111111100

R2

0123456789101112131415161718192021

1111111111111111111111 R2

0123456789101112131415161718192021

1111111111111111111111

R31

22 0123456789101112131415161718192021

1111111111111111111111 R31

22 0123456789101112131415161718192021

1111111111111111111111

Internal state xa

R1

0123456789101112131415161718

0111111101111111110 R1

0123456789101112131415161718

0111111101111111110

R2

0123456789101112131415161718192021

1111111111111111111111 R2

0123456789101112131415161718192021

1111111111111111111111

R31

22 0123456789101112131415161718192021

1111111111111111111111 R31

22 0123456789101112131415161718192021

1111111111111111111111

Internal state xb

R1

0123456789101112131415161718

0111111101111111110 R1

0123456789101112131415161718

0111111101111111110

R2

0123456789101112131415161718192021

0111111111111111111111 R2

0123456789101112131415161718192021

0111111111111111111111

R31

22 0123456789101112131415161718192021

0111111111111111111111 R31

22 0123456789101112131415161718192021

0111111111111111111111

Internal state xc

Figure 13.8: Both internal state xa and internal state xb have the same succes-
sor — internal state xc. Both xa and xb produce the same output keystream,
ya = yb.

154

13.4. Online Engine

generated even in a relatively small sets of start points. In other words, even in
relatively small sets of start points, about 1

16 of generated chains are rejected
due to the above described deterministic merge with another chain.

Above described merges may be prevented by smarter generation of start
points. For example, since the host computer generates upper 40 bits of start
points (by doing this the host computers defines a region of start points to be
generated in particular FPGA), it may be forced to generate only such values,
where R3a[10] 6= R2a[10]. Such start points then violate the condition defined
in 13.1. However, many other reasons for chain merges would remain.

13.4 Online Engine

As discussed in Subsection 12.5.3, in the online phase we have to com-
pute S chains for each data point yi. Each chain consists of rainbow se-
quences, where the first rainbow sequence is incomplete. It starts with the
re-randomization function Rj , where 1 ≤ j ≤ S, and follows with the step
functions fj+1fj+2 . . . fS . The following rainbow sequences are of the stan-
dard format f1f2 . . . fS . The chain is generated until either DP is reached, or
the number of rainbow sequences exceeds the maximum length of chain tmax.

For calculation of results during the online phase, we use an engine similar to
the table precomputation engine presented in Figure 13.3. To handle the first,
irregular, rainbow sequence, we had to make several modifications described
below.

13.4.1 Online TMTO element

Each chain is again calculated in a dedicated online TMTO element, de-
picted in Figure 13.9. The online TMTO element is equipped with a step
counter, which controls the generation of the first rainbow sequence. As the
re-randomization function generator distributes the uniform sequence of func-
tions R1R2 . . . RS to all TMTO elements, the main task of the step counter is
to start the generation of the chain at the moment when the re-randomization
function generator supplies the function Rj .

Before the element starts calculation of a new chain, the Core #1 is loaded
with the data point yi and the step counter is loaded with the (initial) counter
value j. Then the rainbow sequence lasting S steps begins. The step counter
keeps signals re-randomize and full-step inactive during the first j− 1 steps of

155

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

XOR

A5/1 core #1

A5/1 core #2 XOR

load

load/run_2_in

load/run_1_in

step

counter

re-randomize

re-randomization

function

full-step

load/run_2 load/run_1

Figure 13.9: Architecture of the online TMTO element

the first rainbow sequence. Therefore, Cores #1 and #2 are both in the LOAD
mode, and re-randomization is switched-off. The data point yi is swapped
between both Cores without any change. Then, in j-th step, the signal re-
randomize is activated, and the re-randomization function Rj is applied to the
data point yi. In the next, (j +1)-th step, also the signal full-step is activated.
From that moment, the function of the online TMTO element is equivalent to
the function of the offline one.

13.4.2 Architecture of the A5/1 Online Engine

Each FPGA hosts one A5/1 online engine; its architecture is depicted in Fig-
ure 13.10. The task of the engine is to calculate q chains for a given data point
yi. At the beginning, the engine is by the host computer assigned the data
point yi and the interval of counter values [jmin, jmax], where jmax = jmin + q
and 1 ≤ jmin < jmax ≤ S. Then the chains having their first re-randomization
functions in range Rjmin

. . . Rjmax
are generated. When finished, the online

engine is assigned the new data point and the new interval.

156

13.4. Online Engine

XOR

A5/1 core #1

A5/1 core #2 XOR

load

load/run_2_in

load/run_1_in

TMTO

element

TMTO

element

TMTO

element

point register

data point

container

CONTROLLER

re-randomization

function

generator

chain memory

(counter value,

birthdate)

FIFO

DP

checker

timer

C
O

N
T

R
O

L
 &

 E
V

A
L
U

A
T

IO
N

E
X

E
C

U
T

IO
N

step

counter

re-randomize

re-randomization

function

full-step

load/run_2 load/run_1

counter value

generator

counter value

register

Figure 13.10: Architecture of an A5/1 online engine

157

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

There are several differences in the architecture of the online engine in com-
parison to the architecture of the table precomputation engine (Figure 13.3).
The start point generator is replaced with the data point container, which
holds the value of the data point yi. A counter value generator, which is a
simple counter, generates all values of j from the interval [jmin, jmax]. Upon
generation, those values are loaded to a counter value register and shifted to
the step counter inside corresponding TMTO element. The chain memory
does not hold values of start points. Instead, the counter values j are stored.

After the reset, the controller runs the initialization phase, during which
all TMTO elements are initialized with the value of data point yi and the
counter values j. This phase is run exactly once. After that, during standard
operation, phases of execution are alternated with phases of evaluation.

Initialization. During the initialization, the TMTO elements are switched
to build, together with point register, one large shift register. Data point
yi is repeatedly loaded to the point register and shifted to Cores #1 of all
TMTO elements. Concurrently, the counter values j are generated and loaded
to the counter value register to be shifted to the step counters of correspond-
ing TMTO elements. The ‘birthdate’ and the counter value j of each indi-
vidual chain are stored in the chain memory. Besides that, the timer, the
re-randomization function generator and some other auxiliary circuits are ini-
tialized.

Execution. Execution itself is performed in TMTO elements. One phase of
execution lasts exactly one rainbow sequence. The function has been already
described in Subsection 13.4.1.

Evaluation. When the rainbow sequence is finished, all TMTO elements
are again switched into one large shift register and the results are shifted-out.
The results are on-the-fly checked for the DP-property, and the length of each
chain is calculated as a difference between a ‘current date’ (which is the current
value of the timer) and the ‘birthdate’ of the corresponding chain, which is
stored in the chain memory. For each chain, one of following three cases may
appear:

1. If the result satisfies the DP-property (it is the end point) and if the
length l of the chain does not exceed the maximum length of chain,
l ≤ tmax, then the chain information (end point, length, counter value)

158

13.4. Online Engine

is stored into FIFO — the value of the end point is acquired from the
point register and the counter value is acquired from the chain memory.

Concurrently, the end point, held in the point register, is replaced with
the data point yi, and a new counter value is generated and loaded to
the counter value register. At the same moment both the new counter
value and the ‘birthdate’ are stored in the chain memory.

Information stored in FIFO is later read out by the host computer and
stored on the disk.

2. If the chain becomes too large, l > tmax, then the chain is discarded and
the generation of a new chain is initiated in the same TMTO element
— the procedure is the same as above, but the chain information is not
stored in FIFO.

3. In all other cases (i.e. the end point has not been achieved and the
chain is not too long yet) the result is simply shifted back to the TMTO
element to continue with the next rainbow sequence.

During the phase of evaluation we also initialize the re-randomization func-
tion generator to generate the same rainbow sequence in the next phase of
execution.

Unlike the precomputation phase, the loss of any chain information would
be harmful in the online phase. Therefore, if the FIFO becomes full, then the
phase of evaluation is interrupted until some space in FIFO is released. The
data transfered to the host computer are again encoded with the Hamming
code, however, in this case we use it as a SEC-DED code.

13.4.3 Implementation Results

In comparison to the precomputation TMTO element, the online TMTO ele-
ment occupies larger area , as it is extended by the step counter. Therefore,
we were able to place only 160 online TMTO elements on one FPGA. For a
higher complexity of the design, the maximum achievable frequency was only
80 MHz. If the number of online TMTO elements was decreased to just 120
of them, the maximum achievable frequency was increased to 120 MHz, since
synthesis and implementation tools were able to better utilize some optimiza-
tion techniques (register replication, better routing etc.). We have selected the
second implementation, as it has 12.5% higher performance than the first one.

159

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

Let’s summarize: the A5/1 online engine can run at a maximum frequency
of 120 MHz. Computing the step-function fi takes 64 clock cycles. One
FPGA contains 120 TMTO elements, the whole COPACOBANA contains
120 FPGAs. Therefore, the whole COPACOBANA can perform

120× 120× 120 · 106

64
≈ 234.65

step-functions per second in the online phase. Values of online time T for
different sets of parameters are summarized in Table 13.1.

13.5 Fast Search at Disk-Stored TMTO Tables

Distinguished points calculated by COPACOBANA in the online phase are
looked-up in the TMDTO table. If the table is stored on the disk, then simple
binary search method cannot be used, as it needs several tens of hours.

Example 13.3. For example, upon selecting parameters presented in
the third row of Table 13.1, we generate the TMDTO table containing
information on m̂ = 238.52 chains. Binary search needs 39 table accesses
to accomplish one look-up in such a table. Since the disk access lasts
about 8 ms on average, we would need up to 220×39×8 ms ≈ 327156 s ≈
91 hours to look-up 220 entries calculated in the online phase.

This approach takes even longer time than simple reading of the
whole table. As the table occupies M = 4.85 TB and the disk data rate
is stated to be fB = 100 MB/s, the whole table may be read (and data
checked for the presence of any calculated result) in just 4850000 MB

100 MB/s
=

48500 s ≈ 13.5 hours.

To improve look-ups, we use a method discussed in [Bal08]. The TMDTO
table is divided into “sectors” of equal length. The values of the end points
(keys) at the sector borders are stored in a separate table, as shown in Fig-
ure 13.11. The length of the sector is chosen to be as small as possible; it is
limited only by maximum possible number of sectors, as the table containing
border points must fit into RAM installed in the computer.

Before starting search of entries calculated by COPACOBANA, the table
containing border points is loaded from the disk to RAM. For each entry, we
first run the binary search in the RAM table to find in which sector the entry
is potentially found. Then the whole sector is loaded from the disk into RAM

160

13.5. Fast Search at Disk-Stored TMTO Tables

TMDTO table divided

into sectors
Border points stored

in a separate table

s
e
c
to

r

Figure 13.11: The TMDTO table is divided into sectors. Border points are
stored in a separate table.

161

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

and the search is finalized. Since the sector is relatively small, loading the
whole sector takes shorter time than one disk access. Binary search performed
in RAM is also very fast. Therefore, time for one table look-up is almost equal
to one disk access.

To further accelerate search, we sort entries calculated by COPACOBANA
prior to their search in TMDTO table. This improvement reduces an average
disk seek time, since the disk heads are moved only in one direction and for
shorter distances. Concretely, we measured an average access time to be about
12 ms when the entries were unsorted. This time was reduced to about 4 ms
after sorting the entries.

Example 13.4. Let’s assume that we have a computer equipped with
16 GB of RAM. Such memory may hold at least 231 end points. Then the
TMDTO table presented in the third row of Table 13.1 may be divided
into the same number of sectors, each being 2.425 kB long. Searching
all 220 entries then lasts about 220 × 4 ms ≈ 4194 s ≈ 1.2 hour.

To further reduce the search time, the TMDTO table may be divided among
N disks to perform the search in parallel. For example, if N = 10, then for
above Example 13.4 the search time is reduced to about 7 minutes.

Nevertheless, we think that this Section will be soon outdated. Growing
capacities and dramatically dropping prices of Flash memories inevitably lead
to a replacement of the disks with this kind of storage elements. For example,
1 GB of Flash memory can be currently (January 2009) purchased for less than
2 e. Therefore, the Flash memory of a total capacity 4.85 TB (the third row of
Table 13.1) may be currently purchased for less than 10,000 e, which is feasible
not only for government agencies, but also for many other institutions and
private persons. The same capacity at the disks may be currently purchased
for less than 500 e. In contrast to the disks, the Flash memories provide
significantly faster random access, which allows efficient implementation of
the binary search. On the other hand, they suffer from frequent rewriting its
content, which is not, however, our case.

13.6 Summary and Final Remarks

In this Chapter we presented a time-memory-data trade-off attack on A5/1
cipher. The attack accepts known keystream, revealing, with a certain proba-
bility, the internal state producing such a keystream. The attack is supported

162

13.6. Summary and Final Remarks

by a low-cost special-purpose hardware device COPACOBANA in both the
precomputation and online phases. Upon the analysis described in Chapter 12,
we have selected the thin-rainbow method to be used for our attack.

When designing the precomputation engine we employed the features of the
underlying FPGA architecture to gain maximum performance of the engine.
The architecture approach that we used might be reused when designing sim-
ilar engines for cryptanalysis of stream ciphers. COPACOBANA is able to
perform 236 step functions per second in a precomputation phase — each one
of 120 FPGAs performs about 229 step functions per second. To compare,
a current PC is able to perform just 222 step-function per second [BBK06].
When assuming purchase price of COPACOBANA to be 10,000 e, and the
purchase price of a current PC to be 200 e, we obtain about 330 times bet-
ter cost-performance ratio in favor of COPACOBANA. We get even better
comparison when assuming variable costs represented mainly by energy con-
sumption. For example, if we assume that fully equipped COPACOBANA
consumes less than 600 W of power, and the PC consumes about 150 W of
power, than we get about 4,000 times better consumption-performance ratio
in favor of COPACOBANA.

Besides a careful design of the precomputation engine, we also designed the
online engine. COPACOBANA is able to perform 234.65 step-functions per
second in the online phase. We also brought solutions for the problems of an
efficient sort of large disk-stored tables, as well as fast look-ups in such large
tables.

We have selected a set of parameters providing a reasonable precomputation
time and a reasonable size of the tables, as well as a relatively small number
of table accesses. For our selection of parameters, we obtain a precomputation
time of 95.4 days and the memory capacity of 4.85 TB. As this is a probabilistic
attack, success rate, as well as online complexity and the number of table
accesses depend on the number of data samples available. If the number
of data points available is D = 64, then the success rate is Ptotal = 63%,
COPACOBANA calculates all results in 27.6 seconds, and the results are then
looked-up in 10 disks in less than 7 minutes. If the number of data points
increases to D = 204, then the success rate is Ptotal = 96%, however, also the
time for calculations in COPACOBANA increases to 88 seconds and the time
for table look-ups in 10 disks increases to about 22.3 minutes.

Due to a reduced communication bandwidth caused by technical problems
with the interface, we decided to use another set of parameters for our initial
implementation. We have run a series of measurements for data sets of dif-
ferent sizes. The measurements confirm that, as predicted, the average chain

163

Chapter 13. Time-Memory-Data Trade-off Attack on A5/1

length l′avg decreases after the rejection of (shorter) chains with duplicate end
points. This decrease is stronger with a larger set of chains. We also measured
how the number of (chains with) unique end points m̂ depends on the number
of generated chains m′. As has been shown, theoretical results were too opti-
mistic. In reality the chain merges are more frequent, which is mainly caused
by non-injective behavior of A5/1 cipher. We have identified one source of
merges — by careful generation of start points, this source can be eliminated.

We have run several functional tests of the online phase to verify correctness
of the implementation. To evaluate the statistical behavior of the attack —
mainly the success ratio — extensive tests of the online phase are necessary.
We expect these tests to be significantly time consuming. For example, for the
above assumed parameters we calculated the time necessary for table look-ups
to be about 22.3 minutes. Therefore, running table look-ups for 1000 instances
of this attack is expected to last about 15.5 days.

Similarly to the attack presented in Chapter 11 this attack recovers the
internal state which generated some of given 64-bit data points (keystream
samples). In comparison to the attack presented in Chapter 11, this recovery
is done significantly faster (in a matter of seconds or minutes), on the other
hand, there is certain probability that no internal state is revealed. Moreover,
successful recovery of one internal state does not ensure successful attack, since,
as shown, multiple distinct internal states may generate identical keystream.

To break GSM communication, the cipher needs to be tracked back from
recovered state(s) to evaluate the internal state in which the cipher appeared
just after loading the session key K. Backtracking of A5/1 cipher is discussed
in Chapter 14.

164

Chapter 14

Backtracking A5/1

Internal state recovery is sufficient for breaking many stream ciphers [BS00].
The cipher can be then run forward from the revealed internal state (xr),
decrypting the remainder of the ciphertext. Since the GSM communication is
divided into 114 bits long frames, only the recovery of a single internal state
is not sufficient — we would be able to decrypt the remainder of one frame,
while other frames would remain encrypted.

To break the whole phone call we have to find either the session key K or
some internal state which is common for all frames. Such an internal state is
the state just after loading the session key, xk. In this Chapter we discuss how
the recovered internal state xr can be used for derivation of the state xk.

In the following text the symbol xn denotes the internal state, i.e. the
contents of all three registers R1, R2 and R3. The symbol xn+ℓ then denotes
the internal state obtained from xn by running the A5/1 cipher for ℓ clock
cycles.

14.1 Detailed View on Algorithm of A5/1

Let’s recapitulate the algorithm of A5/1 cipher. The sequence of internal
states is depicted in Figure 14.1.

At the beginning of each frame, the contents of all three LFSRs R1, R2 and
R3 is cleared. Then, the 64 bit session key K is loaded to the registers R1, R2
and R3; the i-th bit of the key K is XORed with LSBs of all 3 registers in the

165

Chapter 14. Backtracking A5/1

0
K−−−−−−−−−−→

64 clock cycles
xk

IV−−−−−−−−−−→
22 clock cycles

xi
warm−up−−−−−−−−−−→

100 clock cycles
xw −−−−−−−−→

1 clock cycle
xe

Figure 14.1: Sequence of internal states in A5/1

i-th clock cycle. Let xk be the internal state after loading the key K. Since
the session key K is common for all frames of the same phone call, also the
internal state xk is common for all frames of the same phone call. Therefore,
with the knowledge of xk, the phone call can be decrypted.

The initialization phase continues with loading the initialization vector IV .
Again, 22 bits of IV are successively added modulo 2 to LSBs of all 3 registers.
Let xi be the internal state after loading IV . Since the initialization vector IV
is derived from the publicly known frame number FN , it is possible to derive
xk, whenever xi is known — to obtain xk from the known xi, we need to clock
registers R1, R2 and R3 backwards and to subtract bits of IV in a reverse
order.

The initialization phase is followed by the warm-up phase, which lasts 100
clock cycles. During this phase the registers are irregularly clocked and the
output is discarded. Let xw = xi+100 be the internal state after the warm-up
phase.

In the executional phase, the registers are also clocked irregularly. In each
clock cycle, the registers are clocked first and then the keystream bit is gener-
ated. Let xe = xw+1 = xi+101 be the internal state producing the first bit of
the keystream, which is also the internal state associated with the first 64-bit
keystream sample y0 by the function g in Equation 12.9.

The cipher produces two 114 bits long keystreams used to encrypt uplink
frame and to decrypt downlink frame. In the following we assume that the
first of two keystreams is known. From 114 bits long keystream, we can derive
51 keystream samples y0 . . . y50, each being 64 bits long, as shown in Fig-
ure 12.3. These samples were produced from the internal states xe . . . xe+50.
Our methods, described in Chapters 11 and 13, focus on finding xe+ℓ for a
given yℓ, 0 ≤ ℓ ≤ 50. When the state xe+ℓ = xi+101+ℓ is found, we have to
derive corresponding xk or, equivalently, xi. Upon recovering xk the GSM
communication can be decrypted.

166

14.2. Previous Work

14.2 Previous Work

The method described in [Gen08] derives xi from xe, however it is extendable
for any xe+ℓ. From the internal state xe Gendrullis calculates all 101 prede-
cessor states for each register R1, R2 and R3. By combining all predecessor
states he produces all 1013 ≈ 220 candidates for the state xi. From each xi

candidate, the cipher is clocked for 101 clock cycles and the internal state ob-
tained is compared with xe. If the match is obtained, then the valid candidate
for xi has been found.

The algorithm finds 95% of xi candidates in ≈ 220 steps. To find all candi-
dates, the algorithm has to perform 1013 × 101 ≈ 227 steps.

In this chapter we describe the method with a maximum measured com-
plexity of ≈ 213 steps for xe and ≈ 214 steps for xe+50. The method is based
on the work of Golic [Gol97].

14.3 Proposed Method

The idea of the algorithm described here consists in clocking the cipher from
the state xe+ℓ backwards to the state xi. Each internal state has up to 4 poten-
tial predecessors, therefore, when backtracking the cipher we may search a tree
having up to 4101+ℓ leaves. However, this may happen only when the internal
state of the cipher consists of all ‘1’s or all ‘0’s which is almost improbable and
may be easily detected.

When searching all potential predecessors xn−1 of the internal state xn we
have to inspect bits R1[9], R1[8], R2[11], R2[10], R3[11] and R3[10] of the
state xn, since following 4 combinations of these 6 bits could create a triple of
the clocking bits of the state xn−1:

• {R1[9], R2[11], R3[11]} (all 3 registers were clocked in the state xn−1)

• {R1[9], R2[11], R3[10]} (R1 and R2 clocked, R3 stopped in the state
xn−1)

• {R1[9], R2[10], R3[11]} (R1 and R3 clocked, R2 stopped in the state
xn−1)

• {R1[8], R2[11], R3[11]} (R2 and R3 clocked, R1 stopped in the state
xn−1)

167

Chapter 14. Backtracking A5/1

Table 14.1: Three examples of the internal states and the candidates for their
predecessors. Clocking bits are highlighted.

Example Example Example
1 2 3

R1[9] R1[8] 0 0 0 0 0 0
State xn R2[11] R2[10] 0 1 0 0 0 1

R3[11] R3[10] 0 1 1 1 1 0

C
an

d
id

at
es

fo
r

st
at

e
x

n
−

1

No. 1

clock R1+R2 O.K. O.K. n/a
R1[8] R1[7] 0 0 0 0 0 0
R2[10] R2[9] 0 1 0 0 0 1

R3[11] R3[10] 0 1 1 1 1 0

No. 2

clock R1+R3 O.K. n/a n/a
R1[8] R1[7] 0 0 0 0 0 0

R2[11] R2[10] 0 1 0 0 0 1
R3[10] R3[9] 0 1 1 1 1 0

No. 3

clock R2+R3 n/a n/a n/a
R1[9] R1[8] 0 0 0 0 0 0

R2[10] R2[9] 0 1 0 0 0 1
R3[10] R3[9] 0 1 1 1 1 0

No. 4

clock R1+R2+R3 O.K. n/a n/a
R1[8] R1[7] 0 0 0 0 0 0
R2[10] R2[9] 0 1 0 0 0 1
R3[10] R3[9] 0 1 1 1 1 0

Candidates 3 1 0

Table 14.1 shows three examples of internal states and their potential prede-
cessor states. Only bits R1[9], R1[8], R2[11], R2[10], R3[11] and R3[10] and
their position in the potential predecessor states are shown. As obvious, only
some predecessor states are possible (denoted by O.K.), while the other ones
are impossible to occur (denoted by n/a). For example, the state xn in Ex. 1
could not be reached from the state xn−1 by clocking registers R2 and R3 only
(Candidate No. 3) — if we clock registers R2 and R3 back from the state xn,
we obtain the state candidate xn−1 having all clocking bits being ‘0’. Applying
the clocking rule, we have to clock all 3 registers now, therefore the successor
of Candidate No. 3 is different from xn.

168

14.4. Testing the Method for A5/1 Backtracking

As obvious from our examples in Table 14.1, some internal states have only
few or even no (see Ex. 3) predecessor states. We can formulate the following
set of rules:

• If R1[9] = R2[11] = R3[11], then the predecessor state xn−1 obtained
from the state xn by clocking back the registers R1, R2 and R3 is valid

• If R1[9] = R2[11] 6= R3[10], then the predecessor state xn−1 obtained
from the state xn by clocking back the registers R1 and R2 only is valid

• If R1[9] = R3[11] 6= R2[10], then the predecessor state xn−1 obtained
from the state xn by clocking back the registers R1 and R3 only is valid

• If R2[11] = R3[11] 6= R1[8], then the predecessor state xn−1 obtained
from the state xn by clocking back the registers R2 and R3 only is valid

Tables 14.2 and 14.3 summarize all 64 combinations of bits R1[9], R1[8],
R2[11], R2[10], R3[11] and R3[10] of the state xn. For each combination, all
valid candidates for the predecessor states are enumerated. As obvious, only
for 2 combinations (all ‘0’s and all ‘1’s), which represent only 3.125% of all
cases, we obtain 4 valid predecessors. For 6 combinations (9.375%), we get 3
predecessors, for another 6 combinations (9.375%), we get 2 predecessors, for
26 combinations (40.625%), we get only one predecessor, and 24 combinations
(37.5%) do not have any valid predecessor. All 64 combinations have in total
64 predecessors, i.e. each internal state has one predecessor on average.

Based on these observations, we propose a recurrent procedure BACK-
WARD STEP depicted in Algorithm 14.1. The procedure is invoked with
the initial parameters R1, R2 and R3 representing the internal state xe+ℓ =
xi+101+ℓ, and the parameter DEPTH = 101 + ℓ. The procedure outputs all
candidates for the state xi. The function CLOCK BACKWARDS used in the
procedure returns the value of the register clocked back by one clock cycle.

14.4 Testing the Method for A5/1 Backtrack-
ing

To observe the statistical behavior of the method we have run the set of fol-
lowing tests.

169

Chapter 14. Backtracking A5/1

Table 14.2: Predecessors of the states — part 1

State xn Candidates
for the state xn−1 # Cand.

(important bit values) (by clocking)

R1[9] R1[8] R1 R1 R2
R2[11] R2[10] + + + all

R3[11] R3[10] R2 R3 R3

0 0 0 0 0 0
√

1
0 0 0 0 0 1

√ √
2

0 0 0 0 1 0 0
0 0 0 0 1 1

√
1

0 0 0 1 0 0
√ √

2
0 0 0 1 0 1

√ √ √
3

0 0 0 1 1 0 0
0 0 0 1 1 1

√
1

0 0 1 0 0 0 0
0 0 1 0 0 1 0
0 0 1 0 1 0

√
1

0 0 1 0 1 1
√

1
0 0 1 1 0 0

√
1

0 0 1 1 0 1
√

1
0 0 1 1 1 0

√
1

0 0 1 1 1 1
√

1
0 1 0 0 0 0

√ √
2

0 1 0 0 0 1
√ √ √

3
0 1 0 0 1 0 0
0 1 0 0 1 1

√
1

0 1 0 1 0 0
√ √ √

3
0 1 0 1 0 1

√ √ √ √
4

0 1 0 1 1 0 0
0 1 0 1 1 1

√
1

0 1 1 0 0 0 0
0 1 1 0 0 1 0
0 1 1 0 1 0 0
0 1 1 0 1 1 0
0 1 1 1 0 0

√
1

0 1 1 1 0 1
√

1
0 1 1 1 1 0 0
0 1 1 1 1 1 0

170

14.4. Testing the Method for A5/1 Backtracking

Table 14.3: Predecessors of the states — part 2

State xn Candidates
for the state xn−1 # Cand.

(important bit values) (by clocking)

R1[9] R1[8] R1 R1 R2
R2[11] R2[10] + + + all

R3[11] R3[10] R2 R3 R3

1 0 0 0 0 0 0
1 0 0 0 0 1 0
1 0 0 0 1 0

√
1

1 0 0 0 1 1
√

1
1 0 0 1 0 0 0
1 0 0 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 1 1 0
1 0 1 0 0 0

√
1

1 0 1 0 0 1 0
1 0 1 0 1 0

√ √ √ √
4

1 0 1 0 1 1
√ √ √

3
1 0 1 1 0 0

√
1

1 0 1 1 0 1 0
1 0 1 1 1 0

√ √ √
3

1 0 1 1 1 1
√ √

2
1 1 0 0 0 0

√
1

1 1 0 0 0 1
√

1
1 1 0 0 1 0

√
1

1 1 0 0 1 1
√

1
1 1 0 1 0 0

√
1

1 1 0 1 0 1
√

1
1 1 0 1 1 0 0
1 1 0 1 1 1 0
1 1 1 0 0 0

√
1

1 1 1 0 0 1 0
1 1 1 0 1 0

√ √ √
3

1 1 1 0 1 1
√ √

2
1 1 1 1 0 0

√
1

1 1 1 1 0 1 0
1 1 1 1 1 0

√ √
2

1 1 1 1 1 1
√

1

TOTAL 64

171

Chapter 14. Backtracking A5/1

Algorithm 14.1 BACKWARD STEP(R1, R2, R3, DEPTH) — a recurrent
procedure for A5/1 backtracking

Input: Internal state (registers R1, R2, R3); DEPTH (#steps until xi)
Output: All candidates for the state xi

1: if DEPTH = 0 then
2: return R1, R2, R3
3: else
4: R1back ← CLOCK BACKWARDS(R1)
5: R2back ← CLOCK BACKWARDS(R2)
6: R3back ← CLOCK BACKWARDS(R3)
7: if R1[9] = R2[11] = R3[11] then
8: BACKWARD STEP (R1back, R2back, R3back, DEPTH − 1)
9: end if

10: if R1[9] = R2[11] 6= R3[10] then
11: BACKWARD STEP (R1back, R2back, R3, DEPTH − 1)
12: end if
13: if R1[9] = R3[11] 6= R2[10] then
14: BACKWARD STEP (R1back, R2, R3back, DEPTH − 1)
15: end if
16: if R2[11] = R3[11] 6= R1[8] then
17: BACKWARD STEP (R1, R2back, R3back, DEPTH − 1)
18: end if
19: end if

172

14.4. Testing the Method for A5/1 Backtracking

14.4.1 Test 1: Clocking A5/1 Forward and Backward for
101 Clock Cycles

From randomly generated state xi, we derived the state xe by (forward)
clocking the cipher for 101 clock cycles. Then, using the procedure BACK-
WARD STEP, we clocked the cipher back to the depth of 101 clock cycles.
For each individual case, we observed the number of candidates for the state
xi (one of them was the original xi), and the number of steps to seek through
the whole search tree.

The test was run for 108 (pseudo)random cases. An average and a maximum
number of candidates for the state xi was 13.13 and 170, respectively. A
histogram of the candidates for the internal state xi is depicted in Figure 14.2a.
An average and a maximum number of steps to seek the whole search tree was
717.24 and 8019, respectively. A histogram of the number of steps is depicted
in Figure 14.2b.

14.4.2 Test 2: Clocking A5/1 Forward and Backward for
151 Clock Cycles

From randomly generated state xi, we derived the state xe+50 by clocking
the cipher (forward) for 151 clock cycles. Then, using the procedure BACK-
WARD STEP, we clocked the cipher back to the depth of 151 clock cycles.
For each individual case, we observed the number of candidates for the state
xi (one of them was the original xi), and the number of steps to seek through
the whole search tree.

The test was run for 108 (pseudo)random cases. An average and a maximum
number of candidates for the state xi was 18.04 and 207, respectively. A
histogram of the candidates for the internal state xi is depicted in Figure 14.3a.
An average and a maximum number of steps to seek the whole search tree was
1448.71 and 14885, respectively. A histogram of the number of steps is depicted
in Figure 14.3b.

14.4.3 Test 3: Clocking A5/1 Backward Only for 101
Clock Cycles

From randomly generated state xe, we clocked the cipher back to the depth
of (up to) 101 clock cycles. For each individual case, we observed the number

173

Chapter 14. Backtracking A5/1

0%

1%

2%

3%

4%

5%

6%

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

>
4

9

candidates

0%

2%

4%

6%

8%

10%

12%

14%

0
-9

9

1
0

0
-1

9
9

2
0

0
-2

9
9

3
0

0
-3

9
9

4
0

0
-4

9
9

5
0

0
-5

9
9

6
0

0
-6

9
9

7
0

0
-7

9
9

8
0

0
-8

9
9

9
0

0
-9

9
9

1
0

0
0

-1
0

9
9

1
1

0
0

-1
1

9
9

1
2

0
0

-1
2

9
9

1
3

0
0

-1
3

9
9

1
4

0
0

-1
4

9
9

1
5

0
0

-1
5

9
9

1
6

0
0

-1
6

9
9

1
7

0
0

-1
7

9
9

1
8

0
0

-1
8

9
9

1
9

0
0

-1
9

9
9

2
0

0
0

-2
0

9
9

2
1

0
0

-2
1

9
9

2
2

0
0

-2
2

9
9

2
3

0
0

-2
3

9
9

2
4

0
0

-2
4

9
9

>
2

4
9

9

steps

Figure 14.2: Test 1: a) Histogram of the candidates for the state xi, b) His-
togram of the number of steps to seek the whole search tree

174

14.4. Testing the Method for A5/1 Backtracking

0%

1%

2%

3%

4%

5%

6%

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

>
4

9

candidates

0%

2%

4%

6%

8%

10%

12%

14%

0
-9

9

1
0

0
-1

9
9

2
0

0
-2

9
9

3
0

0
-3

9
9

4
0

0
-4

9
9

5
0

0
-5

9
9

6
0

0
-6

9
9

7
0

0
-7

9
9

8
0

0
-8

9
9

9
0

0
-9

9
9

1
0

0
0

-1
0

9
9

1
1

0
0

-1
1

9
9

1
2

0
0

-1
2

9
9

1
3

0
0

-1
3

9
9

1
4

0
0

-1
4

9
9

1
5

0
0

-1
5

9
9

1
6

0
0

-1
6

9
9

1
7

0
0

-1
7

9
9

1
8

0
0

-1
8

9
9

1
9

0
0

-1
9

9
9

2
0

0
0

-2
0

9
9

2
1

0
0

-2
1

9
9

2
2

0
0

-2
2

9
9

2
3

0
0

-2
3

9
9

2
4

0
0

-2
4

9
9

>
2

4
9

9

steps

Figure 14.3: Test 2: a) Histogram of the candidates for the state xi, b) His-
togram of the number of steps to seek the whole search tree

175

Chapter 14. Backtracking A5/1

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

depth

Figure 14.4: Test 3: Histogram of the maximum depth reached in the search
tree

of candidates for the state xi, the number of steps to seek through the whole
search tree and the maximum depth reached in the search tree.

The test was run for 108 (pseudo)random cases. As obvious from Fig-
ure 14.4, only in 15% of cases the search reached the depth of 101 clock cycles
and a candidate for the state xi has been found, while other 85% cases led to
no candidate (see also Figure 14.5a). It is also obvious from Figure 14.4 that
in 37.5% cases the depth of the search tree was 0, which corresponds to our
observations presented in Tables 14.2 and 14.3.

If at least one candidate for the state xi has been found, then the average
number of candidates was 6.65. The maximum number of candidates was 128.
The average depth of the search tree was 28.45 steps.

An average number of steps to seek the whole search tree was 101.00, which
conforms to observation that each internal state has one predecessor on average
(see Section 14.3). The maximum number of steps to seek the whole search
tree was 6518. A histogram of the number of steps is depicted in Figure 14.5b.

176

14.4. Testing the Method for A5/1 Backtracking

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

>
1

9

candidates

0%

10%

20%

30%

40%

50%

60%

70%

80%

0
-9

9

1
0

0
-1

9
9

2
0

0
-2

9
9

3
0

0
-3

9
9

4
0

0
-4

9
9

5
0

0
-5

9
9

6
0

0
-6

9
9

7
0

0
-7

9
9

8
0

0
-8

9
9

9
0

0
-9

9
9

>
9

9
9

steps

Figure 14.5: Test 3: a) Histogram of the candidates for the state xi, b) His-
togram of the number of steps to seek the whole search tree

177

Chapter 14. Backtracking A5/1

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0

5

1
1

2

1
1

9

1
2

6

1
3

3

1
4

0

1
4

7

depth

Figure 14.6: Test 4: Histogram of the maximum depth reached in the search
tree

14.4.4 Test 4: Clocking A5/1 Backward Only for 151
Clock Cycles

From randomly generated state xe+50, we clocked the cipher back to the depth
of (up to) 151 clock cycles. For each individual case, we observed the number
of candidates for the state xi, the number of steps to seek through the whole
search tree and the maximum depth reached in the search tree.

The test was run for 108 (pseudo)random cases. As obvious from Fig-
ure 14.6, only in 10.9% of cases the search reached the depth of 151 clock cycles
and a candidate for the state xi has been found, while other 89.1% cases led
to no candidate (see also Figure 14.7a). It is also obvious from Figure 14.6
that in 37.5% cases the depth of the search tree was 0, which corresponds to
our observations presented in Tables 14.2 and 14.3.

If at least one candidate for the state xi has been found, then the average
number of candidates was 9.19. The maximum number of candidates was
151. The average depth of the search tree was 34.80 steps. An average and a
maximum number of steps to seek the whole search tree was 151.05 and 11272,
respectively. A histogram of the number of steps is depicted in Figure 14.7b.

178

14.4. Testing the Method for A5/1 Backtracking

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

>
1

9

candidates

0%

10%

20%

30%

40%

50%

60%

70%

80%

0
-9

9

1
0

0
-1

9
9

2
0

0
-2

9
9

3
0

0
-3

9
9

4
0

0
-4

9
9

5
0

0
-5

9
9

6
0

0
-6

9
9

7
0

0
-7

9
9

8
0

0
-8

9
9

9
0

0
-9

9
9

>
9

9
9

steps

Figure 14.7: Test 4: a) Histogram of the candidates for the state xi, b) His-
togram of the number of steps to seek the whole search tree

179

Chapter 14. Backtracking A5/1

14.5 Summary and Final Remarks

The method described here has an average complexity of ≈ 210 steps and a
maximum measured complexity of ≈ 213 steps when backtracking the state xi

from the state xe (Test 1 and Test 3), which represents a very small stretch of
time. Running 108 instances of Test 1 and Test 2 took 15 hours and 30 hours,
respectively, on an Intel Pentium Dual CPU T2390 1.86 GHz. One instance
took 0.54 ms and 1.08 ms, respectively, on average.

The tests reveal one potential problem in cryptanalysis of A5/1. Due to non-
injectivity of the cipher the number of candidates for the state xi is relatively
high. The number of candidates for xi is about 10 on average, reaching about
200 in the worst case. From each candidate for xi the candidate for xk is
derived by clocking the registers R1, R2 and R3 back and subtracting the bits
of initialization vector in reverse order. Then, each candidate for xk must be
tested by trial decryption of other frames.

There is an alternative way for identification of the valid xk. If we were able
to recover internal states in two distinct frame keystreams of the same phone
call, then we would derive two sets of candidates for xk. Since all frames of
the same phone call share the same state xk, then the valid xk would lie in an
intersection of both sets.

180

Chapter 15

Conclusions of Part II

In this part we focused on cryptanalysis of GSM communication. The data
transfers between the base transceiver station and the mobile phone are divided
into 114 bit frames, encrypted with the stream cipher A5/1. Each frame is
encrypted by its own keystream, generated with the usage of a common session
key K and unique initialization vector IV .

We have presented two attacks and their implementation for the low-cost
FPGA-based super-computing cluster COPACOBANA. Like many other at-
tacks on stream ciphers, also our two attacks reveal the internal state that gen-
erated a given known keystream. Since the GSM communication is divided
into frames, the recovered internal state is then used to derive the internal
state xk common for all frames. The state xk represents the content of in-
ternal registers after their reset and loading the session key K. In most cases
there are multiple candidates for the state xk (about 10 on average and about
200 at maximum), which can slightly complicate the attack.

The first of our two attacks belongs to the family of guess-and-determine
attacks. It reveals the internal state of the cipher in less than 6 hours on
average demanding only 64 bits of known keystream. The attack is based on
the proposal made by Keller and Seitz, however, we made several modifications
and improvements of the attack. While the attack of Keller and Seitz has only
18% success ratio, our attack recovers the internal state in 100% of cases. We
also corrected some estimations made by Keller and Seitz. Our attack is also
very attractive with regard to financial costs which is a significant factor for
the practicability of an attack: The acquisition costs for COPACOBANA are

181

Chapter 15. Conclusions of Part II

about 10,000 e. Since COPACOBANA has a maximum power consumption of
only 600 W, the attack also features very low operational costs. For instance,
assuming 10 cent per kWh the operational costs of an attack are only 36 cents.

The second of our two attacks belongs to the family of time-memory-data
tradeoff attacks. We have chosen the thin-rainbow method for the implemen-
tation. COPACOBANA is used in both the precomputation phase and the on-
line phase of the attack. When designing the precomputation engine, we have
utilized the features of underlying FPGA architecture to gain the maximum
performance. The proposed design approach can be reused when designing
similar attacks on other stream ciphers. Besides designing the hardware archi-
tectures for the precomputation and online phases, we also discussed solutions
for relatively fast sort of a huge amount of acquired data and for relatively fast
search in large table. The precomputation phase takes several month with one
COPACOBANA; the TMDTO table occupies several terabytes of memory.
The online phase is then finished in a fraction of time — COPACOBANA exe-
cutes all calculations in a matter of (tens of) seconds and subsequent search of
results in the TMDTO table is finished in a matter of minutes. Since this is a
probabilistic attack, both the success ratio and the online complexity increase
with the amount of known keystream data.

Both attacks complement each other perfectly. Upon eavesdropping the
GSM communication and extraction of the keystream, we run fast TMDTO
attack first. If the valid internal state xk is not found (it is a probabilistic
attack), then the (slower, but 100% successful) guess-and-determine attack is
executed.

In our work we have not focused on eavesdropping GSM calls. Also the
problem of obtaining a known plaintext is still under discussion in pertinent
news groups and does not seem to be fully solved. However, these are just
some technical difficulties that certainly cannot be considered serious barriers
for breaking GSM.

182

Acronyms and Symbols

All acronyms are defined when first used in the text, with the exception of
frequently used ones.

A5/1 stream cipher used in GSM communication
ASIC Application-Specific Integrated Circuit
BTS Base Transceiver Station
CB Clocking Bit
CLB Configurable Logic Block
COPACOBANA Cost-Optimized Parallel Code Breaker
CPU Central Processing Unit
DCM Digital Clock Manager
DP Distinguished Point
EC Elliptic Curve
ECC Elliptic Curve Cryptography
DLP Discrete Logarithm Problem
ECDLP Elliptic Curve Discrete Logarithm Problem
FIFO First-in First-out; queue
FF Flip-Flop
FPGA Field Programmable Gate Array
FSM Finite State Machine
GF (q) Finite Field (Galois Field)
GSM Global System for Mobile communication
ITT inversion algorithm by Itoh, Teechai and Tsuji
IV Initialization Vector

183

Acronyms and Symbols

LSB Least Significant Bit
LUT Look-Up Table
LFSR Linear Feedback Shift Register
MSB Most Significant Bit
MUX Multiplexer
NB Normal Basis
NIST National Institute of Standards and Technology
ONB Optimal Normal Basis
RAM Random Access Memory
RFID Radio-Frequency IDentification
RSA asymmetric cipher by Rivest, Shamir and Adleman
TMDTO Time-Memory-Data Trade-Off
TMTO Time-Memory Trade-Off
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits
VLSI Very Large Scale Integration
XOR eXclusive OR (reduction modulo 2)

184

Bibliography

[AMOV91] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone.
An implementation for a fast public-key cryptosystem. Journal
of Cryptology, pages 63–79, 1991.

[And94] R. Anderson. A5 (was: Hacking digital phones). sci.crypt, 17
June 1994.

[ANR99] G. C. Ahlquist, B. Nelson, and M. Rice. Optimal Finite Field
Multipliers for FPGAs. In FPL 1999: Proceedings of the 9th
International Workshop on Field Programmable Logic and Appli-
cations, pages 51–60, New York, NY, USA, 1999. Springer-Verlag
New York, Inc.

[ANS97] ANSI. ANSI X9.30:1-1997, Public Key Cryptography for the Fi-
nancial Services Industry: Part 1: The Digital Signature Algo-
rithm (DSA) (revision of X9.30:1-1995), 1997.

[ANS98a] ANSI. ANSI X9.31-1998, Digital Signatures Using Reversible
Public Key Cryptography for the Financial Services Industry
(rDSA), 1998.

[ANS98b] ANSI. ANSI X9.62-1998, Public Key Cryptography for the Fi-
nancial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA), 1998.

[Bab95] S. Babbage. A Space/Time Tradeoff in Exhaustive Search At-
tacks on Stream Ciphers. In European Convention on Security
and Detection, May 1995.

[Bal08] M. Baĺık. Methods of Fast Search in Disk Stored Tables. Private
communication via email, February 2008.

185

Bibliography

[BBK03] E. Barkan, E. Biham, and N. Keller. Instant Ciphertext-Only
Cryptanalysis of GSM Encrypted Communications. In Proc. of
Crypto’03, volume 2729 of LNCS. Springer-Verlag, 2003.

[BBK06] E. Barkan, E. Biham, and N. Keller. Instant Ciphertext-only
Cryptanalysis of GSM Encrypted Communication (full-version).
Technical Report CS-2006-07, Technion, 2006.

[BBS06] E. Barkan, E. Biham, and A. Shamir. Rigorous Bounds on Crypt-
analytic Time/Memory Tradeoffs. In Proc. of CRYPTO’06, vol-
ume 4117 of LNCS, pages 1–21. Springer, 2006.

[BGW99] M. Briceno, I. Goldberg, and D. Wagner. A Pedagogical Imple-
mentation of the GSM A5/1 and A5/2 “voice privacy” Encryption
Algorithms, 1999.

[BS00] A. Biryukov and A. Shamir. Cryptanalytic time/memory/data
tradeoffs for stream ciphers. In Proc. of Asiacrypt’00, volume
1976 of LNCS, pages 1–13. Springer, 2000.

[BSGEG04] S. Bajracharya, C. Shu, K. Gaj, and T. El-Ghazawi. Imple-
mentation of Elliptic Curve Cryptosystems over GF (2n) in Opti-
mal Normal Basis on a Reconfigurable Computer. In FPL2004:
Proceeding of Field Programmable Logic and Applications, pages
1001–1005. Springer, 2004.

[BSW01] A. Biryukov, A. Shamir, and D. Wagner. Real Time Cryptanalysis
of A5/1 on a PC. In Proc. of FSE’00, volume 1978 of LNCS, pages
1–18. Springer-Verlag, 2001.

[Cer97] Certicom. The Elliptic Curve Cryptosystem. A Certicom
Whitepaper, 1997.

[D. 82] D. E. R. Denning. Cryptography and Data Security. Addison-
Wesley, 1982.

[DH76] W. Diffie and M. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, 22:644–654, 1976.

[Ele98] Electronic Frontier Foundation. Cracking DES: Secrets of En-
cryption Research, Wiretap Politics & Chip Design. O’Reilly &
Associates Inc., July 1998.

[FIP00] FIPS. FIPS PUB 186-2, Digital Signature Standard, February
2000.

186

Bibliography

[Gao93] S. Gao. Normal Bases over Finite Fields. PhD thesis, University
of Waterloo, Ontario, 1993.

[Gen08] Timo Gendrulis. Hardware-based cryptanalysis of the gsm a5/1
encryption algorithm. Master’s thesis, Ruhr University Bochum,
2008.

[Gol97] J. Golic. Cryptanalysis of Alleged A5 Stream Cipher. In Proc.
of Eurocrypt’97, volume 1233 of LNCS, pages 239–255. Springer-
Verlag, 1997.

[Gol00] J. Golic. Cryptanalysis of three mutually clock-controlled stop/go
shift registers. IEEE Transactions on Information Theory,
46:1081–1090, May 2000.

[GPP07] T. Gueneysu, C. Paar, and J. Pelzl. Attacking Elliptic Curve
Cryptosystems with Special-Purpose Hardware. In Proc. of
FPGA’07, pages 207–215. ACM Press, 2007.

[GS00] L. Gao and G.E. Sobelman. Improved VLSI designs for multipli-
cation and inversion in GF (2M) over normal bases. In Proceedings
of 13th Annual IEEE International ASIC/SOC Conference, pages
97–101, 2000.

[GWG99] I. Goldberg, D. Wagner, and L. Green. The Real-Time Crypt-
analysis of A5/2. Presented at the Rump Session of Crypto’99,
1999.

[Hel80] M. E. Hellman. A Cryptanalytic Time-Memory Trade-off. IEEE
Transactions on Information Theory, 26:401–406, 1980.

[Hsi70] M. Y. Hsiao. A Class of Optimal Minimum Odd-weight-column
SEC-DED Codes. IBM Journal of Research and Development,
14(4):395–401, 1970.

[IEE00] IEEE. IEEE 1363. Standard for Public-key Cryptography, 2000.

[ITT86] T. Itoh, O. Teechai, and S Tsujii. A Fast Algorithm for Com-
puting Multiplicative Inverses in GF (2t) using normal bases. J.
Society for Electronic Communications (Japan), 44:31–36, 1986.

[KGKH04] S. Kwon, K. Gaj, C. H. Kim, and P. C. Hong. Efficient Linear
Array for Multiplication in GF (2m) Using a Normal Basis for
Elliptic Curve Cryptography. In CHES 2004, volume LNCS 3156,
pages 76–91. Springer-Verlag, 2004.

187

Bibliography

[Knu98] D. E. Knuth. The Art of Computer Programming, volume 3:
Sorting and Searching. Addison-Wesley, 1998.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Com-
putation, 48:203–209, 1987.

[KPP+06] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Break-
ing Ciphers with COPACOBANA - A Cost-Optimized Parallel
Code Breaker. In Proceedings of CHES’06, volume 4249 of LNCS,
pages 101–118. Springer-Verlag, 2006.

[KS98] C. Koc and B. Sunar. Low-Complexity Bit-Parallel Canonical
and Normal Basis Multipliers for a Class of Finite Fields. IEEE
Transactions on Computers, 47:353–356, 1998.

[KS01] J. Keller and B. Seitz. A Hardware-Based Attack on the A5/1
Stream Cipher, 2001.

[Kwo03] S. Kwon. A low complexity and a low latency bit parallel systolic
multiplier over GF (2m) using an optimal normal basis of type II.
In 16th IEEE Symposium on Computer Arithmetic, pages 196–
202, 2003.

[LD99] J. Lopez and R. Dahab. Fast multiplication on elliptic curves over
GF (2m) without precomputation. In Proceedings of the First In-
ternational Workshop on Cryptographic Hardware and Embedded
Systems (CHES), volume LNCS 1717, pages 316–327. Springer-
Verlag, 1999.

[LL02] P. H. W. Leong and I. K. H. Leung. A Microcoded Elliptic Curve
Processor Using FPGA Technology. IEEE Transactions on VLSI
Systems, 10:550–559, 2002.

[LL03] C. Lee and J. Lee. A Scalable Structure for a Multiplier and an
Inversion Unit in GF (2m). ETRI Journal, 25:315–320, October
2003.

[LMWL00] K. H. Leung, K. W. Ma, W. K. Wong, and P. H. W. Leong.
FPGA Implementation of Microcoded Elliptic Curve Crypto-
graphic Processor. In Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 68–76,
Napa Valley, California, USA, 2000.

188

Bibliography

[Mas97] MasterCard International, Inc. and Visa International Service As-
sociation. SET Secure Electronic Transaction Specification, May
31 1997.

[MBG+93] A. J. Menezes, I. F. Blake, XuHong Gao, R. C Mullin, S. A. Van-
stone, and T. Yaghoobian. Applications of Finite Fields. Kluwer
Academic Publishers, 1993.

[Mil86] V. S. Miller. Use of elliptic curves in cryptography. In Advances
in Cryptology - Crypto 85, volume LNCS 218, pages 417–426.
Springer-Verlag, 1986.

[MO86] J. Massey and J. Omura. Computational Method and Apparatus
for Finite Field Arithmetic. U.S. patent number 4,587,627, 1986.

[Mon87] P. Montgomery. Speeding the Pollard and elliptic curve methods
of factorization. Mathematics of Computation, 48:243–264, 1987.

[MOVW89] R. Mullin, I. Onyszchuk, S. Vanstone, and R. Wilson. Optimal
Normal Bases in GF (pn). Discrete Applied Mathematics, 22:149–
161, 1989.

[Oec03] P. Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-
Off. In Proc. of CRYPTO’03, volume 2729 of LNCS, pages 617–
630. Springer, 2003.

[Paa99] C. Paar. Implementation Options for Finite Field Arithmetic for
Elliptic Curve Cryptosystems. In ECC 1999, 1999.

[PS00] T. Pornin and J. Stern. Software-hardware Trade-offs: Applica-
tion to A5/1 Cryptanalysis. In Proc. of CHES’00, volume 1965
of LNCS, pages 318–327. Springer-Verlag, 2000.

[RMH03] A. Reyhani-Masoleh and M. A. Hasan. Low Complexity Sequen-
tial Normal Basis Multipliers over GF (2m). In 16th IEEE Sympo-
sium on Computer Arithmetic (ARITH-16 ’03), pages 188–195,
2003.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Com-
munications of the ACM, 21:120–126, 1978.

[Rup08] Andy Rupp. Computational Aspects of Cryptography and Crypt-
analysis. PhD thesis, Ruhr University Bochum, 2008.

189

Bibliography

[SK01] B. Sunar and C. K. Koc. An efficient optimal normal basis type
II multiplier. IEEE Transactions on Computers, 50:83–88, 2001.

[SRQL02] F. Standaert, G. Rouvroy, J. Quisquater, and J. Legat. A Time-
Memory Tradeoff using Distinguished Points: New Analysis &
FPGA Results. In Proc. of CHES’02, volume 2523 of LNCS,
pages 596–611. Springer, 2002.

[SWPS08] J. Schrder, L. Wienbrandt, G. Pfeiffer, and M. Schimmler. Mas-
sively Parallelized DNA Motif Search on the Reconfigurable Hard-
ware Platform COPACOBANA. In Third IAPR International
Conference on Pattern Recognition in Bioinformatics (PRIB
2008), volume LNCS 5265, pages 436–447, 2008.

[Uni05] University of California, Berkeley. Seti@Home Website, 2005.

[Wal] M. Wall. M: GAlib: A C++ Library of Genetic Algorithm Com-
ponents. [Online].

[Xil99] Xilinx. XC4000E and XC4000X Series Field Programmable Gate
Arrays, May 1999.

[Xil07] Xilinx. Spartan-3 FPGA Family: Complete Data Sheet, DS099,
November 2007.

190

Refereed Publications of
the Author

[A.1] J. Schmidt, M. Novotný, M. Jäger, M. Bečvář, and M. Jáchim. Ex-
ploration of Design Space in ECDSA. In Field-Programmable Logic and
Applications 2002, LNCS 2438, pages 1072–1075. Springer Verlag, Mont-
pellier 2002.

[A.2] J. Schmidt and M. Novotný. Normal Basis Multiplication and Inver-
sion Unit for Elliptic Curve Cryptography. In Proceedings of the 10th
IEEE International Conference on Electronics, Circuits and Systems
2003, pages 82–85. IEEE, Piscataway 2003.

[A.3] J. Schmidt and M. Novotný. Optimum Shifter Synthesis Using a Ge-
netic Algorithm. In Recent Trends in Multimedia Information Process-
ing, pages 146–149. Sdělovaćı technika, Praha 2003.

[A.4] J. Schmidt and M. Novotný. Scalable Shifter Synthesis for a Finite Field
Arithmetic Unit. In Proceedings of 7th IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop, pages 195–198. Institute of
Informatics, Slovak Academy of Sciences, Bratislava, 2004.

[A.5] J. Schmidt and M. Novotný. Scalable Normal Basis Arithmetic Unit for
Elliptic Curve Cryptography. Acta Polytechnica, 45:55–60, 2005

[A.6] M. Novotný and J. Schmidt. General Digit-Serial Normal Basis Multi-
plier. In Proceedings of 8th IEEE Design and Diagnostics of Electronic
Circuits and Systems Workshop, pages 99–104. University of Western
Hungary, Sopron, 2005.

[A.7] M. Novotný and J. Schmidt. Normal Basis Multipliers of General Digit
Width Applicable in ECC. In Proceedings of 9th IEEE Design and Di-

191

Refereed Publications of the Author

agnostics of Electronic Circuits and Systems Workshop, pages 145–146.
CTU Publishing House, Praha, 2006

[A.8] M. Novotný and J. Schmidt. General Digit Width Normal Basis Multi-
pliers with Circular and Linear Structure. In Field-Programmable Logic
and Applications - FPL2006, pages 873–876, Madrid 2006

[A.9] M. Novotný and J. Schmidt. Two Architectures of a General Digit-
Serial Normal Basis Multiplier. In Proceedings of 9th Euromicro Confer-
ence on Digital System Design, pages 550–553, IEEE Computer Society,
Dubrovnik 2006

[A.10] M. Novotný and J. Schmidt. General Digit-Serial Normal Basis Multi-
plier with Distributed Overlap. In Proceedings of 10th Euromicro Confer-
ence on Digital System Design, pages 94–101, IEEE Computer Society,
Lübeck 2007

[A.11] T. Gendrullis, M. Novotný and A. Rupp. A Real-World Attack Break-
ing A5/1 within Hours. In Proceedings of the 10th Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2008), pages 266–282,
Springer Verlag, Washington, D.C., 2008

[A.12] T. Güneysu, T. Kasper, M. Novotný, C. Paar and A. Rupp. Cryptanal-
ysis with COPACOBANA. In IEEE Transactions on Computers, 2008,
vol. 57, no. 11, pages 1498–1513

192

Curriculum Vitae

Personal Data

Name Martin Novotný
Born May 17th, 1969, in Prague,

Czechoslovakia (currently the Czech Republic)
Contact novotnym@fit.cvut.cz

Education and Qualifications

1987–1992 Master Studies (Ing.)
Faculty of Electrical Engineering
Czech Technical University in Prague, Czech Republic
Branch of Study: Electronic Computers
(Graduated with Honours)

since 2003 Ph.D. study
Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic.

2007–2008 Research Stay & Ph.D. study
Chair for Embedded Security,
Horst Görtz Institute for IT Security,
Ruhr-University Bochum, Germany.

193

Curriculum Vitae

Employment History

1992–2009 Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague

1994–2005 Administrator of the Hardware Laboratory, Teacher
2005–2009 Assistant Professor

since 2009 Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague

since 2009 Assistant Professor

194

