
Czech Technical University in Prague
Faculty of Electrical Engineering

Master’s Thesis

Implementation of the Parallel Selfish Gene genetic algorithm

Bc. Floris van der Meijs

Supervisor: Ing. Petr Fišer, Ph.D.

Study program: Electrical Engineering and Information Technology

Study field: Computer Science and Engineering

May 2008

iv

Declaration

I hereby declare that I have completed this master’s thesis independently and that I have listed all the
literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákona č. 121/2000Sb. (copyright
law), and with the rights connected with the copyright act including the changes in the act.

Prague, 23 May 2008 .

v

vi

Abstract

On the crossroads between the fields of evolutionary computation, parallel systems and VLSI design, the
Parallel Selfish Gene Algorithm (PSG) is situated. PSG is a new parallel evolutionary algorithm based on
recent developments in modern evolutionary biology.

This thesis studies existing evolutionary and parallel evolutionary algorithms, outlining the state of the
art in the field, and describes the design and implementation of PSG. The algorithm is subjected to a
comprehensive set of experiments evaluating its performance in solving the difficult problem of evolving
high quality test pattern generators for the built-in self-test of digital circuits.

The outcome is favorable; PSG is a processor-efficient algorithm. The extension onto multiple processors
gives users the ability to reduce execution time or increase solution quality. Furthermore, the test pat-
tern generators evolved by the algorithm are of a high quality, achieving fault coverage rates not normally
obtained by heuristic methods.

vii

viii

Contents

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 Aim of the work . 1
1.2 Background . 1
1.3 Structure of the thesis . 2

2 Evolutionary algorithms 3
2.1 Evolutionary and genetic algorithms . 3

2.1.1 General principles . 3
2.1.2 Types of evolutionary algorithms . 4

2.2 The Selfish Gene Algorithm . 5
2.2.1 Biological rationale . 5
2.2.2 The algorithm . 6
2.2.3 Formal description . 6
2.2.4 Experimental analysis . 7

3 Parallel evolutionary algorithms 9
3.1 Introduction to parallel systems . 9

3.1.1 Parallel performance metrics . 10
3.2 Overview of parallel evolutionary algorithms . 11

3.2.1 Speedup and solution quality . 11
3.3 Classes of PEA architectures . 12

3.3.1 Single-population master/slave PEA’s . 12
3.3.2 Single-population fine-grained PEA’s . 13
3.3.3 Multiple-deme coarse-grained PEA’s . 13
3.3.4 Hierarchical hybrid PEA’s . 14
3.3.5 “Embarrassingly parallel” evolutionary algorithms 14

3.4 Numerical analysis . 14

4 The Parallel Selfish Gene Algorithm 15
4.1 System architecture . 15

4.1.1 Pros and cons . 16
4.1.2 Parameters of PSG . 17

4.2 Self-adaption . 17
4.2.1 Methods of self-adaption . 17
4.2.2 Self-adaption in PEA’s . 18
4.2.3 Self-adaption in PSG . 18

5 Software development 21
5.1 Phase 1: SCP-SG . 21
5.2 Phase 2: P-SCP-SG . 22
5.3 Phase 3: PSG . 23
5.4 Dependencies . 23

6 Problem domains 25
6.1 The Vertex Cover Problem . 25

ix

6.1.1 Data structures for graphs . 25
6.1.2 Definition of the genome . 25
6.1.3 Fitness evaluation . 26
6.1.4 Problem instances . 26

6.2 The Cellular Automata Problem . 26
6.2.1 Built-in self-test (BIST) . 26
6.2.2 Cellular automata . 29
6.2.3 Definition of the genome . 29
6.2.4 Fitness evaluation . 30
6.2.5 Problem instances . 30
6.2.6 Previous work . 31

7 Experiments 33
7.1 Parameter tuning . 34

7.1.1 Iteration 1 . 35
7.1.2 Iteration 2 . 38

7.2 General performance metrics . 41
7.2.1 Communication . 41
7.2.2 Self-adaption . 43

7.3 Scalability and speedup . 45
7.3.1 Phase 1 . 45
7.3.2 Phase 2 . 47

7.4 Comparison with random search . 49
7.5 Real fault coverage . 51

8 Conclusions 53
8.1 General conclusions . 53
8.2 Scalability and efficiency . 53
8.3 Discussion . 54

9 Bibliography 57

A Detailed results of the scalability experiment 59

x

List of Figures

3.1 The fourteen species that make up Darwin’s finches. 13

5.1 Simplified Gantt chart of the PSG software development process. 21
5.2 Growth of the number of files and the number of lines of code during software development. 24

6.1 Full fault-simulation method of TPG evaluation. 27
6.2 Fault vector covering method of TPG evaluation. 28
6.3 Cell structure of an elementary cellular automaton. 29
6.4 Problem instances for the Cellular Automata Problem. 31

7.1 Color scale for the contour graphs that show results of parameter tuning. 35
7.2 Parameter tuning of the parameters ɛ and convergenceThreshold, iteration 1. 36
7.3 Parameter tuning of the parameters Y0 and X0, iteration 1. 36
7.4 Parameter tuning of the parameters µ and γ, iteration 1. 37
7.5 Parameter tuning of the parameters epochGenerationLimit and intervalCheckEpoch,

iteration 1. 37
7.6 Parameter tuning of the parameters ɛ and convergenceThreshold, iteration 2. 39
7.7 Parameter tuning of the parameters Y0 and X0, iteration 2. 39
7.8 Parameter tuning of the parameters µ and γ, iteration 2. 40
7.9 Parameter tuning of the parameters epochGenerationLimit and intervalCheckEpoch,

iteration 2. 40
7.10 Visualization of the amounts of messages of distinct types on c3540 42
7.11 Visualization of the amounts of messages of distinct types on c6288 42
7.12 Visualization of the number of epochs e, the number of converged alleles c, and the mu-

tation probability ρ on c3540. 44
7.13 Visualization of the number of epochs e, the number of converged alleles c, and the mu-

tation probability ρ on c6288. 44
7.14 The highest fitness values, and number of converged alleles found during a 30-minute run

of the sequential algorithm. 46
7.15 The average time SU(n) taken by a sequential configuration of PSG to reach the fitness

targets shown in Figure 7.14. 46
7.16 Speedup S(n, p) of PSG for different combinations of p and δ for all ISCAS circuits tested. 48
7.17 Comparison of solution qualities of PSG and random search (RS). 50
7.18 Best fitness values found by PSG during scalability testing. 51
7.19 Real fault coverage of the cellular automata evolved by PSG. 52

A.1 Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and
δ on ISCAS circuit c17. 59

A.2 Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and
δ on ISCAS circuit c432. 60

A.3 Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and
δ on ISCAS circuit c880. 60

A.4 Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and
δ on ISCAS circuit c1908. 61

A.5 Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and
δ on ISCAS circuit c2670. 61

A.6 Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and
δ on ISCAS circuit c3540. 62

xi

A.7 Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and
δ on ISCAS circuit c5315. 62

A.8 Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and
δ on ISCAS circuit c6288. 63

A.9 Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and
δ on ISCAS circuit c7552. 63

xii

List of Tables

6.1 Problem instances constructed from combinational ISCAS’85 benchmark circuits. 30

7.1 Parameters of the “star” computing cluster. 33
7.2 Final parameter values after iteration 2 of parameter tuning 38
7.3 Real fault coverage obtained by cellular automata evolved by PSG. 52

A.1 ISCAS’85 benchmark circuits and their scalability graphs. 59

xiii

xiv

CHAPTER 1. INTRODUCTION 1

1 Introduction

One of the most intriguing things about the field of computer science and engineering is the fact that its
disciplines are intricately related and meet in various unexpected places. This work explores one such
place, where evolutionary algorithms, parallel systems and VLSI design come together to form the Parallel
Selfish Gene Algorithm, a parallel evolutionary algorithm based on the latest developments in modern
evolutionary biology. This algorithm is used to solve the difficult problem of creating efficient test pattern
generators for built-in self-test circuitry.

1.1 Aim of the work

The work stands at a crossroads between three major fields of science; unsurprisingly, the aim of the work
is threefold. The first goal is to study and describe the state of the art in evolutionary algorithms and
parallel evolutionary algorithms, in particular the Selfish Gene Algorithm, a lesser-known evolutionary
algorithm that breaks away from its field by adopting a new and somewhat controversial interpretion of
classical Darwinian evolution.

The second goal is to design and implement a parallel version of the Selfish Gene Algorithm, taking into
account the special nature of the Selfish Gene Algorithm, as well as the constraints imposed by contempo-
rary parallel systems. Of course, this implies the additional goal of thoroughly analyzing the algorithm’s
performance, scalability and efficiency.

The final aim is to utilize this algorithm to solve the problem of evolving cellular automata for use in the
built-in self-test of digital circuits, again following the road of the lesser-known but potentially superior
approach.

1.2 Background

The field of evolutionary computation is wide and diverse and has spawned, throughout its history, a host
of research and algorithms. These algorithms, besides all being heuristic in nature, share one common
characteristic: they attempt to exploit the principles of natural selection and population genetics to find
quick and accurate solutions to difficult problems. One particular algorithm was created in 1998 and
attempts to introduce some of the recent developments in modern evolutionary biology to the field of
evolutionary computation. This algorithm is known as the Selfish Gene Algorithm.

The field of parallel systems and algorithms is a venerable discipline in the realm of computer science, with
many academic as well as practical angles. Despite its age and status, the field is ever-changing, keeping
abreast of modern developments in both hardware and software.

The synergy of these two fields results in parallel evolutionary algorithms. Unlike other parallel algorithms,
parallel evolutionary algorithms aremore than just evolutionary algorithms adapted to execute onmultiple
processors. In fact, their biological foundationsmay cause a hidden dimension to appear, by which parallel
evolutionary algorithms exhibit unique behavior not found among other (parallel) algorithms.

In the field of VLSI design, the principle of built-in self-test (BIST) is based on the need to provide mech-
anisms by which a digital circuit may verify its functionality without the need for external testing. The
success of BIST relies on a unit known as the test pattern generator, and the problem of creating and
setting up good test pattern generators is a difficult one for which clever search algorithms are needed.

2 CHAPTER 1. INTRODUCTION

1.3 Structure of the thesis

The text is organized into eight chapters. After the brief introduction to the research areas given in this
chapter, the next chapter delves into the field of evolutionary computation, introducing the overall con-
cepts and also the Selfish Gene Algorithm. For the interested reader an overview of the algorithm’s bio-
logical foundations is presented as well.

The third chapter addresses the field of parallel evolutionary algorithms in a similar way. This chapter
also provides an overview of parallel systems and defines some of the metrics that are in use for analyzing
parallel algorithms.

The Parallel Selfish Gene Algorithm (PSG) is introduced in chapter 4. A detailed overview of the algo-
rithm’s structure and architecture is given in the first part, while the second part introduces the concept
of self-adaption and shows how it may be used in an algorithm like PSG. Chapter 5 describes the software
development process used for implementing PSG.

Chapter 6 describes the problem domains that PSG was used with. The chapter opens with a well-known
problem from graph theory and moves on to identify the issues concerning the built-in self-test of digital
circuits and the generation of suitable test patterns. The so-called “Cellular Automata Problem” is then
formally stated and defined.

Chapter 7 sets the stage for a comprehensive set of experiments designed to analyze the performance of
PSG from all angles. In particular, the algorithm is analyzed from the point of view of parallel systems,
evaluating its speedup and scalability, and from the point of view of VLSI design, evaluating the algorithm’s
success at evolving test pattern generators for built-in self-test.

The final chapter is a place for review and reflection, drawing conclusions from the results of the work,
and stating some of the open questions and suggestions for further work.

CHAPTER 2. EVOLUTIONARY ALGORITHMS 3

2 Evolutionary algorithms

Since the early days of computer science, researchers have had the idea to use the principles of natural
selection to solve abstract problems. As time went on, and the field widened to include such research areas
as artificial life [1], the term evolutionary algorithms was increasingly used as an umbrella term covering
all search and optimization algorithms inspired by the principles of natural selection.

In this chapter, we will briefly introduce the many facets of evolutionary algorithms, their common prin-
ciples and specific varieties. In the second section of the chapter, one particular algorithm of interest to
us, the Selfish Gene Algorithm, will be closely examined.

2.1 Evolutionary and genetic algorithms

A term like evolutionary algorithms does not have one single definition, and over time it has been used to
describe a wide variety of algorithms. One kind of algorithm that is widely regarded as the quintessen-
tial evolutionary algorithm is the genetic algorithm. Genetic algorithms, made popular through the work
of John Holland in the 1970s, combine many of the features now seen as cornerstones of evolutionary
algorithms: a population of contending individuals that represent (partial) solutions to a problem, and
evolutionary operations such as selection and recombination that are applied iteratively to these individ-
uals.

These and other essential features of evolutionary algorithms will be described in the next section, while
genetic algorithms will be revisited in section 2.1.2.

2.1.1 General principles

The basis of any evolutionary algorithm is the notion of a population of individuals. The population,
as well as the individuals, can be either explicit or implicit. To this population the principle of natural
selection is applied. Natural selection is a process by which some individuals produce more offspring than
others. The likelihood of an individual passing on its genetic material to the next generation is known as
its fitness. Quantifying fitness is far from straightforward, as it includes not only internal qualities of the
individual itself, but also its environment, its actions, and a large amount of chance.

In nature, it is not always easy to see which individuals are fit and which are not. In most evolution-
ary algorithms there is a deterministic fitness function, which is essentially a mapping from the set of all
individuals to the set of real numbers. Other algorithms opt for a tournament mechanism where, rather
than assigning an absolute fitness value to each individual, several individuals are compared head-to-head
and a winner is picked. Regardless of the specifics, the selection principle provides the algorithm with the
means to rank and order its population by fitness.

The second unifying notion of an evolutionary algorithm is the principle of variation and iterative evalua-
tion. In one iteration, or generation, of the algorithm a number of operations are applied to the population.
The purpose of these operations is to make some small variations in the composition of the population.
The two most popular variation mechanisms are recombination and mutation, which will be described in
section 2.1.2; however, many other mechanisms exist and we will meet some of them when we examine
the Selfish Gene Algorithm in section 2.2.

This is the origin of Charles Darwin’s phrase “preservation of favoured races,” which has sadly been taken out of context by
many, to make some political point [2].

4 CHAPTER 2. EVOLUTIONARY ALGORITHMS

Summing up, an evolutionary algorithm is characterized by:

• A population of individuals which represent (partial) solutions to a problem.
• A mechanism to order individuals according to their fitness.
• A set of operations that are applied to the population every generation.
• Variation operations such as recombination, mutation, etc.

2.1.2 Types of evolutionary algorithms

In their overview of evolutionary computation [3], Bäck and Fogel recognize three important subsets of
evolutionary algorithms: genetic algorithms, genetic programming and evolutionary strategies, although
it should be noted that many more classifications and partitionings exist.

Genetic algorithms

The most popular evolutionary algorithm is the genetic algorithm. In a genetic algorithm, a population
of (usually) constant size is filled with individuals that represent solutions to an optimization problem.
These individuals are traditionally represented by binary strings, although real-valued implementations
also exist.

Borrowing biological terminology, the representation of an individual is known as its genotype and consists
of a string of genes called the chromosome, with each gene occupying a distinct locus on the chromosome.
The number of different genes that can occupy a locus is often finite: in the case of binary strings, a gene
can have the value 0 or 1. The different values that can appear at a locus are sometimes called alleles.

Selection is usually done using an absolute fitness function, and produces pairs of individuals that are then
recombined using a crossover operator. This operator swaps parts of the genotype of the two individuals.
Another operator applied to the population is the mutation operator, which randomly alters some genes
of some individuals.

At each generation, the operators are used to create a set of offspring from the set of individuals. A mech-
anism which is sometimes called elitism is then used to determine which of the parents and which of the
offspring are allowed to propagate to the next generation.

The algorithm continues executing generation upon generation until some stopping condition ismet. This
may occur when the population has become homogeneous, when an individual with a certain fitness value
is found, or simply when some time limit has been reached.

Genetic programming

The goal of genetic programming is not to evolve a specific solution to a problem, but to evolve a sys-
tem or algorithm capable of solving a given problem. Traditionally, individuals in genetic programming
represented finite-state machines; modern methods are capable of evolving complex computer programs.

It should be noted that in nature, only prokaryotic lifeforms such as bacteria have a genotype consisting of one single chromo-
some. Other organisms have several; for instance, a human has 46 chromosomes and a goldfish has more than 100. Furthermore,
it is important to remember that genetic material is found not only on our chromosomes, and that chromosomes contain more
material than just genes.

CHAPTER 2. EVOLUTIONARY ALGORITHMS 5

While the principles of evolutionary computation (selection, variation) are identical to those in genetic al-
gorithms, the actual operations in genetic programming depend heavily on the semantics of the genotype,
whereas genetic algorithms are traditionally more oblivious of what the chromosome actually represents.

Evolutionary strategies

In contrast to genetic algorithms which are used to evolve solutions to a (discrete, combinatorial) prob-
lem, the purpose of evolutionary strategies is optimization of parameters. A much larger role is given
to the mutation operator; since most implementations of evolutionary strategies operate in a real-valued
search space, mutation consists of sampling data points from a normal distribution that somehow fits the
population.

Other distinguishing features of evolutionary strategies are the clear distinction between a parent popu-
lation and an offspring population, and the use of self-adaption mechanisms for the algorithm’s runtime
parameters. For another look at self-adaption, see section 4.2.

2.2 The Selfish Gene Algorithm

The Selfish Gene Algorithm (SG) is an evolutionary algorithm that was invented in 1998 by Corno et al.
and is described in their paper “The Selfish Gene Algorithm: a New Evolutionary Optimization Strategy”
[4]. The algorithm breaks away from canonical genetic algorithms by adopting a gene-centered view of
evolution, a relatively young and somewhat controversial theory that has gained a following among biol-
ogists in recent years. The distinguishing feature of SG is the fact that the population is implicit, and that
no operations such as recombination or elitism are necessary.

2.2.1 Biological rationale

The gene-centered view of evolution puts natural selection in a different light by taking the gene as the unit
of evolution, rather than the individual. In his book “The Selfish Gene” [5], from which the algorithm de-
rives its name, English biologist Richard Dawkins outlines the principles behind the gene-centered view:
he argues that individual genes compete for survival and strive for appearance in future generations. Indi-
viduals exist only as “survival machines,” providing the mechanisms by which successful genes can repli-
cate and propagate. A successful gene is one that produces a good characteristic in its host, a characteristic
that will increase the host’s likelihood of reproducing and thus passing the successful gene on to the next
generation.

Shifting the focus from individuals which are mortal and short-lived, to genes which are immortal and
may survive indefinitely, the “slogan” of evolution—survival of the fittest—can be seen to depict a struggle
between contending genes. Genes compete for appearance on individuals’ chromosomes, while at the
same time being forced to cooperate with one another: a gene might produce a good characteristic only
in the presence of certain other genes. Dawkins calls this a form of “blind cooperation.”

It should be noted that genes are in no way conscious entities acting out of some personal interests. Rather,
their behavior emerges out of the actions of individuals.

6 CHAPTER 2. EVOLUTIONARY ALGORITHMS

2.2.2 The algorithm

In the Selfish Gene Algorithm, the idea of a population filled with individuals is replaced by a virtual
population (VP) that is essentially an implicit, statistical model of a population. For all alleles on all loci,
the VP holds information about the allele’s frequency in the population.

Individuals are used as survival machines: they are constructed only for fitness evaluation and then de-
stroyed. When an individual is fit, its genes are rewarded: the specific allele values making up the individ-
ual’s genotype will see their frequency in the VP increase. Vice versa, genes belonging to unfit individuals
will be penalized.

Since individuals serve no role other than fitness evaluation, a recombination operation is not needed;
rather, recombination is implied by the way individuals are constructed from statistically probable genes
in the gene pool. Likewise, elitism is absent. Mutation is kept, but is performed during selection (con-
struction) of individuals.

2.2.3 Formal description

Letting n denote the number of genes (loci) in the genotype, ai is the number of alleles available at locus
i, and Σa is the total number of alleles across the genotype. The virtual population is a set of probability
values Pi,jwhere 1 ≤ i ≤ n and 1 ≤ j ≤ ai. Since these probabilities reflect the frequency of contending
alleles, the probabilities for any locus must add up to 100%:

ai∑
k=1

Pi,k = 1 (2.1)

In one generation, the algorithm constructs two “random” individuals and compares them in a tourna-
ment. The winner of the tournament will see its genes rewarded: letting χi denote the allele present at
locus i on the winner’s chromosome, the frequency of that allele is increased:

Pi,χi
= Pi,χi

+ ɛ (2.2)

All alleles on the winner’s chromosome will see their frequencies increased by ɛ. At the same time, alleles
on the loser’s chromosome will see their frequencies decreased, again by ɛ.

Letting ρ denote the mutation probability, a random individual is constructed as follows: for each locus i,
an allele will be chosen that is either random or proportional. The decision between random and propor-
tional alleles is taken according to ρ: if a random number between 0 and 1 is greater than ρ, the allele will
be proportional; otherwise, a random allele will be chosen.

In case of a proportional allele, the probability values Pi,k, 1 ≤ k ≤ ai are used to choose which allele to
place on the chromosome. In case of a random allele, an allele is chosen from the range 1, 2, . . . , ai in a
completely random way.

The Selfish Gene Algorithm also inctroduces the notion of convergence. A gene is said to have converged
when one of the alleles at the gene’s locus has a significantly higher frequency than all the others. In the al-
gorithm, a gene is flagged as “converged” when the probability of one of its alleles exceeds a certain thresh-
old. In the implementation described in chapter 4, this threshold is denoted by convergenceThreshold.

Note that there is no strict need for an absolute fitness function.

CHAPTER 2. EVOLUTIONARY ALGORITHMS 7

2.2.4 Experimental analysis

Corno et al. implemented the Selfish Gene Algorithm and compared it head-to-head with a canonical
genetic algorithm, solving the 0/1 Multiple Knapsack Problem. They found that SG was able to outper-
form the canonical genetic algorithm under certain conditions, and they conclude that “SG are easier to
implement, have a smaller number of parameters to tune, do not rely on crossover operators, and are able
to find more quickly optimal solutions. On the other hand, they tend to explore a smaller region of the
search space, so they need to be inserted in some multi-start-like framework.” [4]

Further work by Corno et al. is described in [6], where the researchers apply the algorithm to the much
more difficult problem of evolving cellular automata. This is analyzed in greater detail in section 6.2.6.

8 CHAPTER 2. EVOLUTIONARY ALGORITHMS

CHAPTER 3. PARALLEL EVOLUTIONARY ALGORITHMS 9

3 Parallel evolutionary algorithms

When an evolutionary algorithm is adapted to utilize an arbitrary number of processors during execution,
a parallel evolutionary algorithm (PEA) is created. PEA’s are the topic of this chapter.

In the first section, a brief introduction to the field of parallel systems and algorithms is given, to familiarize
the reader with its definitions, its metrics and its challenges. The second section introduces PEA’s proper,
while the third section examines the different varieties of PEAarchitecturesmore closely. In the last section
of this chapter we will outline some of the work that has been done on the numerical analysis of PEA’s, and
what that means for the development of the Parallel Selfish Gene Algorithm.

3.1 Introduction to parallel systems

A parallel system is a collection of processing elements (PE’s) that communicate and cooperate to solve
challenging problems. Parallel systems come in all sizes, from themulticore processors in modern PC’s, to
dedicated supercomputers such as BlueGene, to distributed computing efforts organized over the internet.
The term parallel system often refers to both the actual physical machine, and the algorithm implemented
on it. In other words, a parallel system is a parallel algorithm together with hardware supporting multiple
PE’s.

Parallel systems can be classified according to various taxonomies. One of the oldest taxonomies is the
taxonomy according to instruction and data flow known as Flynn’s taxonomy, after Michael J. Flynn who
proposed it in 1966. Flynn’s taxonomy recognizes three types of parallel systems:

1. Single instruction, multiple data (SIMD), where all PE’s execute the same series of machine in-
structions in lockstep, each operating on a different data stream. This type of system was popular
in the past but is now used only in specialized systems such as 3-D graphics processors (GPU’s).

2. Multiple instruction, single data (MISD), a rarely used form of parallel computing, where PE’s re-
ceive the same data stream but execute different instructions on the data.

3. Multiple instruction, multiple data (MIMD), where PE’s execute different sets of instructions on
different data streams. This is the most common type of parallel system in use today. It is further
divided into two subcategories:

3a. Single program, multiple data (SPMD), where the same program is executed on all PE’s, but
the PE’s are free to follow a different execution path and use different data. The Parallel Selfish
Gene Algorithm described in chapter 4 is SPMD.

3b. Multiple program,multiple data (MPMD), themost detachedmodel, where the PE’s are com-
pletely autonomous, running different programs working with different data sets. Distributed
(web-based) systems based on a client-server architecture can be classified as MPMD.

Another taxonomy in use is the taxonomy according to memory organization. This taxonomy divides
parallel systems into two groups:

1. Shared memory systems such as the multicore or multiprocessor systems which are in common
use as PC’s and servers. In these systems, the communication between PE’s is done by reading and
writing data blocks.

10 CHAPTER 3. PARALLEL EVOLUTIONARY ALGORITHMS

2. Distributed memory systems such as the computing cluster used for the experiments in chapter 7.
In these systems, the communication between PE’s consists of sending and receiving messages.

3.1.1 Parallel performance metrics

Parallel systems are used for two purposes:

1. To solve a challenging problem faster than on a sequential system.
2. To find certain “better” solutions to a problem that cannot be found by a sequential system in a

reasonable amount of time.

The first purpose is the one that is traditionally seen as the primary purpose; although the second one is
also very important, especially where heuristic methods such as evolutionary algorithms are concerned,
the focus of researchers and implementers is mainly on the time savings that can be obtained. In this
context, two metrics are used: speedup and scalability.

The speedup S of a parallel algorithm solving a certain problem is defined as the ratio of the running time
SU of the fastest known sequential algorithm and the running time T of the parallel algorithm [7].

S(n, p) =
SU(n)

T(n, p)
(3.1)

where n is the dimensionality of the problem and p the number of PE’s. The goal of parallel system
designers is to achieve linear speedups; that is, if we solve the problem using k processors, we will find the
result k times faster than using a sequential system.

S(n, k) =
SU(n)

T(n, k)
=

SU(N)(
SU(N)

k

) = k

Formally, linear speedup is defined as follows, using “big O” notation:

S(n, p) = Θ(p) (3.2)

In the above equations, special attentionmust be paid to the definition of “time.” Some researchersmeasure
speedup bymeasuring the CPU time consumed by the PE’s. Others prefermeasuring absolute “wall-clock”
time. In recent years, commercial CPU’s have reached astonishing throughput rates, whereas performance
of interconnection equipment has progressed at a much slower pace. Together with clever mechanisms
such as DMA transfers reducing the CPU’s workload, this leads to a situation where the performance of
a parallel system is all but defined by its communication system. For these and other reasons, wall-clock
time will be used as the time measure in this document.

The holy grail of parallel systems is superlinear speedup, defined as the case when a parallel algorithm on
p processors is more than p times faster than the sequential algorithm.

S(n, p) = Ω(p) (3.3)

Superlinear speedup is a rare occurance, and is usually caused by certain factors that severely penalize the
sequential algorithm. An example of this is a search algorithm that would, in a sequential implementation,
requiremorememory than is available in the system, causing extensive swapping of virtual memory pages;
when the search space is segmented for use in a parallel system, the memory requirements are lower,

CHAPTER 3. PARALLEL EVOLUTIONARY ALGORITHMS 11

speeding up the execution. An example of an algorithmic penalty for the sequential solution relates to
algorithms with pruning such as Branch & Bound: the sequential implementation might traverse a large
non-optimal branch of the search space that, in a parallel system, may get prematurely pruned by another
processor.

Closely related to speedup are the notions of parallel cost, denoted by C, and efficiency, denoted by E.

E(n, p) =
SU(n)

C(n, p)
=

S(n, p) · T(n, p)

p · T(n, p)
=

S(n, p)

p
(3.4)

Scalability is loosely defined as the ability to utilize increasing numbers of processors effectively [7]. A
perfectly scalable algorithm is one where E remains constant regardless of n and p. In reality, parallel
systems can only make good use of a large number of PE’s if n is sufficiently large. When more PE’s
are added to a small problem, the running time will stop decreasing at a certain point, and might even
increase when the communications overhead starts consuming more and more of the system’s resources.
This phenomenon is called “parallel slowdown” and is similar in many ways to the phenomenon, seen in
human resources management, that addingmore manpower to a delayed project will often delay it further
[8].

3.2 Overview of parallel evolutionary algorithms

Parallel implementations of evolutionary algorithms have been around for many years. One of the first
implementations was described by Albert Bethke in 1976 [9], just one year after John Holland’s pivotal
work “Adaptation inNatural andArtificial Systems” [10], which introduced genetic algorithms to theworld
at large. One reason for the success and popularity of PEA’s is the fact that the biological foundation
behind evolutionary algorithms seems to suggest parallelization; after all, in nature each organismoperates
independently from the others, competing for shared resources in amanner similar to processing elements
in a parallel system.

Another reason for the success and popularity of PEA’s relates to the second and traditionally overlooked
purpose of using a parallel system: the observation that a parallel implementation can often lead to better
results that could not be obtained by sequential methods. In his review of PEA’s [11], Marco Tomassini
writes:

Parallel evolutionary algorithms seem to be more in line with their natural counterparts and
thus might yield algorithmic benefits besides the added computational power. […] In gen-
eral, it has been found experimentally that parallel genetic algorithms, apart from being sig-
nificantly faster, may help in alleviating the premature convergence problem and are effective
for multimodal optimization.

3.2.1 Speedup and solution quality

In the previous section, we introduced the definition of speedup (equation (3.1)). The problem with this
definition is that it requires that both algorithms solve the same problem and reach the same solution. It is
difficult to guarantee this second condition when heuristic methods such as evolutionary algorithms are
used.

Many researchers measure the speedup of a PEA as the ratio of convergence times of the sequential and
parallel implementations, i.e. the timeneeded for the population to become (mostly) homogeneous. While

12 CHAPTER 3. PARALLEL EVOLUTIONARY ALGORITHMS

this is a useful metric, it is worth noting that, strictly speaking, such a ratio should not be called “speedup,”
since the solutions reached cannot be guaranteed to be of the same quality.

Using this convergence-based approach for analyzing PEA’s, superlinear speedup has frequently been
claimed. Unfortunately many of these cases have the parallel algorithm reaching lower quality solutions
than its sequential counterpart. Conversely, PEA’s capable of impressive gains in solution quality display
rather poor speedups.

Both Cantú-Paz [12] and Cao, et al. recognize that, as a general rule of thumb, “reduction in execution
time comes at the cost of a degraded solution quality.” [13] In other words, it appears that time savings
and solution quality are inversely related to each other. If we want linear or even superlinear speedup, we
must be prepared to sacrifice some solution quality; if we want to achieve high-quality solutions, we must
accept that convergence-based speedup will be of the form S(n, p) = O(p).

Another way of looking at speedup for a PEA involves measuring the time it takes the (sequential, parallel)
algorithm to reach a solution of a certain quality. The feasibility of such an approach depends on the
problem domain; if fitness values fall within a clearly defined range, let’s say 0–100%, then it is easy to
set a fitness threshold somewhere along this range and measure how long it takes the algorithm to evolve
a population where the average fitness exceeds the threshold. Other problem domains might distinguish
between valid and invalid solutions. In this case, wemaymeasure how long it takes until some proportion
of the population represents valid solutions.

3.3 Classes of PEA architectures

PEA’s can be classified according to their system architecture. There are five such classes:

1. Single-population master/slave

2. Single-population fine-grained

3. Multiple-deme coarse-grained, also known as the “island model”

4. Hierarchical hybrids

5. “Embarrassingly parallel” evolutionary algorithms

3.3.1 Single-population master/slave PEA’s

This class of PEA’s is the closest to sequential evolutionary algorithms. In the master/slave model, one
processor (the master) maintains the population and performs the genetic operations such as mutation
and recombination. The other processors (the slaves) are used solely for fitness evaluation. When the
master generates a new individual, it sends this individual to one of the slaves; the slave executes the fitness
function and sends the fitness value back to the master. Since the population is maintained by only one
processor, this algorithm reaches exactly the same solution as a sequential algorithm, albeit in a reduced
time.

A good example of this is the Knapsack Problem.

CHAPTER 3. PARALLEL EVOLUTIONARY ALGORITHMS 13

3.3.2 Single-population fine-grained PEA’s

Fine-grained PEA’s are commonly implemented on dedicated supercomputers where processors are ar-
ranged in a regular topology such as a toroid or hypercube. Each processing element represents one indi-
vidual in the population. The algorithm is synchronous, with processors exchanging genetic material in
lockstep with their immediate neighbors.

3.3.3 Multiple-deme coarse-grained PEA’s

Coarse-grained PEA’s form the most popular class of PEA’s [14, 12]. In this algorithm, each processor is
assigned a portion of the population, which is called a deme. The demes evolve independently and from
time to time some individuals migrate from one deme to another. This class is also known as the “island
model” since it resembles the population genetics of an archipelago of islands. In fact, island model PEA’s
exhibit certain phenomena, occurring naturally in biological populations, that are not observed in single-
population algorithms.

The biological rationale behind the island model is an evolutionary process known as allopatric speciation
[2]. In plain terms, this means that a geographical separation between individuals in a population allows
them to diverge from each other, creating new species.

A good example can be seen on the Galápagos Islands, where the narrow strips of ocean between the
islands led to a wide diversity of small birds known collectively as “Darwin’s finches.” Figure 3.1 shows the
fourteen species that make up Darwin’s finches; although similar, these are fourteen distinct species that
all evolved from a single immigrant species that reached the Galápagos Islands from the South American
mainland, just a few million years ago.

Figure 3.1: The fourteen species that make up Darwin’s finches. Adapted from [15].

14 CHAPTER 3. PARALLEL EVOLUTIONARY ALGORITHMS

Implementations of the islandmodel vary in their migration strategy and can be described as synchronous
or asynchronous. In synchronous implementations migration occurs at specific time intervals, whereas
in asynchronous implementations migration occurs when some internally measured level of convergence
has been reached.

Cantú-Paz [12] states that an island model PEA performs optimally when migration occurs after demes
have converged, implying that asynchronous implementations would be a better choice. Liu, et al. [16]
concur that the end-of-epoch barriers in a synchronous PEA result in considerable overhead. Tomassini
[11] notes that asynchronous migration is the preferred strategy for algorithms that follow the “steady-
state reproduction” model, where a small number of offspring replace other individuals in the population
as soon as they are produced instead of replacing the whole population after all the individuals have gone
through a full generational cycle.

3.3.4 Hierarchical hybrid PEA’s

This class of PEA’s combines multiple demes with single-population PEA’s. As the name suggests, they
consist of more than one layer. At the upper level they are multiple-deme coarse-grained PEA’s, while at
the lower level they are single-population PEA’s (either master/slave or fine-grained). This gives the algo-
rithmic benefits of the island model along with the computational efficiency of single-population PEA’s.

3.3.5 “Embarrassingly parallel” evolutionary algorithms

There is also a class of “embarrassingly parallel” algorithms that are essentially multiple-deme PEA’s with-
out any migration. In other words, each processor executes a sequential evolutionary algorithm and the
final solution is taken as the best solution among all processors. Not only are these algorithms trivial to
implement, studies have shown that they lead to a poor solution quality [17].

3.4 Numerical analysis

A comprehensive theoretical analysis of PEA’s is given by Erick Cantú-Paz in his book “Efficient and Ac-
curate Parallel Genetic Algorithms” [12], which was based on his doctoral work under the supervision of
evolutionary algorithms pioneer David Goldberg. The book introduces the classes of PEA architectures
and, starting with the master/slave model, derives a set of equations for the optimal population size and
the optimal interconnection network, among other things. The theoretical hypotheses are accompanied
by experimental verification.

We will not reproduce the analysis here, since the equations are of limited use in a non-standard PEA like
the Parallel Selfish Gene Algorithm. However, a few conclusions are of interest to us; first of all, the author
argues that unless a dedicated supercomputer is available, an island model implementation is likely to give
the best results.

Limiting ourselves to island model PEA’s, we see that the topology of the interconnection network has
very little effect on the behavior of the PEA. Rather, it is the degree of the network’s graph that has a
significant influence on the PEA’s performance; the best (and fastest) results are obtained when the degree
is approximately p/2, i.e. each deme has a direct connection with approximately half of the others.

CHAPTER 4. THE PARALLEL SELFISH GENE ALGORITHM 15

4 The Parallel Selfish Gene Algorithm

In the previous chapters, we have become acquintedwith the field of evolutionary algorithms and its exten-
sion, parallel evolutionary algorithms (PEA’s). We have met the Selfish Gene Algorithm (SG), an unusual
evolutionary algorithm based on recent developments in modern evolutionary biology.

In this chapter, we will describe the Parallel Selfish Gene Algorithm (PSG), a new evolutionary algorithm
intended as a parallel version of SG. In the first section, the architecture of PSG will be discussed. The
second section introduces the concept of self-adaption and shows how it can benefit a genetic algorithm
such as PSG.

4.1 System architecture

PSG is based on the “island model” of PEA’s. There are two reasons for this choice of architecture; first of
all, there is the observation that island model PEA’s have the potential to reach solutions of higher quality
thanmay be reached by sequential methods or single-population PEA’s. Another reason is the fact that the
island model is a more appropriate choice for implementation on a Beowulf-style cluster of PC systems
[11].

Following the discussion in section 3.3.3, an asynchronous migration strategy was chosen. It is worth
noting that the Selfish Gene Algorithm adjusts only a handful of allele probabilities at each generation,
meaning that SG resembles the steady-state reproductionmodel and should therefore benefit greatly from
an asynchronous migration strategy.

Most asynchronous PEA’s operate bymigrating a certain number of individualswhen the demehas reached
some level of convergence. In PSG, the communication packet consists of the allele values of converged
genes. This corresponds with the philosophy behind the gene-centered view of evolution, namely that it
is the genes themselves that are important, not the individuals.

Communication packets are sent once a deme has reached a certain level of convergence. In general, the
communication packet can be described as follows:

A communication packet consisting of the allele values of X converged genes is sent when Y

genes have converged, where X ≤ Y ≤ n.

X and Y are called the epoch thresholds. For each consecutive communication event these thresholds are
slowly increased. The period between two communication events is called an epoch. After any epoch e,
the thresholds are increased according to the following formulas.

Xe+1 = Xe +

⌈
Xe

γ

⌉
(4.1a)

Ye+1 = Ye +

⌈
Ye

γ

⌉
(4.1b)

where γ ≥ 1 is called the epoch length modifier. For the first epoch, the thresholds X0 and Y0 are given as
parameters of the algorithm. Note that special care must be taken to ensure that X and Y never exceed n.

Communicating demes send their communication packets to δ nearest neighbors, where δ is the degree
of the (simulated) topology. The actual topology does not matter: Cantú-Paz [12] found that topologies
of the same degree generally reach the same solutions in the same amount of time.

16 CHAPTER 4. THE PARALLEL SELFISH GENE ALGORITHM

On the side of the recipient, incoming allele values are used to adjust the recipient’s virtual population.
For each incoming allele value, the probability of that allele is increased, and the probabilities of all other
alleles on the same gene are decreased. Denoting the locus of the incoming allele by i and the specific
allele value by j, probabilities are adjusted as follows:

Pi,j =
Pi,j+ µ

1 + µ
(4.2a)

∀k, 1 ≤ k ≤ ai, k 6= j, Pi,k =
Pi,k

1 + µ
(4.2b)

where µ > 0 is called themigrant mixing coefficient.

4.1.1 Pros and cons

Advantages of this strategy are:

• The communication packet is kept small. The size of the communication packet se = O(Xe) =

O(n).

• No random selection: sending only the allele values for converged genesmaximizes the information
content of themessage. By contrast, nonconverged genes are highly stochastic and therefore contain
less information.

• The “communication after convergence” property is maintained.

Disadvantages are:

• Dependencies between genes may be broken. It is not unthinkable that alleles might thrive only in
the presence of other, not yet converged alleles on other genes. If these thriving alleles were to be
sent to another deme without the alleles on which they depend, they might cause a degradation of
solution quality in the recipient deme. This issue may be addressed by tuning the epoch thresholds
X0 and Y0.

• If µ is too small, migrant alleles might not be given a chance to survive in the recipient demes,
making the communication futile.

• If µ is too low, migrant alleles might “kill” promising alleles in the recipient deme, and information
may be lost.

• If no further convergence (or worse, divergence) occurs in a deme after it has communicated, the
deme will never reach its next epoch threshold and will continue to operate in isolation, only ac-
cepting migrants and never sending any. This problem can be alleviated by imposing a limit on the
number of generations a dememay execute while waiting for the next epoch; if this limit is reached,
the demewill send outmigrants regardless of the number of converged genes. In this case, the num-
ber of alleles in the communication packet may be (even significantly) lower than Xe, since there is
no guarantee for the number of converged alleles.

Note that the “=” symbol in these equations denotes assignment and not equality.

CHAPTER 4. THE PARALLEL SELFISH GENE ALGORITHM 17

4.1.2 Parameters of PSG

The algorithm inherits the following parameters from its sequential version:

1. Number of genes n.

2. Number of alleles per gene ai, total number of alleles Σa.

3. Tournament reward ɛ

4. convergenceThreshold, the probability level at which convergence is flagged.

5. Mutation rate ρ.

The parallel implementation introduces the following new parameters:

6. Number of processors p.

7. Degree δ.

8. Epoch thresholds X0 and Y0.

9. Migrant mixing coefficient µ.

10. Epoch length modifier γ.

11. epochGenerationLimit, the maximal number of generations in one epoch.

12. Various implementation-specific parameters, such as how often to check for incoming messages,
when to terminate execution, etc.

4.2 Self-adaption

One of the drawbacks of heuristic methods such as evolutionary algorithms is the high number of param-
eters to tune. The principle of self-adaption attempts to reduce this number by providing mechanisms by
which the algorithm can set its own parameters without the need for human involvement.

Self-adaptionhas its roots in the field of evolutionary strategies. Just as an evolutionary strategies algorithm
intelligently finds optimal parameters for its problem domain, so too are the parameters of the algorithm
itself adapted tomaximize the algorithm’s utility. In [18, 19], ThomasBäck examines theways self-adaption
mechanisms can be used for the mutation rate of genetic algorithms.

4.2.1 Methods of self-adaption

All self-adaptionmechanismare based on the notion that there is an indirect link between favorable control
parameters and the fitness values of individuals. Three distinct methods exist:

1. Deterministic self-adaption

2. Dynamic self-adaption

3. Dynamic self-adaption by genome encoding

18 CHAPTER 4. THE PARALLEL SELFISH GENE ALGORITHM

Deterministic self-adaption

The simplest way of implementing self-adaption is by introducing a deterministic function ρ(n, t, T)

which generates a time-dependent schedule for the mutation rate ρ according the chromosome length
n, the number of generations t, and some predefined generation limit T . In [19], an example of such a
function is given as:

ρ(n, t, T) =

(
2 +

n − 2

T − 1
t

)−1

(4.3)

Despite its simplicity, the deterministic schedule was found to give better results than a dynamic self-
adaption method.

Dynamic self-adaption

Dynamic self-adaption relies on feedback information from the algorithm to adjust itsmutation rate. Gen-
erally, the average fitness in the population is tracked, but other runtimemetrics are also used. A common
practice is to let each individual maintain its own mutation rate. Due to the difficulties of constructing a
mapping between individuals and populations on one side and mutatation rates on the other, new param-
eters have to be introduced that govern this mapping. This of course undermines one of the main reasons
for using self-adaption: the reduction in input parameters.

Dynamic self-adaption by genome encoding

A novel approach that has not seen much analysis involves letting the algorithm set its mutation rate using
the algorithm’s own principles of natural selection. In this method, mutation rates are appended to the
problem domain’s chromosome and evolved along with the solutions to the problem. The aim of the
mechanism is to exploit the correlation between optimal control parameters and individual fitness.

4.2.2 Self-adaption in PEA’s

In [20], Skinner et al. describe an island model PEA featuring self-adaption. Their algorithm uses a syn-
chronous migration strategy, migrating individuals between demes when all demes have executed a preset
number of generations E. Following the observation that deterministic self-adaption gives the best results,
they adapted Bäck’s equation (4.3), with E substituted for the generation limit.

ρ(n, t, E, l) =

(
n · l
20

+
2 · n · l
E − 1

t

)−1

(4.4)

where l denotes the number of bits used to encode each gene.

Results of their experiment were favorable, although it should be noted that no comparison was made
between the algorithm’s performance using self-adaption and its performance using othermeans of setting
ρ.

4.2.3 Self-adaption in PSG

In PSG, a deterministic self-adaption mechanism is used, based on equations (4.3) and (4.4). Since the
algorithm resembles the steady-state reproduction model and uses an asynchronous migration strategy,

CHAPTER 4. THE PARALLEL SELFISH GENE ALGORITHM 19

the generation limit was eliminated from the function. Instead, SG’s notion of convergence is exploited
as a promising source of feedback, using the assumption that there is a correlation between the level of
convergence and solution quality. Letting c ≤ n denote the number of converged alleles in the deme, the
mutation probability may be calculated as follows:

ρ(n, c, t) =

(
2 +

n − 2

n
c +

f(t)

n

)−1

(4.5)

where f(t) is an (as yet unknown) function of t. In order to find f(t), experimental analysis was used.
It was found that f(t) = Θ(t) caused the mutation rate to drop too quickly, whereas f(t) = Θ(log t)

had the opposite effect of the mutation rate showing very little time-dependence. As a compromise, a
function f(t) = ω(log t) = o(t) was needed, which led to the following final formula for the mutation
rate schedule:

ρ(n, c, t) =

(
2 +

n − 2

n
c +

√
t

n

)−1

(4.6)

20 CHAPTER 4. THE PARALLEL SELFISH GENE ALGORITHM

CHAPTER 5. SOFTWARE DEVELOPMENT 21

5 Software development

In the previous chapter we defined the Parallel Selfish Gene Algorithm (PSG). Stepping awaymomentarily
from the field of problems and algorithms, we cross into the field of software engineering to take a closer
look at the development process by which PSG was implemented.

Development was split up into three phases; at the end of each phase, a fully functional application was
delivered. The phases themselves were based on traditional “waterfall” cycles consisting of requirements,
design, implementation, and testing. In some phases the implementation and testing cycles were further
divided into iterations, each iteration comprising both implementation and thorough testing. Care was
taken to deliver functional, tested code at the end of each iteration: doing so reduces the risk of bugs being
carried over from one iteration into the next. Figure 5.1 shows a Gantt chart for the whole development
process. The chart is highly simplified for reasons of space.

Software dev elopment 199 days

SCP-SG 35 days

Requirements (assignment) October 18

Design

Implementation / testing

Documentation

Handing in Nov ember 22

P-SCP-SG 74 days

Requirements 11 days

Design 5 days

Implementation 62 days

Iteration 1 37 days

Iteration 2 26 days

Testing 53 days

Iteration 1 26 days

Iteration 2 3 days

PSG 25 days

Requirements

Design

Implementation 17 days

Iteration 1 2 days

Iteration 2 5 days

Iteration 3 1 day

Testing 15 days

Iteration 1 3 days

Iteration 2 1 day

Iteration 3 1 day

Code-freeze May 03

30 06 13 20 27 03 10 17 24 01 08 15 22 29 05 12 19 26 03 10 17 24 31 07 14 21 28 04 11 18 25 03 10 17 24 31 07 14 21 28 05 12 19 26 02
'07 Aug '07 Sep '07 Oct '07 Nov '07 Dec '08 Jan '08 Feb '08 Mar '08 Apr '08 May '08 Ju

Figure 5.1: Simplified Gantt chart of the PSG software development process.

5.1 Phase 1: SCP-SG

Phase 1 started as a homework assignment for a course on Softcomputing (SCP). The assignment was to
develop an evolutionary algorithm for solving the Vertex Cover Problem (see section 6.1). Thus the fol-
lowing (self-imposed) requirements were set for phase 1:

• Implement the Selfish Gene Algorithm for solving the Vertex Cover Problem.

• The design shall be modular, making it easy to add functionality.

• The implementation shall feature an abstract interface for problem domains, making it easy to adapt
the algorithm to new problems.

22 CHAPTER 5. SOFTWARE DEVELOPMENT

• It will be possible to compile and execute the application on a Linux computing cluster.

SCP-SGwas implemented in ISOC++ [21]. At the end of phase 1, the project contained 922 lines of source
code in 24 files. SCP-SG has the following structure:

• The class SgEngine is the heart of the program. It can load a problem instance, execute a number
of generations, and keep track of the best solution found.

• The class ProblemDomain is an abstract representation of a problemdomain. Because it is an abstract
representation, the fitness function is undefined.

• The class VertexCoverProblem is derived from ProblemDomain and contains the fitness function
described in section 6.1.

• The classes AdjacencyList and AdjacencyMatrix are used by VertexCoverProblem to access the
problem instance’s graph.

• The class Population contains the virtual population. This class also handles the selection of indi-
viduals for the purpose of fitness evaluation.

• The class StoppingConditions implements a mechanism for determining when to stop computa-
tion. Three kinds of stopping criteria are defined: stopping after a specific number of generations,
stopping after a specific number of seconds of wall-clock time have elapsed, and stopping when a
specific number of alleles has converged.

• The class Parameters is a singleton class storing runtime parameters such as the mutation rate and
the convergence threshold.

• The class Random is an abstract interface to a pseudo-random number generator.
• The classes StdRandom and BoostRandom are derived from Random and respectively use the standard
C library and the Boost C++ libraries [22] for generating random numbers.

5.2 Phase 2: P-SCP-SG

Phase 2 constituted the biggest effort. The goal of phase 2 was to extend SCP-SG and create a parallel
implementation called P-SCP-SG. During the requirements and design phases the system architecture
of PSG, described in section 4.1, was determined along with the communication protocol and the self-
adaption mechanism.

Functional requirements for phase 2 are largely described in the previous chapter. Additionally one non-
functional requirement was added, specifying the Message Passing Interface (MPI) [23] as the communi-
cations library to use.

Development was divided into two iterations. In addition to a number of changes, iteration 1 added the
following new modules:

• The class Communication, which contains all the code for sending and receiving messages from
neighboring PE’s. The different message types used in the system are described in-depth in sec-
tion 7.2.1.

• The class Logger, providing singleton access to the application’s log files fromanywhere in the source
code.

• The classes Statistics and GlobalStatistics, providing singletons holding various runtime
statistics such as the number of generations executed, etc.

CHAPTER 5. SOFTWARE DEVELOPMENT 23

Iteration 2 saw the implementation of the deterministic self-adaption mechanism, and integrated the new
code from iteration 1 to create a stable build that could compile and execute without failure. At the end of
phase 2, the project contained 2671 lines of source code in 40 files.

5.3 Phase 3: PSG

The final phase of software development had as its primary task the integration of a new problem domain:
the Cellular Automata Problem, described in section 6.2. Implementation of the new problem domain
was contained in the first iteration, with the remaining two iterations concentrating primarily on accep-
tance testing and small maintenance patches to ensure a stable codebase for the experiments described in
chapter 7.

The following new modules were added:

• The class CellularAutomaton, providing the means to build cellular automata and extract test vec-
tors from them.

• The class TestVectors, which facilitates checking coverage of test vectors and fault vectors.

• The class BistProblem, which implements the abstract problem domain interface developed in
phase 1.

• The class MessageStatistics, onemore addition to the group ofmodules collecting runtime statis-
tics. In order to gain a meaningful insight into the performance of any algorithm, it is vital to collect
comprehensive statistics while the program is running. MessageStatistics, along with its close
cousins from phase 2, provides this.

With phase 3 complete, the application reached its final state. Following suspension of development, the
project contained 3695 lines of source code in 61 files. The gradual growth of PSG through its three phases
is indicated graphically in Figure 5.2.

5.4 Dependencies

Readers interested in compiling and executing PSG will be interested to learn what kind of dependencies
the project has. First of all, it must be noted that one of the earliest requirements was that the application
be designed for a Linux computing cluster, so no extra effort was taken to provide compatibility for other
systems. However, since the source code strictly adheres to the ISO standard for the C++ programming
language [21], compatibility should not be an issue.

In particular, two libraries are needed to compile and execute PSG.

1. TheBoost libraries [22]were usedwherever the standardC++ libraries did not provide the necessary
functionality. Boost libraries are available on all popular platforms and are thoroughly tested by the
community.

2. An implementation of theMessage Passing Interface (MPI) [23] is needed, even for sequential oper-
ation. In an effort to guarantee compatibility, two leading MPI implementations were tested during
development: MPICH and OpenMPI.

24 CHAPTER 5. SOFTWARE DEVELOPMENT

Phase 1: SCP−SG Phase 2: P−SCP−SG Phase 3: PSG
0

10

20

30

40

50

60

70
Growth of code size during PSG development

number of files
lines of code (hundreds)

Figure 5.2: Growth of the number of files and the number of lines of code during software development.

The following development tools were used. Although they are not strictly necessary for compilation and
execution, they are recommended.

3. TheCMake build system [24] was used tomaintain the project’smakefiles and to automate compila-
tion. Building the application using other build tools requires the user to manually create makefiles.

4. The Darcs revision control system [25] was used to maintain the project’s repositories. Even in the
case of a single developer, Darcs is an invaluable tool when source code is being developed and
executed on several systems, each needing its own patches to the code. A web interface to the darcs
repositories for all development phases is available at http://dev.harpavieja.cz/darcsweb/.

http://dev.harpavieja.cz/darcsweb/

CHAPTER 6. PROBLEM DOMAINS 25

6 Problem domains

One of the strengths of evolutionary algorithms is the fact that they can be used to solve a wide range
of optimization problems. In general, adapting an evolutionary algorithm to solve a different problem
involves only three steps:

1. Defining the genome for the given problem. This includes setting the number of genes in the cro-
mosome, the bit lengths, etc.

2. Writing the fitness function. The fitness function is the algorithm’s mapping from genotype to phe-
notype and links the abstract genetic domain with the concrete problem domain.

3. Tuning the algorithm’s parameters. Different problems have different characteristics, and settings
that may work well for one problem might not work for another.

In this chapter, we will describe the two problem domains that were implemented for the Parallel Selfish
Gene Algorithm. The first is the Vertex Cover Problem, a well-known problem from the realm of graph
theory. The second problem is known as the Cellular Automata Problem, and it is a real-world problem
from the field of VLSI design.

6.1 The Vertex Cover Problem

The Vertex Cover Problem is one of Karp’s 21 NP-complete problems [26] and is defined as follows:

A vertex cover for an undirected graph G = (V, E) is a subset C of its vertices such that
every edge in E has at least one endpoint in C. The Vertex Cover Problem is an optimization
problem with the goal of finding a vertex cover of minimal size.

6.1.1 Data structures for graphs

Undirected graphs withn vertices are supplied to the program as an adjacencymatrix: a symmetric binary
matrix G[n × n], where G(i, j) = 1, iff there is an edge between i and j. Internally, the program uses an
adjacency list; after loading the adjacency matrix, the program converts it to an adjacency list, and this is
the structure that is used in fitness evaluations.

6.1.2 Definition of the genome

In the Selfish Gene Algorithm, a problem domain is described by the number of genes, and the number of
possible alleles for each locus. Intuitively, the number of genes equals the number of vertices in the graph,
and the number of possible alleles is equal to 2 for each locus. This means that each locus can have two
values: 0 or 1. A value of 0 at locus i means that the i’th vertex in the graph is excluded from the vertex
cover, a value of 1 means that it is included.

26 CHAPTER 6. PROBLEM DOMAINS

6.1.3 Fitness evaluation

Fitness evaluation is rather straightforward. An individual is described as an n-bit binary vector; from
this we can construct subsets C and U of the graph. Subset C ⊆ V is the set of vertices included in the
vertex cover, and subset U = V \ C is the set of vertices not included in the vertex cover.

For each vertex vc ∈ C we know that all edges with an endpoint in vc are “covered,” so no checking is
needed. For each vertex vu ∈ U we have to check that all neighboring vertices are included in the vertex
cover; in other words, that for each neighbor vn of vu, vn ∈ C. If this holds, the cover is valid and the
fitness value is equal to n − |C|. If the cover is not valid, the fitness is set to negative infinity.

6.1.4 Problem instances

Two sets of problem instances were created for use with the algorithm. The first set of problems is a set of
random graphs created according to the Erdős-Rényi model. A MATLAB script was created based on the
work of David Gleich [27]. The script creates graphs according to some parameters such as the number of
vertices and the degree of connectivity.

The second set of problems was taken from [28]; it is a set of twenty interesting graphs specifically chosen
for solving the Vertex Cover Problem.

All problem instances were simple text files representing an adjacency matrix.

6.2 The Cellular Automata Problem

The goal of the Cellular Automata Problem is to evolve the optimal configuration of a cellular automaton
for use in the built-in self-test (BIST) of a combinational circuit. This problem is a lot harder than the
Vertex Cover Problem, which is why it was chosen as the problem to be solved by the Parallel Selfish Gene
Algorithm.

6.2.1 Built-in self-test (BIST)

In integrated circuits, a built-in self-test mechanism is a function by which a circuit is able to verify its
functionality and detect any logic faults that may occur. The basic principle of BIST involves a controller
inside the circuit which generates a sequence of input vectors which are placed on the circuit’s (external)
inputs. The controller then checks if the circuit exhibits the expected behavior and raises a signal if any
error is detected.

A crucial part of the design of a BIST mechanism is the choice of the circuitry responsible for generating
the test vectors. This circuitry is knows as the test pattern generator (TPG). Many different types of TPG
have been developed [29], the most popular being linear feedback shift registers (LFSR) followed closely
by cellular automata (CA). The latter are described in-depth in section 6.2.2.

There are various ways of testing a specific TPG in software. This generally involves applying the sequence
of test vectors obtained from the TPG to a virtual representation of a benchmark circuit. Two approaches
are popular: full fault-simulation and fault vector covering.

CHAPTER 6. PROBLEM DOMAINS 27

011···01

101···00

000···01

011···01

010···10

001···01

100···01T
e

s
t

v
e

c
to

rs

Undetected

faults

TPG

Circuit

Fault Sim

Figure 6.1: Full fault-simulation method of TPG evaluation.

Full fault-simulation

Figure 6.1 shows the principle of full fault-simulation. The heart of this method is a piece of software
called the fault simulator. The fault simulator can load a benchmark circuit and introduce faults into it,
mimicking the behavior of real hardware circuits that develop logic faults.

A series of test vectors is extracted from the TPG. These test vectors are given to the fault simulator; the
fault simulator loads the circuit, introduces faults, and applies the test vectors to the circuit’s inputs. It is
then able to determine which of the introduced faults can not be detected by a BIST controller using this
set of test vectors.

The result of the full fault-simulation method is that for any set of test vectors and any circuit, we are
able to find the set of undetected faults. It stands to reason that when more and more test vectors are
extracted from the TPG, the set of undetected faults becomes smaller and smaller. A common practice is
to keep extracting test vectors until the set of undetected faults becomes empty. The number of test vectors
necessary for achieving 100% fault coverage is then used as a quality measure for the TPG.

Fault vector covering

Unfortunately, full fault-simulation is a very time-consuming affair, and so another approach called fault
vector covering is sometimes employed; the principles of this method are shown in Figure 6.2.

The idea behind fault vector covering is that the costly fault simulation is performed only once for each
circuit, producing some intermediate result withwhichwe can evaluatemany different TPG’s quickly. This
intermediate result is a set of fault vectors VF and is constructed as follows.

28 CHAPTER 6. PROBLEM DOMAINS

1XX···00

0XX···0X

X0X···10

X01···XX

01X···0X

XX0···XX

00X···10F
a

u
lt

 v
e

c
to

rs

Random-pattern
resistant faults

PRPG

ATPG

Circuit

Fault Sim

011···01

001···00

000···01

011···01

010···10

001···01

100···01T
e

s
t

v
e

c
to

rs

TPG

Figure 6.2: Fault vector covering method of TPG evaluation.

First, the fault simulator is employed in the usual way. A pseudo-random pattern generator (PRPG) is
used as the TPG, and a fixed number of test vectors is extracted. Commonly, an LFSR is used as the PRPG
in this step. The fault simulator loads the circuit and applies the vectors from the PRPG. The undetected
faults returned by the fault simulator are known as random-pattern resistant faults (RPRF) since they are
the faults that remain undetected when an arbitrary sequence of (pseudo-)random test vectors is applied
to the circuit.

In the second step, a piece of software known as the automatic test pattern generator (ATPG) is used. For
each fault in the set of RPRF’s, the ATPG is able to calculate a so-called fault vector. A fault vector F ∈ VF is
a binary vector with don’t-care states: a {0, 1, X}i tuple, where i is the number of circuit inputs. When the
non-X symbols in the fault vector are applied to their respective circuit inputs, the fault will be detected.

The ATPG creates one fault vector for each of the RPRF’s and collects them in VF, the set of fault vectors.
This set can be seen to represent the “difficult” faults of the circuit; if a TPG is able to produce test vectors
corresponding to these fault vectors, all the RPRF’s from step 1 will be detected. The problem of TPG
evaluation is now reduced to the problem of matching test vectors with fault vectors.

A test vector T from the TPG is said to “cover” a fault vector F ∈ VF if for every k, where 1 ≤ k ≤ i,
either Tk = Fk or Fk = X. A given TPG may then be tested by taking a fixed number of test vectors from
the TPG and determining how many of the fault vectors are covered by these test vectors. The number
of uncovered fault vectors is used as a measure of the TPG’s quality in a manner similar to the number of
undetected faults in the case of full fault-simulation.

CHAPTER 6. PROBLEM DOMAINS 29

6.2.2 Cellular automata

A cellular automaton [30] is a system of cells composed in a grid. Each cell has a finite number of states.
Time advances in discrete steps, and the state of each cell in the grid at time t is determined by the states
of some of the cells at time t − 1.

Cellular automata come in all shapes and sizes. The kind of CA that is most commonly used as a TPG is
known as the elementary cellular automaton, which is a 1-bit CA (each cell has only two states) where the
cells are arranged in a ring. The state of a cell at time t is calculated according to the states of three cells at
time t−1: the state of the cell itself, the state of its left neighbor and the state of its right neighbor. In other
words, the state transition rule of the cell is a binary function of three variables. There are 223

= 28 = 256

distinct rules, and each is identified by a number from 0 to 255 according to a scheme called theWolfram
code.

cell k

Rk Sk

cell k+1cell k-1

to k’th circuit input

Sk-1Rk-1 Sk+1Rk+1

Figure 6.3: Cell structure of an elementary cellular automaton. Sk is the state of cell k, Rk is the state transition
rule, a function of Sk−1, Sk and Sk+1.

Figure 6.3 shows the cell structure of an elementary cellular automaton. In the diagram, the state of thek’th
cell is denoted as Sk; the cell’s state transition rule Rk is a function of the cell’s state and the neighboring
cell’s states: Rk = f(Sk−1, Sk, Sk+1). When the CA is used as a TPG, a test vector is constructed by
concatenating the states Sk, where 1 ≤ k ≤ i at a given time t; in other words, each cell of the CA is
connected to one circuit input. At time t + 1, each state Sk is recalculated by its rule Rk according to the
states Sk−1, Sk, Sk+1 at time t.

Many of the 256 distinct CA rules are equivalent to one another, and only a few of them are useful in
constructing TPG’s. The most important ones are Rule 60, Rule 90, Rule 150 and Rule 240. In the CA
implementation for the Parallel Selfish Gene Algorithm, only these four rules are available.

6.2.3 Definition of the genome

The genome for the Cellular Automata Problem is based on the definition from Corno et al. [6]:

• For a cellular automaton of i cells, the number of genes n = 2 · i.

• For each cell, one locus is used for the CA rule and one locus for the cell’s initial state.

• “Rule” cells can have four different allele values corresponding to the four important rules intro-
duced in the previous section.

• “Initial state” cells can have two values corresponding to the binary nature of the 1-bit CA.

• The total number of alleles Σa = 2 · i + 4 · i = 3 · n.

30 CHAPTER 6. PROBLEM DOMAINS

6.2.4 Fitness evaluation

Fitness values are calculated according to the fault vector covering method described in section 6.2.1. A
set of 1000 test vectorsVT is generated by the CA and compared to the set of fault vectorsVF. This is done
by iterating through the fault vectors; for each vector F ∈ VF, an inner loop checks if any vector T ∈ VT

covers F. When any vector is found to cover F, the fitness value is incremented by |VF|
−1 and the next fault

vector is checked. This produces fitness values in the range 0–1.

The worst-case time complexity for one fitness evaluation is O(|VF| · |VT | · i) = O(|VF| · n) (since VT is
of constant size).

The final fitness value is a value in the range 0–1 indicating the percentage of fault vectors covered by this
CA.

6.2.5 Problem instances

Circuit name No. of circuit inputs i No. of fault vectors |VF| Percentage of don’t-cares
c17 5 13 40%
c432 36 112 51%
c499 41 111 1.6%
c880 60 132 75%
c1355 41 104 1.5%
c1908 33 121 49%
c2670 233 146 83%
c3540 50 121 79%
c5315 178 123 89%
c6288 32 94 27%
c7552 207 146 72%

Table 6.1: Problem instances constructed from combinational ISCAS’85 benchmark circuits.

Since the built-in self-test is a much-studied topic in VLSI design, a standard set of benchmarks known
as the ISCAS’85 benchmark set is available [31] and is used by most researchers. In order not to overload
the computing cluster, which is shared by many users, only the combinational circuits from this set were
studied. For each benchmark circuit, the set of fault vectors VF was constructed as follows:

1. Using the program atalanta-m [32], originally developed at Virginia Tech [33, 34], a list of logic
faults was created by fault-simulating the circuit using an LFSR as the TPG. The LFSR’s generating
polynomial, as well as its seed, were random integers of i bits generated using a Mersenne Twister
pseudo-random number generator.

2. A set of fault vectors covering all faults was created, again using atalanta-m.

3. The resulting set of fault vectors often had duplicate items, so in the last step, the set of fault vectors
was sorted lexicographically, and duplicates were stripped. The final set of fault vectorsVFwas then
written to a file and used as a problem instance for the Parallel Selfish Gene Algorithm. Note that

This particular value was selected as it has been shown to lead to good coverage when 100 ≤ |VF | ≤ 150, while keeping the
fitness evaluations short.

CHAPTER 6. PROBLEM DOMAINS 31

only the file containing the fault vectors is needed: the algorithm has no knowledge of the actual
benchmark circuit.

Care was taken to ensure that the number of fault vectors was in the range 100–150 for all circuits in the
benchmark set. However, for some “easy” circuits such as c17 this was not possible, and for those circuits
the set is smaller. For reference, the full set of combinational circuits in the ISCAS’85 benchmark set is
given in Table 6.1, along with the number of circuit inputs i, the number of fault vectors |VF| and the
percentage of don’t-care symbols in the fault vectors. Figure 6.4 conveys this information in a graphical
form.

0 50 100 150 200 250

c7552

c6288

c5315

c3540

c2670

c1908

c1355

c880

c499

c432

c17

ISCAS’85 combinational circuits

IS
C

A
S

 c
irc

ui
t

No. of inputs
No. of fault vectors
Percentage of dont’t−cares

Figure 6.4: Problem instances for the Cellular Automata Problem. Included are the combinational circuits from
the ISCAS’85 benchmark set. In the graph, the number of circuit inputs is depicted, along with the number of
fault vectors generated and the number of don’t-care symbols in those fault vectors.

6.2.6 Previous work

The Parallel Selfish Gene Algorithm is not the first evolutionary algorithm solving the problem of evolv-
ing cellular automata for BIST design. In [6], Corno et al. used the Selfish Gene Algorithm to solve this
problem, although their approach had some subtle differences from what was adopted for PSG. In their
approach, they recognized the fact that certain combinations of CA rules Rule 90 and Rule 150 produce
cellular automata with a maximal period, that is, one that traverses all possible (2i − 1) non-zero states
before returning to its initial non-zero state [35]. This type of CA is known as the 90/150 LHCA. The re-
searchers “pre-loaded” the algorithm with the 90/150 LHCA and started the search in the neighborhood
of the 90/150 LHCA. In contrast, the implementation of the Cellular Automata Problem in the PSG starts
the search “from scratch,” without any prior knowledge.

32 CHAPTER 6. PROBLEM DOMAINS

Another difference is the fact that Corno et al. allowed all 256 CA rules to be used; the final difference is
their use of fault-simulation for the fitness function, compared to the fault vector covering method used
in PSG.

In their paper, the researchers showed that they were able to find cellular automata that detected more
faults than the 90/150 LHCA, reaching full 100% fault coverage for many circuits in the ISCAS’85 set.

CHAPTER 7. EXPERIMENTS 33

7 Experiments

In this chapter, the performance and behavior of PSG will be thoroughly analyzed and described. In the
first section, the process of tuning the algorithm’s parameters is discussed. With all but one of the pa-
rameters fixed at their optimal values, we show some general performance characteristics in the second
section before moving on to the third section, where scalability and speedup are evaluated, the two most
important characteristics of any parallel system. In the fourth section we compare the performance of
PSG to that of a random search algorithm. Finally, the last section rounds off the chapter by evaluating
the real fault coverage obtained when cellular automata evolved by PSG are used as test pattern generators
for BIST circuitry.

All experiments in this chapterwere performed on the “star” computing cluster installed at theDepartment
of Computer Science and Engineering of the Faculty of Electrical Engineering, Czech Technical University.
The cluster gets its name from the topology of its interconnection network: the network uses a central
switch and therefore resembles a star. The system falls into the “cluster of workstations” category of parallel
systems: a collection of PC-based machines connected by a local network. Detailed parameters of the
cluster are given in Table 7.1.

Number of machines 8
Number of processors per machine 4 (two dual-core CPU’s)
Total number of CPU’s 32
CPU type Opteron 2218 (AMD K8 architecture)
Memory per machine 4 GiB
Networking technology InfiniBand, 10 Gb s¹
Operating system Linux kernel 2.6.16, x86-64 ISA
Communication library OpenMPI version 1.2.5

Table 7.1: Parameters of the “star” computing cluster.

34 CHAPTER 7. EXPERIMENTS

7.1 Parameter tuning

Any evolutionary algorithm stands or falls with the choice of its parameters and selecting or tuning the
parameters is often the most time-consuming part of an algorithm design. In section 4.2 we saw that there
are some methods by which one can reduce the number of parameters to be tuned, but the fact remains
that there will always be some parameters that have to be tuned; there is no such thing as a “tuneless”
algorithm.

In this section we will describe the process of parameter tuning for PSG. The following parameters were
addressed:

1. ɛ, the probability reward and penalty given during tournaments.

2. convergenceThreshold, the probability level at which convergence is determined for any allele.

3. X0, the number of alleles sent in the first migration event.

4. Y0, the number of alleles that must be converged in order to trigger the first migration event.

5. µ, the migrant mixing coefficient.

6. γ, the epoch length modifier.

7. epochGenerationLimit, the number of generations after which a migration event is triggered re-
gardless of the number of converged alleles.

8. intervalCheckEpoch, intervalStoppingLocal and intervalStoppingGlobal: the number of
generations between consecutive checks of, respectively, the migration event conditions, the local
stopping conditions and the global stopping conditions.

Notably absent from this list is δ, the degree of the communication network’s graph. Due to its importance,
this parameter will be examined in-depth, along with p, in section 7.3. During the parameter tuning
experiments, the degree was set to the value δ = p

2
, which is often found to lead to optimal results [12, 13].

In the interest of keeping the number of experimentswithin reasonable limits, only three problem instances
were used for the parameter tuning phase, all of them from the set of ISCAS’85 benchmark circuits given
in Table 6.1 in the previous chapter.

1. c6288
2. c3540
3. c5315

Parameter tuningwas divided into two iterations; during the first iteration, related parameters were chosen
two at a time. For each parameter, three to five different values were chosen. The set of experiment con-
figurations was taken as the Cartesian product between the two sets of parameter values. The experiments
were then executed for 20 minutes, once using p = 4, once using p = 8.

For each problem instance, the set of best fitness values found during the 20-minute run was rearranged
by subtraction and multiplication to give a mean value of 0 and a variance of 1. The values were then
plotted as four contour graphs: one graph for each problem instance, and one for the sum of the three sets
of values. Figure 7.1 shows the color scale used in these contour graphs.

CHAPTER 7. EXPERIMENTS 35

When the results were inconclusive, another grid of parameter values was picked intersecting the first, and
the results were combined.

In the second iteration, parameter values were selected close to the local optima discovered during the first
iteration. The process of running the experiments and processing the results was otherwise identical to
that of the first iteration.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Figure 7.1: Color scale for the contour graphs that show results of parameter tuning. The numbers on the scale
represent the distance of a data point from the mean, in standard deviations.

7.1.1 Iteration 1

Figure 7.2 shows the results of tuning ɛ and convergenceThreshold. It can be clearly seen that low values
of ɛ cause low fitness values. For convergenceThreshold there is also a local optimum, although it is not
as distinct as with ɛ.

In Figure 7.3 the results of tuning Y0 and X0 are shown. A local optimum for both variables can easily be
discerned.

Figure 7.4 shows the results of tuning µ and γ. Unfortunately, a single local optimum does not exist here;
a diagonal valley of low fitness values cuts across the graph. The larger local optimum, around µ = 0.8

and γ = 7, was selected as the area for the second iteration.

The last graph, Figure 7.5, shows the results of tuning epochGenerationLimit and intervalCheckEpoch.
From the graph it is evident that these parameters have a very subtle and rather unpredictable effect on the
performance of the algorithm. Nevertheless, a small local optimum in the top-right corner of the graph
was selected as the area for the second iteration.

36 CHAPTER 7. EXPERIMENTS

log
10

(ε)

co
nv

er
ge

nc
eT

hr
es

ho
ld

Circuit c6288, n=64, p={4,8}

−3 −2.5 −2 −1.5 −1

0.65

0.7

0.75

0.8

0.85

0.9

log
10

(ε)

co
nv

er
ge

nc
eT

hr
es

ho
ld

Circuit c3540, n=100, p={4,8}

−3 −2.5 −2 −1.5 −1

0.65

0.7

0.75

0.8

0.85

0.9

log
10

(ε)

co
nv

er
ge

nc
eT

hr
es

ho
ld

Circuit c5315, n=356, p={4,8}

−3 −2.5 −2 −1.5 −1

0.65

0.7

0.75

0.8

0.85

0.9

log
10

(ε)

co
nv

er
ge

nc
eT

hr
es

ho
ld

Weighted sum of c6288, c3540 and c5315

−3 −2.5 −2 −1.5 −1

0.65

0.7

0.75

0.8

0.85

0.9

Figure 7.2: Parameter tuning of the parameters ɛ and convergenceThreshold. Values of ɛ were chosen with
geometric spacing in the range suggested by Corno et al. [4] and are plotted logarithmically. Values of conver-
genceThresholdwere chosen with linear spacing in the range suggested by Corno et al.

Ratio of Y
0
 to n

R
at

io
 o

f X
0 to

 Y
0

Circuit c6288, n=64, p={4,8}

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Ratio of Y
0
 to n

R
at

io
 o

f X
0 to

 Y
0

Circuit c3540, n=100, p={4,8}

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Ratio of Y
0
 to n

R
at

io
 o

f X
0 to

 Y
0

Circuit c5315, n=356, p={4,8}

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Ratio of Y
0
 to n

R
at

io
 o

f X
0 to

 Y
0

Weighted sum of c6288, c3540 and c5315

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Figure 7.3: Parameter tuning of the parameters Y0 and X0. Since there is a strong dependency between these
parameters and the number of genesn, the X-axis shows the ratio Y0/n; on the Y-axis the ratioX0/Y0 is shown.
Values of the two ratios were chosen with geometric spacing.

CHAPTER 7. EXPERIMENTS 37

µ

γ

Circuit c6288, n=64, p={4,8}

0.2 0.4 0.6 0.8 1

2

3

4

5

6

7

8

9

µ

γ

Circuit c3540, n=100, p={4,8}

0.2 0.4 0.6 0.8 1

2

3

4

5

6

7

8

9

µ

γ

Circuit c5315, n=356, p={4,8}

0.2 0.4 0.6 0.8 1

2

3

4

5

6

7

8

9

µ

γ

Weighted sum of c6288, c3540 and c5315

0.2 0.4 0.6 0.8 1

2

3

4

5

6

7

8

9

Figure 7.4: Parameter tuning of the parametersµ andγ. Values ofµwere chosen with semi-linear spacing in the
range from 0 to 1. Values of γ were chosen with geometric spacing, with the added constraint that they had to
be integers.

log
10

(epochGenerationLimit)

in
te

rv
al

C
he

ck
E

po
ch

Circuit c6288, n=64, p={4,8}

3 4 5 6

50

100

150

200

log
10

(epochGenerationLimit)

in
te

rv
al

C
he

ck
E

po
ch

Circuit c3540, n=100, p={4,8}

3 4 5 6

50

100

150

200

log
10

(epochGenerationLimit)

in
te

rv
al

C
he

ck
E

po
ch

Circuit c5315, n=356, p={4,8}

3 4 5 6

50

100

150

200

log
10

(epochGenerationLimit)

in
te

rv
al

C
he

ck
E

po
ch

Weighted sum of c6288, c3540 and c5315

3 4 5 6

50

100

150

200

Figure 7.5: Parameter tuning of the parameters epochGenerationLimit and intervalCheckEpoch. Values of
epochGenerationLimit were chosen with geometric spacing and are plotted logarithmically. Values of in-
tervalCheckEpochwere also chosen with geometric spacing, but are plotted linearly. For each different value
of intervalCheckEpoch the values of intervalStoppingLocal and intervalStoppingGlobalwere also
adjusted, but these are not shown on the graph.

38 CHAPTER 7. EXPERIMENTS

7.1.2 Iteration 2

In the second iteration of parameter tuning, only five different combinations of parameter values were
chosen, arranged like the pips on the “5” face of ordinary playing dice, with the center pip representing
the values chosen during iteration 1. Results from the second iteration of parameter tuning are shown in
figures 7.6, 7.7, 7.8 and 7.9.

The purpose of iteration 2 was primarily confirmation that the values from iteration 1 were really correct
optima; the secondary goal was to perform tests in the area of the local optima at a resolution higher than
in iteration 1. The results are straightforward: the five data points are shown along with a contour graph
fitting these points. On the fourth quadrant of each figure, a black asterisk represents the final values of the
parameters that were chosen. These values were then used in all further experiments with few exceptions.
For reference, the exact values are given in Table 7.2.

Parameter Value
ɛ 0.026
convergenceThreshold 0.80
Y0/n 0.107
X0/Y0 0.590
µ 0.71
γ 6
epochGenerationLimit 100 000
intervalUpdateParameters 10
intervalCheckEpoch 170
intervalStoppingLocal 1200
intervalStoppingGlobal 1400

Table 7.2: Final parameter values after iteration 2 of parameter tuning

CHAPTER 7. EXPERIMENTS 39

log
10

(ε)

co
nv

er
ge

nc
eT

hr
es

ho
ld

Circuit c6288, n=64, p={4,8}

−1.8 −1.7 −1.6 −1.5
0.75

0.8

0.85

log
10

(ε)

co
nv

er
ge

nc
eT

hr
es

ho
ld

Circuit c3540, n=100, p={4,8}

−1.8 −1.7 −1.6 −1.5
0.75

0.8

0.85

log
10

(ε)

co
nv

er
ge

nc
eT

hr
es

ho
ld

Circuit c5315, n=356, p={4,8}

−1.8 −1.7 −1.6 −1.5
0.75

0.8

0.85

log
10

(ε)

co
nv

er
ge

nc
eT

hr
es

ho
ld

Weighted sum of c6288, c3540 and c5315

−1.8 −1.7 −1.6 −1.5
0.75

0.8

0.85

Figure 7.6: Parameter tuning of the parameters ɛ and convergenceThreshold. The black asterisk denotes the
final parameter values chosen for further experiments.

Ratio of Y
0
 to n

R
at

io
 o

f X
0 to

 Y
0

Circuit c6288, n=64, p={4,8}

0.08 0.1 0.12 0.14 0.16
0.4

0.5

0.6

0.7

0.8

Ratio of Y
0
 to n

R
at

io
 o

f X
0 to

 Y
0

Circuit c3540, n=100, p={4,8}

0.08 0.1 0.12 0.14 0.16
0.4

0.5

0.6

0.7

0.8

Ratio of Y
0
 to n

R
at

io
 o

f X
0 to

 Y
0

Circuit c5315, n=356, p={4,8}

0.08 0.1 0.12 0.14 0.16
0.4

0.5

0.6

0.7

0.8

Ratio of Y
0
 to n

R
at

io
 o

f X
0 to

 Y
0

Weighted sum of c6288, c3540 and c5315

0.08 0.1 0.12 0.14 0.16
0.4

0.5

0.6

0.7

0.8

Figure 7.7: Parameter tuning of the parameters Y0 andX0. The black asterisk denotes the final parameter values
chosen for further experiments.

40 CHAPTER 7. EXPERIMENTS

µ

γ

Circuit c6288, n=64, p={4,8}

0.7 0.75 0.8 0.85

6

6.5

7

7.5

8

µ

γ

Circuit c3540, n=100, p={4,8}

0.7 0.75 0.8 0.85

6

6.5

7

7.5

8

µ

γ

Circuit c5315, n=356, p={4,8}

0.7 0.75 0.8 0.85

6

6.5

7

7.5

8

µ

γ

Weighted sum of c6288, c3540 and c5315

0.7 0.75 0.8 0.85

6

6.5

7

7.5

8

Figure 7.8: Parameter tuning of the parameters µ and γ. The black asterisk denotes the final parameter values
chosen for further experiments.

log
10

(epochGenerationLimit)

in
te

rv
al

C
he

ck
E

po
ch

Circuit c6288, n=64, p={4,8}

4.85 4.9 4.95 5 5.05 5.1

150

160

170

180

190

log
10

(epochGenerationLimit)

in
te

rv
al

C
he

ck
E

po
ch

Circuit c3540, n=100, p={4,8}

4.85 4.9 4.95 5 5.05 5.1

150

160

170

180

190

log
10

(epochGenerationLimit)

in
te

rv
al

C
he

ck
E

po
ch

Circuit c5315, n=356, p={4,8}

4.85 4.9 4.95 5 5.05 5.1

150

160

170

180

190

log
10

(epochGenerationLimit)

in
te

rv
al

C
he

ck
E

po
ch

Weighted sum of c6288, c3540 and c5315

4.85 4.9 4.95 5 5.05 5.1

150

160

170

180

190

Figure 7.9: Parameter tuningof the parametersepochGenerationLimit andintervalCheckEpoch. The black
asterisk denotes the final parameter values chosen for further experiments.

CHAPTER 7. EXPERIMENTS 41

7.2 General performance metrics

Before moving on to the scalability experiments we will briefly demonstrate some general metrics of PSG’s
performance using the parameters found in the previous section. Section 7.2.1 shows what kinds of mes-
sages are exchanged between processors during a typical run of the algorithm, and in what proportions. In
section 7.2.2 we illustrate the deterministic self-adaption strategy introduced in section 4.2.3 by showing
how the value of ρ changes over time.

7.2.1 Communication

Figure 7.10 and Figure 7.11 show the communication characteristics for two runs of the algorithm. In
these runs, the number of processors was set to 4 and the degree was set to 2. The problem instances were
c3540 and c6288, respectively. The bar graph in the bottom half of each figure shows the numbers of
messages sent and received for each distinct message type used by the algorithm. These message types are:

ALLELES: Themost importantmessage of all, this is themessage containing converged allele values, which
is sent in a migration event. For each message sent, δ messages are received.

LOCAL_STOP: When a processor reaches its local stopping conditions, a LOCAL_STOP message is sent to
p0.

GLOBAL_STOP: When p0 reaches the global stopping conditions, this message is sent to all other proces-
sors.

LOCAL_SOLUTION: Upon receiving GLOBAL_STOP, processors send their best individual found to p0 inside
a LOCAL_SOLUTIONmessage.

TERMINATION_TOKEN: When p0 has received (p− 1) LOCAL_SOLUTIONmessages, it sends out the TERMI-
NATION_TOKEN to all other processors, informing them it is safe to disconnect the message loop and
terminate.

The algorithm states that only ALLELES and LOCAL_STOPmay be sentmultiple times, all othermessages are
sent only once. In Figure 7.10, no processors reach their local stopping conditions and thus no LOCAL_STOP
messages are sent. Figure 7.11 shows an interesting case where one processor, p1, is lucky to reach its local
stopping conditions early in the execution, and as a result it repeatedly sends LOCAL_STOPmessages to p0.

42 CHAPTER 7. EXPERIMENTS

ALLELES sent
ALLELES rcvd
LOCAL_STOP sent
LOCAL_STOP rcvd
GLOBAL_STOP sent
GLOBAL_STOP rcvd
LOCAL_SOLUTION sent
LOCAL_SOLUTION rcvd
TERMINATION_TOKEN sent
TERMINATION_TOKEN rcvd

0 1 2 3
0

10

20

30

40

50

Processing element (deme)

Figure 7.10: Visualization of the amounts of messages of distinct types exchanged in the system (with p = 4).
The tested problem file was c3540 (n = 100). The pie chart shows the aggregate amounts for all processors
combined, the bar chart shows the individual amounts for each processor.

ALLELES sent
ALLELES rcvd
LOCAL_STOP sent
LOCAL_STOP rcvd
GLOBAL_STOP sent
GLOBAL_STOP rcvd
LOCAL_SOLUTION sent
LOCAL_SOLUTION rcvd
TERMINATION_TOKEN sent
TERMINATION_TOKEN rcvd

0 1 2 3
0

50

100

150

200

250

Processing element (deme)

Figure 7.11: Visualization of the amounts of messages of distinct types exchanged in the system (with p = 4).
The tested problem file was c6288 (n = 64). The pie chart shows the aggregate amounts for all processors
combined, the bar chart shows the individual amounts for each processor.

CHAPTER 7. EXPERIMENTS 43

7.2.2 Self-adaption

In section 4.2 we describe a strategy for deterministic self-adaption of the mutation probability ρ, given
by equation (4.6):

ρ(n, c, t) =

(
2 +

n − 2

n
c +

√
t

n

)−1

Considering that n remains constant during execution of the algorithm, any changes in ρ are related to
changes in c, the number of converged alleles, and t, the number of generations in the current epoch,
which in turn depends on e, the number of epochs.

Figure 7.12 and Figure 7.13 plot the value of ρ along with c and e, where c is expressed as the percentage of
genes that have converged to a specific allele. The figures refer to the same runs as described in Figure 7.10
and Figure 7.11 in the previous section.

In Figure 7.12, we see that c does not always increase over time; it can happen that some demes are forced
to abandon their local optima in favor of more promising areas found in other demes. This is a normal
behavior for an island model PEA. When this happens, the decreasing value of c leads to higher values of
ρ, as can be seen from the graph.

Figure 7.13 showsp1 reaching its local stopping conditions early in the executionwhen c approaches 100%.
The graph also shows the wide diversity that can occur between demes, with p0 and p2 never converging
more than 50% of their genes while the other demes appear to be more successful.

44 CHAPTER 7. EXPERIMENTS

0 1 2 3 4 5

x 10
5

0

20

40

60

80

No. of generations

Processor P00

e c [%] ρ [%]

0 1 2 3 4 5

x 10
5

0

10

20

30

40

50

No. of generations

Processor P01

0 1 2 3 4

x 10
5

0

10

20

30

40

50

60

70

No. of generations

Processor P02

0 1 2 3 4

x 10
5

0

10

20

30

40

50

No. of generations

Processor P03

Figure 7.12: Visualization of the number of epochs e, the number of converged alleles c, and themutation prob-
ability ρ for each processor in the system (with p = 4). The tested problem file was c3540 (n = 100).

0 1 2 3

x 10
5

0

10

20

30

40

50

60

No. of generations

Processor P00

e c [%] ρ [%]

0 1 2 3

x 10
5

0

20

40

60

80

100

No. of generations

Processor P01

0 1 2 3

x 10
5

0

10

20

30

40

50

No. of generations

Processor P02

0 1 2 3

x 10
5

0

20

40

60

80

100

No. of generations

Processor P03

Figure 7.13: Visualization of the number of epochs e, the number of converged alleles c, and themutation prob-
ability ρ for each processor in the system (with p = 4). The tested problem file was c6288 (n = 64).

CHAPTER 7. EXPERIMENTS 45

7.3 Scalability and speedup

In this section we will examine the parallel speedup of the algorithm in order to evaluate its scalability.
In section 3.2.1 we highlighted some of the issues in measuring speedup for heuristic methods such as
evolutionary algorithms, particularly the observation that when adopting a convergence-based approach
to speedup, some PEA’s might exhibit very poor speedups, with the convergence times sometimes even
increasing as more PE’s are added. However, such a PEA does make use of the extra resources, reflected
by a higher solution quality. For such PEA’s, we advocated the use of a solution-quality-based approach
to speedup, measuring the time it takes different algorithm configurations to reach solutions of a certain
quality.

Preliminary scalability testing revealed that PSG falls into this category; convergence-based speedup was
virtually nonexistent, yet a correlation seemed to exist between the number of processors and the highest
fitness found during execution. Therefore, in order to provide a more meaningful evaluation of PSG’s
scalability, a solution-quality-based approach to speedup was adopted.

Due to PSG’s lack of an explicit population, a somewhat naïve stopping condition was used: execution
terminates after the first individual with a fitness exceeding a certain threshold has been constructed. This
is not fundamentally different from the approach in explicit-population PEA’s, where execution terminates
when the population’s average fitness exceeds a threshold: at any generation, an individual in PSG is largely
constructed from high-frequency alleles and can thus be seen as an “average” individual with, we assume,
an average fitness.

In section 3.1 we introduced equation (3.1), the general formula for parallel speedup.

S(n, p) =
SU(n)

T(n, p)

In otherwords, parallel speedup is a ratio of two values; taking this into account, the scalability experiments
are split into two phases: in phase 1 we will find the numerator SU(n), and in phase 2 we will find the
denominator T(n, p).

7.3.1 Phase 1

When using a solution-quality-based approach to speedup, the first task is to set the fitness target to such
a level that a sequential implementation can reach it in a reasonable amount of time. To determine these
levels, a sequential algorithm was executed on each problem instance for 30 minutes, or until the maximal
fitness value was found. Figure 7.14 shows the highest fitness values found during each run, along with the
highest level of convergence reached. The fitness targets for each problem instance were then set slightly
below these highest fitness values, to prevent rounding errors from unnecessarily prolonging execution.
Problem instances where no alleles converged at all (c499 and c1355) were excluded from the rest of the
experiments.

In order to find SU(n) for each problem instance, the sequential algorithm was then executed once more,
this time with the fitness target set as a local stopping condition. Taking the stochastic nature of the algo-
rithm into account, each problem instance was run three times. The average wall-clock runtime of these
three runs was taken as SU(n). The results of these runs are displayed graphically in Figure 7.15.

In real-world populations, the average individual does not always possess an average fitness; in many societies, a small
minority of individuals holds a disproportionate amount of resources (food, breeding rights, money).

In the implementation, fitness values use a floating-point representation.

46 CHAPTER 7. EXPERIMENTS

0 10 20 30 40 50 60 70 80 90 100

c7552

c6288

c5315

c3540

c2670

c1908

c1355

c880

c499

c432

c17

Scalability experiments, phase 1: p=1, δ=0, Y
0
=1, X

0
=0, γ=500

IS
C

A
S

 c
irc

ui
t

number of converged alleles [%] best fitness found [%]

Figure 7.14: The highest fitness values, and number of converged alleles found during a 30-minute run of the
sequential algorithm.

0 5 10 15 20 25 30

c7552

c6288

c5315

c3540

c2670

c1908

c880

c432

c17

9m31s

12m50s

27m22s

6m59s

9m46s

7m50s

14m26s

7m51s

0m1s

Scalability experiments, phase 1: p=1, δ=0, Y
0
=1, X

0
=0, γ=500

IS
C

A
S

 c
irc

ui
t

Time until fitness target was reached [minutes]

Figure 7.15: The average time SU(n) taken by a sequential configuration of PSG to reach the fitness targets
shown in Figure 7.14.

CHAPTER 7. EXPERIMENTS 47

7.3.2 Phase 2

In phase 2, the runtimes of the parallel implementationweremeasured. Letting fT denote the fitness target
found in phase 1, the algorithm’s stopping conditions were set as follows:

• Each deme had a local stopping condition of the form f ≥ fT ; in other words, the deme starts
sending out LOCAL_STOPmessages once an individual with a fitness exceeding the target is found.

• Processorp0, responsible for checking the global stopping conditions, was set to initiate termination
when at least one deme reaches its local stopping conditions. In other words, p0 starts sending out
GLOBAL_STOPmessages after the first LOCAL_STOPmessage has been received. If no such message is
received after some time limit (30 minutes) has elapsed, termination is initiated regardless.

In section 7.1 we left one parameter unaddressed: δ, the degree of the interconnection network. The goal
of the scalability experiments was to analyze the correlation between speedup S(n, p) and δ. A range of
values for δ similar to the one used by Cao, et al. [13] was chosen. Specifically, four degrees of connectivity
were examined:

1. δ = p
2
, the value designated as “usually optimal” by Cantú-Paz [12].

2. δ = (p − 1), or full connectivity; each deme sends migration packets to all others.
3. δ = 1, the least connectivity; each deme sends a migratation packet to only one neighbor.
4. δ = 2. Although differing only by one, this scheme is rather different from δ = 1; when δ = 1, any

deme pi sends migration packets to pj, where j = (i+1) mod p. This means that pj does not send
migration packets to pi. In the case of δ = 2, two neighboring demes do send migration packets
to each other: any deme pi sends migration packets to pj and to pk, where j = (i + 1) mod p and
k = (i − 1) mod p.

The algorithm was executed on each of the nine ISCAS circuits from the first phase, using each of these
four δ schemes. The number of processors p ranged from 2 to 24; other runtime parameters were set to
the values found during the parameter tuning experiments described in section 7.1.

Wall-clock execution times were collected for each run. For each problem instance, these execution times
were plotted as four series in the (p, T)-plane, one for each δ scheme. Dividing SU(n), obtained in phase
1, by the values T(n, p), speedup S(n, p) was obtained. Speedups were again plotted as four series, this
time with S on the y-axis.

Figures showing T(n, p) and S(n, p) for each tested problem instance are reproduced in Appendix A. Of
special interest are the figures for c17 shown in Figure A.1: due to the simplicity of this circuit, execu-
tion never took more than two seconds. Since time measurement in the implementation is done with a
resolution of 1 second, T(n, p) could not be measured accurately, and the values of S(n, p) are not very
meaningful. The graphs are reproduced solely for the sake of completeness.

A general notion of scalability for PSG may be obtained by producing a graph of aggregate speedup: the
average values of S(n, p) for each distinct value of p. In computing these values, we excluded the results
of c17 and so aggregate speedup is the average speedup across eight problem instances, with values of n
ranging from 64 (c6288) to 466 (c2670). Aggregate speedup is shown in Figure 7.16.

The figure clearly shows that as more processors are added to the system, the algorithm finds a suitable
individual in a reduced time. While speedup is not linear (in reality, it rarely is), it certainly is an increasing
function for all δ schemes considered.

48 CHAPTER 7. EXPERIMENTS

0 5 10 15 20 25
0

5

10

15

20

25

Number of processors p

A
ve

ra
ge

 s
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: all problem instances

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

Figure 7.16: SpeedupS(n, p)of PSG for different combinations ofp andδ for all ISCAS circuits tested. Thedotted
line denotes the theoretical linear speedup S(n, p) = p.

An interesting observation is the fact that optimal performance is often obtained when δ = 1. Further-
more, the significant difference between the performance of the δ = 1 and δ = 2 schemes leads to the
conclusion that in PSG, the topology of the network appears to play a larger role than in canonical genetic
algorithms. This conclusion is based on the fact that while the δ = 1 and δ = 2 schemes do not differ
greatly in their degree, they do differ in topology: when δ = 2, a converged allele emigrating from any
deme pi may migrate back to pi after just one epoch, whereas in the case of δ = 1 the allele must go
through at least (p − 1) epochs before it finds its way back to pi.

CHAPTER 7. EXPERIMENTS 49

7.4 Comparison with random search

In this section we will examine how the algorithm performs when compared to a random search algo-
rithm. Using terminology from evolutionary algorithms, a random search algorithm can be defined as an
algorithm that, each generation, evaluates the fitness of a random individual. When execution terminates,
the best individual found is returned.

PSG is a very flexible algorithm, and can be turned into a random search algorithm simply by setting ɛ to
zero. This prevents the algorithm from adjusting the population’s gene pool, leaving the VP in its initial
state (all alleles are equally likely) for the length of the algorithm’s execution. In section 2.2 we learned that
when the Selfish Gene Algorithm constructs an individual, the individual’s genotype will be made up of a
combination of random and proportionate alleles. When the VP is in its initial state, there is no difference
between a random and a proportionate allele, and all alleles are effectively random.

To make the comparison between PSG and random search meaningful, it was decided to let each algo-
rithm execute for a fixed number of generations. For each problem instance, the generation target gT was
calculated as follows:

1. Execution reports from the scalability experiment were analyzed. The total number of generations
executed was summed up and divided by the total number of seconds of wall-clock time. This gives
the average number of generations per second v̄g.

2. gT was set to 32 · v̄g, rounded to the nearest integer.

3. intervalStoppingLocal was set to 8 · v̄g, rounded upwards to the nearest multiple of interval-
UpdateParameters.

4. intervalStoppingGlobalwas set to 9 · v̄g, rounded upwards to the nearest multiple of interval-
UpdateParameters.

By using this method, execution was expected to take around 32 seconds, with local and global stopping
conditions being checked roughly every 8 and 9 seconds, respectively.

Further parameters of the experiment were as follows:

• The number of processors p = 8.

• For PSG, δ = {1, 2, 4, 7}. For random search δ is not relevant.

• For random search, ɛ = 0.

• Each deme received a local stopping condition of the form g ≥ gT .

• p0 received a global stopping condition of the form Σg ≥ p · gT .

Eight problem instances were thus tested: the nine from the scalability experiments minus c17, since
all configurations are capable of reaching 100% fitness for c17 within a few seconds. For each problem
instance, one run of random search was performed, and four runs of PSG, each with a different value of
δ. The highest fitness values reached during execution were collected and are represented in Figure 7.17
as ratios of solution quality.

This corresponds to the four δ schemes discussed in the previous section.

50 CHAPTER 7. EXPERIMENTS

0 50 100 150

c2670

c7552

c5315

c880

c3540

c432

c1908

c6288

n = 466

n = 414

n = 356

n = 120

n = 100

n = 72

n = 66

n = 64

Ratio of f
PSG

 to f
RS

 [%]

IS
C

A
S

 c
irc

ui
t

Comparison between PSG and random search (RS)

δ = 1
δ = 2
δ = 4
δ = 7

Figure 7.17: Comparison of solution qualities of PSG and randomsearch (RS). The ratio fPSG/fRSis shown, where
fPSGand fRSare the best fitness values foundby PSG and random search, respectively. Additionally, the number
of inputsn is shown for each problem instance.

The results are not as impressive as one would have hoped; PSG rarely outperforms random search, and if
it does, it does so by only a few percent. However, it should be noted that for the problem instances con-
sidered, the time available for execution in this experiment (less than one minute) is far less than the time
needed for PSG to converge and yield its greatest benefit. Moreover, Corno et al. already demonstrated
that the Selfish Gene Algorithm behaves as a random search algorithm for its first phase of execution [4].

Summing up, the experiments in this section neither confirm nor deny the hypothesis that PSG can out-
perform a random search algorithm. For that, further experiments would be needed, where there is more
time available for execution. Unfortunately, organizational limits imposed on the computing cluster pre-
vented such experiments from being performed.

CHAPTER 7. EXPERIMENTS 51

7.5 Real fault coverage

In this section, we will examine the real fault coverage of the cellular automata that PSG evolves. In sec-
tion 6.2.1 we described two methods of evaluating a TPG: full fault-simulation and fault vector covering.
The latter method, which is the one used by PSG, is not as accurate as the former, since no fault simulation
is performed. In this section, we will perform this fault simulation, using the cellular automata evolved by
PSG as TPG’s.

To determine the real fault coverage on the benchmark circuits, the first task is to find the cellular automata
that are most likely to achieve the highest fault coverage. To find them, the results of the scalability ex-
periments were analyzed; for each circuit, the “winning” cellular automaton was chosen as the individual
yielding the highest fitness value. If multiple individuals all had the highest fitness value, the winner was
chosen as the individual produced by the algorithm that achieved the highest level of convergence. For
each circuit, the fitness value of the fittest individual is shown in Figure 7.18, along with the configuration
of the algorithm that evolved this individual. At this point, it is worth repeating the definition of fitness in
the Cellular Automata Problem: the fitness value of an individual refers to the percentage of fault vectors
for the given circuit that are covered by test vectors from the cellular automaton.

0 10 20 30 40 50 60 70 80 90 100

c7552

c6288

c5315

c3540

c2670

c1908

c880

c432

c17

IS
C

A
S

 c
irc

ui
t

Fittest individuals found by PSG

Best fitness found [%]
No. of processors p
Degree δ

Figure 7.18: Best fitness values found by PSG during scalability testing, along with the configuration that found
the fittest individual.

Fault coverage was obtained by fault-simulating each circuit, using I vectors extracted from the winning
CA as the set of input vectorsVT, |VT | = I. Due to computational constraints, the highest number of input
vectors considered was one million (Imax = 106).

DenotingΣF as the total number of faults introduced by the fault simulator, and FUDas the lowest number
of undetected faults, fault coverage CF was calculated according to the following formula.

CF =
ΣF − FUD

ΣF
(7.1)

52 CHAPTER 7. EXPERIMENTS

In addition to fault coverage, the minimal number of input vectors IC needed for achieving maximal fault
coverage was also determined. IC is minimal in the sense that when the IC’th element fromVT is removed,
more faults will go undetected.

Results from the fault coverage experiment are given in Table 7.3. Figure 7.19 shows this information
graphically. Fault coverage is very high for all circuits, with two circuits, c17 and c880, reaching 100%
fault coverage. For these circuits, we may compare the values of IC to the range of values presented in
[29].⁴ For c17, IC is expected to fall within the range 2–33, with a statistical average of 4. Our value (12)
is above the average, but still well within the range. For c880, the range is 2500–75 000, with an average of
13 000. Our value of 8868 is well below the average number of input vectors needed to fully test the circuit.

Circuit name Undetected faults FUD Fault coverageCF Minimal number of vectors IC

c17 0 100% 12
c432 4 99.2% 826
c880 0 100% 8868
c1908 9 99.5% 3611
c2670 137 93.9% 946 695
c3540 137 96.0% 20 482
c5315 59 98.9% 2831
c6288 50 99.4% 70
c7552 214 97.2% 912979

Table 7.3: Real fault coverage obtained by cellular automata evolved by PSG.

c17 c432 c880 c1908 c2670 c3540 c5315 c6288 c7552
0

10

20

30

40

50

60

70

80

90

100

ISCAS circuit

F
au

lt
co

ve
ra

ge
 C

F
 [%

]

Fault coverage of CA’s evolved by PSG

Figure 7.19: Real fault coverage obtained by fault-simulating the ISCAS benchmark circuits, using cellular au-
tomata evolved by PSG as the TPG.

⁴It should be noted that these ranges were established using an LFSR as the test pattern generator.

CHAPTER 8. CONCLUSIONS 53

8 Conclusions

In this chapter, we will review the development and analysis of the Parallel Selfish Gene Algorithm, pre-
senting the knowledge gained, the lessons learned, and the questions that remain unanswered. First, some
general conclusions will be given, followed by the definitive verdict on scalability and efficiency in the
second section. The final section presents a critical view of the results of the work, and states some open
questions and suggestions for further work.

8.1 General conclusions

In section 2.2 the Selfish Gene Algorithm (SG) is introduced, while section 5.1 describes the process of
implementing this algorithm. The main conclusion here is that despite its relative anonymity, SG is a
solid algorithm. Corno et al. already showed the algorithm to be capable of handling the 0/1 Multiple
Knapsack Problem [4] and the Cellular Automata Problem [6]; the implementation of SCP-SG shows that
the algorithm can also solve the Vertex Cover Problem, while the implementation of PSG confirms that
the algorithm is capable of evolving high-quality cellular automata.

Furthermore, the implementation of PSG demonstrates that the “island model” of parallel evolutionary
algorithms described in section 3.3.3 can be successfully applied to a non-standard, implicit-population
algorithm such as SG.

Taking a closer look at the Cellular Automata Problem, we conclude that the fault vector covering method
of TPG evaluation is a good alternative to the much more time-consuming fault simulation approach.
This evokes the analogy of the differences between heuristic search algorithms (evolutionary algorithms,
simulated annealing, among others) and exhaustive methods such as depth-first search; heuristic search
methods are capable of finding near-optimal solutions to a problem in a fraction of the time needed for
an exhaustive search.

Another lesson learned from the Cellular Automata Problem is that elementary cellular automata are good
test pattern generators for BIST circuitry. This confirms the findings of Corno et al. [6] and Fišer [29].
Moreover, the cellular automata evolved by PSG have only four of the 256 CA rules available to them, yet
yield a fault coverage upwards of 93% for all benchmark circuits considered.

8.2 Scalability and efficiency

In section 3.1.1 we introduced the general concept of scalability, defined as the ability to utilize increasing
numbers of processors effectively. By this definition, PSG was shown to scale reasonably well: an increase
in the number of processors translates to either a reduction in execution time, or an increase in solution
quality.

In section 3.2.1 two approaches to measuring speedup of PEA’s are presented: the convergence-based
approach and the solution-quality-based approach. Since there is no strict consensus on which of these
should be used, both were attempted.

When convergence-based speedup is considered, PSG shows no signs of time savings when more proces-
sors are utilized. This is in no way a bad sign, since the solution quality attained by high-p configurations
does tend to exceed that of the sequential implementation.

54 CHAPTER 8. CONCLUSIONS

The situation is different when the solution-quality-based approach to speedup is adopted. In this case,
the algorithm does show clear time savings for higher-p configurations, and the speedup S(n, p) is an
increasing function of p. Aggregate speedup is depicted in Figure 7.16; this is perhaps the most important
graph in the document, and so it is reproduced here once more.

0 5 10 15 20 25
0

5

10

15

20

25

Number of processors p

A
ve

ra
ge

 s
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: all problem instances

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

Figure 7.16: SpeedupS(n, p)of PSG for different combinations ofp andδ for all ISCAS circuits tested. Thedotted
line denotes the theoretical linear speedup S(n, p) = p.

Speedup was found to depend somewhat on the degree of the interconnection network; however, this
dependence does not fully correspond to the behavior predicted by the numerical analysis given in [12].

The final conclusion is that PSG is a processor-efficient algorithm. The extension of the Selfish Gene
Algorithm onto multiple processors gives users the ability to reduce execution time or increase solution
quality.

8.3 Discussion

Themain unanswered question is whether there is a correlation between the level of convergence and solu-
tion quality. Many PEA’s display such a correlation, and it is often taken as an assumption when analyzing
algorithms numerically [3, 12].

PSG does not appear to exhibit such a correlation. In fact, the results of convergence-based speedup testing
can neither confirmnor deny the hypothesis. Further researchwould be needed to analyze the dependence
between convergence and solution quality for algorithms derived from the Selfish Gene Algorithm.

The uncertainty of this matter affects the assessment of the deterministic self-adaption schedule descibed

CHAPTER 8. CONCLUSIONS 55

in section 4.2.3. Like the methods fromwhich it is derived, this method assumes that the hypothesis holds
and that there is a clear relation between convergence and solution quality. When the hypothesis cannot
be confirmed, the mechanism’s foundation is weakened.

It should also be noted that no comparisons were made between the self-adaption mechanism and any
other methods of setting the mutation probability. An objective evaluation of the self-adaption strategy
cannot be made until further research provides results of such a comparison.

PSG was compared head-to-head with a random search algorithm. The results of this comparison are less
than favorable. The question why PSG was not able to outperform the random search algorithm remains
unanswered. A hypothesis was stated that the lack of a performance gain was due to the limited execution
time available for the experiment. However, further experiments would be needed to confirm this.

The last issue concerns speedup again. The degree of connectivity resulting in the highest values of speedup
does not correspond to the value accepted as “usually optimal” by both experimental evaluation [13] and
numerical analysis [12]. More research would be needed to examine this issue in-depth. Of particular
interest is the question to what extent the numerical analysis of general PEA’smay be applied to the Parallel
Selfish Gene Algorithm.

56 CHAPTER 8. CONCLUSIONS

CHAPTER 9. BIBLIOGRAPHY 57

9 Bibliography

[1] C.G. Langton et al. Artificial Life. Addison-Wesley, 1989.

[2] R. Dawkins. The Ancestor’s Tale: A Pilgrimage to the Dawn of Life. Houghton Mifflin, Boston, 2004.

[3] T. Bäck, D.B. Fogel, and Z. Michalewicz. Evolutionary Computation 1: Basic Algorithms and Operators.
CRC Press, 2000.

[4] F. Corno,M.S. Reorda, andG. Squillero. The selfish gene algorithm: a new evolutionary optimization
strategy. In ACM symposium on Applied Computing, pages 349–355, 1998.

[5] R. Dawkins. The Selfish Gene. Oxford University Press, 2nd edition, 1989.

[6] F. Corno, M.S. Reorda, and G. Squillero. Exploiting the selfish gene algorithm for evolving cellular
automata. In International Joint Conference on Neural Networks (IJCNN’2000), pages 577–581, 2000.

[7] P. Tvrdík. Parallel Systems and Algorithms. ČVUT, Prague, 2nd edition, 1999.

[8] F.P. Brooks. The Mythical Man-Month. Addison-Wesley, 1975.

[9] A.D. Bethke. Comparison of genetic algorithms and gradient-based optimizers on parallel proces-
sors: Efficiency of use of processing capacity. Technical Report 197, University of Michigan, Logic
of Computers Group, 1976.

[10] J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

[11] M. Tomassini. Parallel and Distributed Evolutionary Algorithms: a Review. In K. Miettinen, P. Neit-
taanmäki, M.M.Mäkelä, and J. Périaux, editors, Evolutionary Algorithms in Engineering and Computer
Science. Wiley, 1999.

[12] E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, 2000.

[13] H. Cao, J. Yu, L. Kang, and R.I.B. McKay. An experimental study of some control parameters in
parallel genetic programming. Neural, Parallel & Scientific Computations, 11(4):377–394, 2003.

[14] E. Alba and J.M. Troya. A survey of parallel distributed genetic algorithms. Complexity, 4(4):31–52,
1999.

[15] P.R. Grant. Ecology and Evolution of Darwin’s Finches. Princeton University Press, 1999.

[16] P. Liu, F. Lau, M.J. Lewis, and C. Wang. A New Asynchronous Parallel Evolutionary Algorithm for
Function Optimization. In Parallel Problem Solving from Nature (PPSN VII), pages 401–410, 2002.

[17] P.B. Grosso. Computer Simulations of Genetic Adaptation: Parallel Subcomponent Interaction in a Mul-
tilocus Model. PhD thesis, University of Michigan, 1985.

[18] T. Bäck. Self-Adaptation in Genetic Algorithms. In First European Conference on Artificial Life, 1992.

[19] T. Bäck and M. Schütz. Intelligent Mutation Rate Control in Canonical Genetic Algorithms. In
International Syposium on Methodologies for Intelligent Systems, pages 158–167, 1996.

[20] B.T. Skinner, H.T. Nguyen, and D.K. Liu. Performance study of a multi-deme parallel genetic al-
gorithm with adaptive mutation. In 2nd International Conference on Autonomous Robots and Agents
(ICARA 2004), pages 13–15, 2004.

58 CHAPTER 9. BIBLIOGRAPHY

[21] ISO/IEC. International Standard 14882, Programming Languages – C++. Technical report, Inter-
national Organization for Standardization, 2003.

[22] Boost. Boost C++ Libraries. http://www.boost.org/.

[23] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface. http://www.
mpi-forum.org/.

[24] Kitware. CMake Cross Platform Make. http://www.cmake.org/.

[25] D. Roundy. Darcs: Distributed Version Management in Haskell. In ACM SIGPLAN workshop on
Haskell, pages 1–4, 2005.

[26] R.M. Karp. Reducibility Among Combinatorial Problems. Complexity of Computer Computations,
43:85–103, 1972.

[27] D. Gleich. Erdős-Rényi Random Graphs: Seeing the Giant Component, 2006. http://stanford.
edu/~dgleich/demos/matlab/random_graphs/erdosreyni.html.

[28] A. Dharwadker. The Vertex Cover Algorithm, 2006. http://www.geocities.com/dharwadker/
vertex_cover/.

[29] P. Fišer andH. Kubátová. PseudorandomTestability – Study of the Effect of the Generator Type. Acta
Polytechnica, 45(2):47–54, August 2005.

[30] S. Wolfram. Cellular Automata and Complexity: Collected Papers. Addison-Wesley, 1994.

[31] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential benchmark circuits. In
International Symposium on Circuits and Systems, pages 1929–1934, 1989.

[32] VLSI ResearchGroup, Department of Computer Science and Engineering, Faculty of Electrical Engi-
neering, ČVUT. Atalanta-M 1.1, 2005. http://service.felk.cvut.cz/vlsi/prj/Atalanta-M/.

[33] H.K. Lee and D.S. Ha. Atalanta: an Efficient ATPG for Combinational Circuits. Technical Report
93-12, Dept. of Elect. Eng., Virginia Polytechnic Institute and State University, 1993.

[34] H.K. Lee and D.S. Ha. HOPE: an Efficient Parallel Fault Simulator for Synchronous Sequential Cir-
cuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15:1048–1058,
1996.

[35] K. Cattell and S. Zhang. Minimal CostOne-Dimensional LinearHybrid Cellular Automata ofDegree
Through 500. Journal of Electronic Testing, 6(2):255–258, 1995.

http://www.boost.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.cmake.org/
http://stanford.edu/~dgleich/demos/matlab/random_graphs/erdosreyni.html
http://stanford.edu/~dgleich/demos/matlab/random_graphs/erdosreyni.html
http://www.geocities.com/dharwadker/vertex_cover/
http://www.geocities.com/dharwadker/vertex_cover/
http://service.felk.cvut.cz/vlsi/prj/Atalanta-M/

APPENDIX A. DETAILED RESULTS OF THE SCALABILITY EXPERIMENT 59

A Detailed results of the scalability experiment

In section 7.3.2 we describe phase 2 of the scalability experiments, where we determine T(n, p) and
S(n, p) for several ISCAS benchmark circuits using four distinct schemes for setting δ. In this section we
will reproduce the concrete results. For each problem instance there are two figures: one shows T(n, p)

and SU(n), the other shows S(n, p). Table A.1 shows which figure corresponds to which problem in-
stance.

ISCAS circuit No. of genesn Graph of T(n, p) Graph of S(n, p)

c17 10 Figure A.1a Figure A.1b
c432 72 Figure A.2a Figure A.2b
c880 120 Figure A.3a Figure A.3b
c1908 66 Figure A.4a Figure A.4b
c2670 466 Figure A.5a Figure A.5b
c3540 100 Figure A.6a Figure A.6b
c5315 356 Figure A.7a Figure A.7b
c6288 64 Figure A.8a Figure A.8b
c7552 414 Figure A.9a Figure A.9b

Table A.1: ISCAS’85 benchmark circuits and their scalability graphs.

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of processors p

E
xe

cu
tio

n
tim

e
T

(n
,p

)
[m

in
ut

es
]

Scalability experiments, phase 2: ISCAS circuit c17

δ = p / 2
δ = p − 1
δ = 1
δ = 2

(a) Execution time T(n, p).

0 5 10 15 20 25
0

5

10

15

20

25

Number of processors p

S
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: ISCAS circuit c17

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

(b) Speedup S(n, p).

Figure A.1: Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and δ on ISCAS
circuitc17. In the left figure, the black asterisk denotesSU(n), the time takenby the sequential implementation.
In the right figure, the dotted line denotes the theoretical linear speedup S(n, p) = p.

60 APPENDIX A. DETAILED RESULTS OF THE SCALABILITY EXPERIMENT

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Number of processors p

E
xe

cu
tio

n
tim

e
T

(n
,p

)
[m

in
ut

es
]

Scalability experiments, phase 2: ISCAS circuit c432

δ = p / 2
δ = p − 1
δ = 1
δ = 2

(a) Execution time T(n, p).

0 5 10 15 20 25
0

5

10

15

20

25

Number of processors p

S
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: ISCAS circuit c432

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

(b) Speedup S(n, p).

Figure A.2: Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and δ on ISCAS
circuit c432. In the left figure, the black asterisk denotes SU(n), the time taken by the sequential implementa-
tion. In the right figure, the dotted line denotes the theoretical linear speedup S(n, p) = p.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Number of processors p

E
xe

cu
tio

n
tim

e
T

(n
,p

)
[m

in
ut

es
]

Scalability experiments, phase 2: ISCAS circuit c880

δ = p / 2
δ = p − 1
δ = 1
δ = 2

(a) Execution time T(n, p).

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Number of processors p

S
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: ISCAS circuit c880

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

(b) Speedup S(n, p).

Figure A.3: Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and δ on ISCAS
circuit c880. In the left figure, the black asterisk denotes SU(n), the time taken by the sequential implementa-
tion. In the right figure, the dotted line denotes the theoretical linear speedup S(n, p) = p.

APPENDIX A. DETAILED RESULTS OF THE SCALABILITY EXPERIMENT 61

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Number of processors p

E
xe

cu
tio

n
tim

e
T

(n
,p

)
[m

in
ut

es
]

Scalability experiments, phase 2: ISCAS circuit c1908

δ = p / 2
δ = p − 1
δ = 1
δ = 2

(a) Execution time T(n, p).

0 5 10 15 20 25
0

5

10

15

20

25

Number of processors p

S
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: ISCAS circuit c1908

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

(b) Speedup S(n, p).

Figure A.4: Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and δ on ISCAS
circuit c1908. In the left figure, the black asterisk denotes SU(n), the time taken by the sequential implemen-
tation. In the right figure, the dotted line denotes the theoretical linear speedup S(n, p) = p.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Number of processors p

E
xe

cu
tio

n
tim

e
T

(n
,p

)
[m

in
ut

es
]

Scalability experiments, phase 2: ISCAS circuit c2670

δ = p / 2
δ = p − 1
δ = 1
δ = 2

(a) Execution time T(n, p).

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

Number of processors p

S
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: ISCAS circuit c2670

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

(b) Speedup S(n, p).

Figure A.5: Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and δ on ISCAS
circuit c2670. In the left figure, the black asterisk denotes SU(n), the time taken by the sequential implemen-
tation. In the right figure, the dotted line denotes the theoretical linear speedup S(n, p) = p.

62 APPENDIX A. DETAILED RESULTS OF THE SCALABILITY EXPERIMENT

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Number of processors p

E
xe

cu
tio

n
tim

e
T

(n
,p

)
[m

in
ut

es
]

Scalability experiments, phase 2: ISCAS circuit c3540

δ = p / 2
δ = p − 1
δ = 1
δ = 2

(a) Execution time T(n, p).

0 5 10 15 20 25
0

5

10

15

20

25

Number of processors p

S
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: ISCAS circuit c3540

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

(b) Speedup S(n, p).

Figure A.6: Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and δ on ISCAS
circuit c3540. In the left figure, the black asterisk denotes SU(n), the time taken by the sequential implemen-
tation. In the right figure, the dotted line denotes the theoretical linear speedup S(n, p) = p.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Number of processors p

E
xe

cu
tio

n
tim

e
T

(n
,p

)
[m

in
ut

es
]

Scalability experiments, phase 2: ISCAS circuit c5315

δ = p / 2
δ = p − 1
δ = 1
δ = 2

(a) Execution time T(n, p).

0 5 10 15 20 25
0

5

10

15

20

25

Number of processors p

S
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: ISCAS circuit c5315

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

(b) Speedup S(n, p).

Figure A.7: Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and δ on ISCAS
circuit c5315. In the left figure, the black asterisk denotes SU(n), the time taken by the sequential implemen-
tation. In the right figure, the dotted line denotes the theoretical linear speedup S(n, p) = p.

APPENDIX A. DETAILED RESULTS OF THE SCALABILITY EXPERIMENT 63

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Number of processors p

E
xe

cu
tio

n
tim

e
T

(n
,p

)
[m

in
ut

es
]

Scalability experiments, phase 2: ISCAS circuit c6288

δ = p / 2
δ = p − 1
δ = 1
δ = 2

(a) Execution time T(n, p).

0 5 10 15 20 25
0

5

10

15

20

25

30

Number of processors p

S
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: ISCAS circuit c6288

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

(b) Speedup S(n, p).

Figure A.8: Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and δ on ISCAS
circuit c6288. In the left figure, the black asterisk denotes SU(n), the time taken by the sequential implemen-
tation. In the right figure, the dotted line denotes the theoretical linear speedup S(n, p) = p.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Number of processors p

E
xe

cu
tio

n
tim

e
T

(n
,p

)
[m

in
ut

es
]

Scalability experiments, phase 2: ISCAS circuit c7552

δ = p / 2
δ = p − 1
δ = 1
δ = 2

(a) Execution time T(n, p).

0 5 10 15 20 25
0

5

10

15

20

25

Number of processors p

S
pe

ed
up

 S
(n

,p
)

Scalability experiments, phase 2: ISCAS circuit c7552

δ = p / 2
δ = p − 1
δ = 1
δ = 2
(Linear speedup)

(b) Speedup S(n, p).

Figure A.9: Execution time T(n, p) and speedup S(n, p) of PSG for different combinations of p and δ on ISCAS
circuit c7552. In the left figure, the black asterisk denotes SU(n), the time taken by the sequential implemen-
tation. In the right figure, the dotted line denotes the theoretical linear speedup S(n, p) = p.

	List of Figures
	List of Tables
	Introduction
	Aim of the work
	Background
	Structure of the thesis

	Evolutionary algorithms
	Evolutionary and genetic algorithms
	General principles
	Types of evolutionary algorithms

	The Selfish Gene Algorithm
	Biological rationale
	The algorithm
	Formal description
	Experimental analysis

	Parallel evolutionary algorithms
	Introduction to parallel systems
	Parallel performance metrics

	Overview of parallel evolutionary algorithms
	Speedup and solution quality

	Classes of PEA architectures
	Single-population master/slave PEA's
	Single-population fine-grained PEA's
	Multiple-deme coarse-grained PEA's
	Hierarchical hybrid PEA's
	``Embarrassingly parallel'' evolutionary algorithms

	Numerical analysis

	The Parallel Selfish Gene Algorithm
	System architecture
	Pros and cons
	Parameters of PSG

	Self-adaption
	Methods of self-adaption
	Self-adaption in PEA's
	Self-adaption in PSG

	Software development
	Phase 1: SCP-SG
	Phase 2: P-SCP-SG
	Phase 3: PSG
	Dependencies

	Problem domains
	The Vertex Cover Problem
	Data structures for graphs
	Definition of the genome
	Fitness evaluation
	Problem instances

	The Cellular Automata Problem
	Built-in self-test (BIST)
	Cellular automata
	Definition of the genome
	Fitness evaluation
	Problem instances
	Previous work

	Experiments
	Parameter tuning
	Iteration 1
	Iteration 2

	General performance metrics
	Communication
	Self-adaption

	Scalability and speedup
	Phase 1
	Phase 2

	Comparison with random search
	Real fault coverage

	Conclusions
	General conclusions
	Scalability and efficiency
	Discussion

	Bibliography
	Detailed results of the scalability experiment

