|

N -

KET/KTL 2020

=

=
=

Introduction to Versioning and Standard Tools for Programmers

Overview with Examples

FACULTY OF ELECTRICAL
’ ENGINEERING

UNIVERSITY

OF WEST BOHEMIA

Aims of this Lecture D >

Aims of this Lecture

UNIVERSITY
OF WEST BOHEMIA

Aims of this Lecture D >

Motivation (Anketa)

m provide an overview on "classical"
engineering/programmer SW tools, namely VCS

m no more "What is this?" !

m hands on ...but gently

m our time is limited
m speed-up the learning curve as you will face the tool

[Area/Tool | GNU/Linux | CLI [Scripting VCS [Make | SSH |
Embedded SW maybe probably | of course of course | of course maybe
Application SW maybe probably | of course ~of course | of course probably
Digital Design probably probably | of course = of course | probably probably
PCB Design maybe maybe | probably of course maybe maybe
Mechanical maybe maybe maybe probably | rather not rather not
Design
Research+! of course | of course | of course of course | of course of course

1

imulations, Super-computing, Networking, Control. Al ...

C Overview/Recall D <

C Overview /Recall

C Overview/Recall D <

About C ...

m C is imperative procedural language

m describes algorithms and uses functions (procedures)
m low-level system programming language (created for
UNIX development)

m C has simple design (close to assembly language)

m weak types, pointers & pointer arithmetic, pre-processor,
inline assembler, ...

m Basic types: int, float, enum

m Derived types: array, pointer, struct, union

m C is everywhere (small & easy-to-develop compilers)

m C is portable (but platform dependent)
m C compiler is today the must for any platform (from
MCU to supercomputer)

C Overview/Recall D <

C Compilers

m GNU C Compiler — based on (root of the) GNU
Compiler Collection

m Clang — based on LLVM compiler infrastructure (originally
Low Level Virtual Machine)

m ARM Compiler — armcc by Keil (today part of ARM)
m IAR C/C+4+ Compilers

m Intel C/C++ compiler — Intel targets only (1A-32, |1A-64,
x86-32, x86-64, Intel Xeon Phi coprocessor, . ..)

C Overview/Recall D <

Compiler Directives

m compilers supports number of standards and especially,
they have dialects . ..

m sometimes it is required to support more compilers or
move from one compiler to another

m it is possible to detect compiler/version in code —
Predefined macros

m Pragma — provide additional information to compiler (C
std.)

m Attributes — special properties of functions, variables,
struct members, ... (non standard)

dialects and standards
$ man gcc

$ man clang

C Overview/Recall <

Compiler Directives uNvERSITY

OF WEST BOHEMIA

#ifdef __GNUC__

// do not produce unused-variable warning in GCC
__attribute__ ((unused))

#else

// Terminate compilation for unsupported compiler
#error Unsupported compiler!

#endif

// enable anon unions in Keil
#ifdef __ARMCC_VERSION
#pragma anon_unions

#endif
typedef struct nvm_cfg {
union {
struct {
uint8_t severity; /*1< msg severity */
uint8_t calib; /*1< calib coef. x/
};
uint8_t RFUI[8]; /*1< padding: 8 bytes reserved; 6 k
};

} nvm_cfg_t;

C Overview/Recall <

C Compi/ation UNIVERSITY

OF WEST BOHEMIA

S —
.bm{él}?/).(./..exe

<.h>

™ Preprocesor

@ 7 Compiler

C Overview/Recall D <

C Compilation

.bin/.hex/.exe
.elf/...

S —
Archiver

<.h>

Preprocesor

@ 7 Compiler

m complex process

m files have dependencies

C Overview/Recall D <

C Compilation

.bin/.hex/.exe
.elf/...

S —
Archiver

<.h>

Preprocesor

@ 7 Compiler

m complex process

m files have dependencies

— bigger projects require automation

Build Automation D .

Build Automation

Build Automation D .

Motivation and Brief History

m every larger (software) project needs to define a build
process — "Build"/"Rebuild All" buttons in your IDE

project files describe how to translate source code

Makefile is the project file interpreted by the Make
program
Unix Make (1976) — GNU/Make, BSD Make, MS nmake
why to use (GNU/)Make today:
m de-facto standard compared to ad-hoc build scripts
m very standard tool — compatible with (or incorporated
in) many tools, IDEs, cMake ...
m human-readable
B customizable — compared to many native project files —
create multiple targets, ...

m other tools: Ninja (2012)

Build Automation D .

The Gentle Introduction to GNU/Make

m tool which controls the generation of non-source files
from the source files

m make compares target/dependencies timestamps!
m has built-in functions

m uses TAB as a delimiter (!!1)

m Macros:

m $O — refers to the target

m $< — refers to the first dependency

m $" — refers to all dependencies

m % — make a pattern that we want to watch in both the
target and the dependency

dependencies and targets are files by default
target: dependencies
system commands

Build Automation >

The Gentle Introduction to GNU/Make buwersiTe

OF WEST BOHEMIA

Pattern Recipe

@echo Compiling $\< ...
@$(CC) -¢ $(CFLAGS) $(INCLUDE) $\< -0 $@

GG~

Compiling module.c ...
gcc -¢ -I./inc module.c -0 module.o

D >

Compiling module2.c ...
gcc -c -I./inc module2.c -o module2.0

Build Automation >

The Gentle Introduction to GNU/Make LT

OF WEST BOHEMIA

TARGET=envi
BUILD=./build/

OPTIMIZE = -0s

LDFLAGS =

CFLAGS = $(OPTIMIZE) -DMODULE_RH -DMODULE_TEMP
CC=gcc

LD=gcc

INC_DIRS = .

INCLUDE = $(addprefix -I, $(INC_DIRS))

SRCS = main.c temp.c rh.c

0BJS = $(addprefix $(BUILD),$(notdir $(SRCS:.c=.0)))
named recipes - unconditioned execution

.PHONY: all clean

pattern-matching-based recipe

$(BUILD)%.0: %.c
@echo Compiling $< # @: do not echo command, only execute
$(CC) -c $(CFLAGS) $(INCLUDE) $< -o $@ # echo command, then execute

all: $(0BJS)
$(LD) $(0BJS) $(LDFLAGS) -o $(TARGET)

clean:
-rm -f $(BUILD)*.o $(TARGET) # -: ignore error

Veersion Control Systems D >

Version Control Systems

Veersion Control Systems D >

Motivation . ..

keep past file(s) versions

save memory — keep only differences (patches)

systematic and automated method for versioning
(hand-managed structures are error-prone)

today systems allows to:
m browse, restore past file versions, record project history
m conflict resolution
m colaboration tools
[

m GitHub, Bitbucket, GitLab, SourceForge, ...:

m additional tools - forum, issue tracker, wiki, ...
m central server

Version Control Systems D >

Brief History ... Milestones (Open Systems)

m local versioning (70s +)
m Source Code Control System (SCCS) — 1973
m Revision Control System (RCS) — 1972
m centralized versioning (90s +)
m centralized model allows synchronization and centralized
administration

m Concurrent Versions System (CVS) — RCS extension;
1990

m Subversion (SVN) — designed to replace CVS; 2000
m distributed versioning (00s +)

m distributed model removes single-point-of-failure and
enables different workflows

m Git — created for Linux Kernel; 2005

m Mercurial — 2005

Version Control Systems
Centralized VCS - CVS, SVN

D UNIVERSITY
OF WEST BOHEMIA

Computer A

Working Copy

Server

o)

Computer B

Working Copy

Central Repository

version 3
version 2

version 1

Veersion Control Systems >

Distributed VCS — GIT, Mercurial UNIVERSITY

OF WEST BOHEMIA

Computer B
Computer A Server Working Copy Version Repository
Version Repository A N
Version Repository work version 4

Working Copy version 3

version 3
work

version 2

version 2

version 1

Veersion Control Systems >

VCS Model and Terminology uNIVERSITY

OF WEST BOHEMIA

Trunk
(main/master)

Tags

https://en.wikipedia.org/wiki/File:Revision_controlled_project_visualization-2010-24-02.svg

Version Control Systems D >

(Our) GIT Reference

m Create repository: git init [PATH]
Clone repository: git clone URL
Select file for commit (add to staging area): git add FILEs
Show branches: git branch

Get working tree status: git status

[
[
[
[
m Create a new commit?: git commit
m Browse history: git log

m Switch branches: git checkout

m Update remote repository: git push

m Get changes from remote repository: git pull

m Join branches: git merge BRANCH

2

Commit — submit the latest chanies to the reiositori

Hands-On D .
UNIVERSITY
OF WEST BOHEMIA

Hands-On

Hands-On >

Get Remote and Discover Makefile UNIVERSITY

OF WEST BOHEMIA

$ git clone https://github.com/belohoub/KTL.git
Cloning into ’KTL’...
remote: Enumerating objects: 17, done.
remote: Counting objects: 100% (17/17), done.
remote: Compressing objects: 100% (12/12), done.
Receiving objects: 100% (17/17), done.
remote: Total 17 (delta 3), reused 17 (delta 3), pack-reused O
Resolving deltas: 100% (3/3), done.
$
$ cd KTL && 1s -1 # go to your working copy and list files (.git)
$
$ git branch
* master
$
$ git checkout multipleTargets
Switched to branch ’multipleTargets’
$
$ git branch
master

* multipleTargets

Hands-On >

Get Remote and Discover Makefile UNIVERSITY

OF WEST BOHEMIA

$ # Display all commits

$ git log

$ # display "patch" (difference) between last two commits
$ git log -p -1

$ # display log in short

$ git log --pretty=oneline --abbrev-commit

$
$
$

display graph - see later
git log --pretty=format:")h,%s" --graph

$ # create new branch from ’master’
$ git checkout master
Switched to branch ’master’
Your branch is up to date with ’origin/master’.
$ git checkout -b myFirstBranch
Switched to a new branch ’myFirstBranch’
$ git branch
master
multipleTargets
* myFirstBranch

Hands-On >

MOdIfy Fi/es UNIVERSITY

OF WEST BOHEMIA

$ # Show branch status

$ git status

On branch myFirstBranch

nothing to commit, working tree clean

$

$ # create new file and track it

$ echo "#define_ TEMPERATURE_ 45" > src/defines.h

$ git status

On branch myFirstBranch

Untracked files:

(use "gityadd,<file>..." to include in what will be committed)

src/defines.h

git add src/defines.h
git status

@ &# -

add include to temp.h
echo "#include;\"defines.h\"" | cat - src/temp.c > \
src/temp.c~ && mv src/temp.c~ src/temp.c

© o -

Hands-On >

MOdIfy Fi/es UNIVERSITY

OF WEST BOHEMIA

$ # modify printf

$ awk ’{if (NRy==,10){,print,"printf (,\

suuu\"uu-utemperatureisy,%d\\n\", TEMPERATURE) ; "},\

uuuuelse{print $0}}’ src/temp.c > src/temp.c~ && \
mv src/temp.c~ src/temp.c

$

$ git status

On branch myFirstBranch

Changes to be committed:

new file: src/defines.h
Changes not staged for commit:
modified: src/temp.c

$
$ # add src/temp.c

$ git add src/temp.c
$

$

git commit -m "trueytemperature"
[myFirstBranch 5fb2ede] true temperature

Date: Sun Nov 22 08:08:02 2020 +0100

2 files changed, 3 insertions(+), 1 deletion(-)
create mode 100644 src/defines.h

Hands-On >

Resolve Conflicts UNIVERSITY

OF WEST BOHEMIA

display "patch" (difference) between last two commits
git log -p -1

©® &

$
$ # compare two branches

$ git diff myFirstBranch..multipleTargets
$

$

merghe branches
$ git merge multipleTargets
Auto-merging src/temp.c
CONFLICT (content): Merge conflict in src/temp.c
Automatic merge failed; fix conflicts and then commit the result.
$
$ git status
On branch myFirstBranch
You have unmerged paths.
Changes to be committed:

modified: Makefile
Unmerged paths:
both modified: src/temp.c

$

Hands-On .

Resolve Conflicts UNIVERSITY

OF WEST BOHEMIA

$ # resolve conflicts manually
$ vi src/temp.c

$

$ # try our new software

$ make both

$./envi_temp

This is main() BEGIN
Enviromental parameters:

- temperature is 45
-C

$

Hands-On >

Resolve Conflicts UNIVERSITY

OF WEST BOHEMIA

$ add changes & commit

$ git add src/temp.c

$ git commit -m "Merging,two branches"
[myFirstBranch 928b928] Merging two branches
$

$ # enjoy graph :-)

$ git log --pretty=format:")h,%s" --graph

* 928b928 Merging two branches

N\

| * 77£f0285 Customer-specific targets were added;
* | 5fb2ede true temperature

/

2aalcee Init

|
*
$
$
$ # try to push

$ git push

$ git push --set-upstream origin myFirstBranch

[you do not have permission to push 1]

$

m Featured Reading and Resources:

https

://archive.org/details/

TheCProgramminglanguageFirstEdition/mode/2up
Herout, Pavel. Ucebnice jazyka C, 3. vyd. Kopp: 1994

https
https
https
https
https

://gcc.gnu.org/onlinedocs/gecc/
://www.gnu.org/software/make/
://git-scm.com/book/en/v2

://guides.github.com/introduction/git-handbook/

://learnxinyminutes.com/docs/git/

Thank you for your attention!

FACULTY OF ELECTRICAL
ENGINEERING
UNIVERSITY

OF WEST BOHEMIA

https://archive.org/details/TheCProgrammingLanguageFirstEdition/mode/2up
https://archive.org/details/TheCProgrammingLanguageFirstEdition/mode/2up
https://gcc.gnu.org/onlinedocs/gcc/
https://www.gnu.org/software/make/
https://git-scm.com/book/en/v2
https://guides.github.com/introduction/git-handbook/
https://learnxinyminutes.com/docs/git/

	Aims of this Lecture
	C Overview/Recall
	Build Automation
	Version Control Systems
	Hands-On

