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Abstract. This paper discusses the utilization of implicit representations of test vector 

set and techniques of their processing in the field of diagnostics of the digital circuits. 

Many tasks in the diagnostics of digital circuits must deal with processing of the vector 

sets whose size can be considerable for large circuits. The memory requirements and 

also difficult manipulation of large sets of vectors can decrease the efficiency of 

diagnostic algorithms significantly. The set of vectors can be compactly and with low 

memory requirements represented implicitly, which can increase the robustness of 

diagnostic algorithms. The efficiency can be improved as well by proper implicit 

techniques of its processing. Previous work on implicit representations in the 

diagnostics is briefly summarized and some properties of an implicit representation of 

test vectors in the CNF (Conjunctive Normal form) are discussed as well as techniques 

of its processing. The summary of our observations forms a simple background for a 

general methodology of processing of implicit representations.   
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1 Introduction 

Despite of the growing number of analog and mixed signal parts in electronic devices, there are still 

many challenges in digital circuits diagnostic and dependability. Many algorithms in diagnostics and 

dependability of the digital circuits have to process a great number of vectors or their sets. The 

efficiency of these algorithms can dramatically depend on the representation of test vectors sets. Great 

amount of vectors must be processed in effort to find the best solution and memory or time 

requirements can be unfeasible. Implicit representations such as BDDs (Binary Decision Diagrams), 

ZDDs (Zero Decision Diagrams), CNF (Conjunctive Normal Form) and similar ones can compactly 

and with low memory requirements represent the whole set of vectors, which can be further processed 

by simple operations to possibly reach the desired solution. We suppose that a proper implicit 

representation and implicit techniques themselves can naturally increase the robustness of these 

algorithms and show us a new way of vector sets processing.  

 The paper is organized as follows. A brief overview of the previous work on implicit 

representations in the field of diagnostics is shown in Section 2. Section 3 discusses the implicit 

representation of the test vector set in CNF, its properties, possible utilization, bounds and beneficial 

techniques of its processing. Future work on a general methodology of implicit representation 

processing is suggested in Section 4. Section 5 gives a brief conclusion. 

 



2 Previous Work 

Implicit representations of test vector sets and techniques of their processing have been explored for a 

long time and they are already utilized by many algorithms. This section gives a brief overview of 

implicit representations and their utilization in the field of diagnostics of digital circuits.   

 A common application of implicit representations in the diagnostics is a generation of test patterns 

(test vectors). A set of all test patterns for a fault in the digital circuit is implicitly described as an 

instance of SAT (SATisfiability) problem by a Boolean formula in the CNF (Conjunctive Normal 

Form). Searching for a test pattern for a fault is thus transformed into solving an instance of the 

satisfiability problem. This method is utilized in a SAT-based ATPG (Automatic Test Pattern 

Generator) [1].    

 Generation of test patterns with some constraints is also a common process in digital designs 

testing. Test patterns are constrained to be better compressed, tailored for a scan-based designs, to 

speed up the test generation process, to avoid illegal test patterns (on primary inputs, buses, tri-state 

elements), etc. 

  Test patterns compression based on overlapping of test patterns [2] is a particular application of 

the constrained test patterns generation. The set of test vectors for a fault is represented implicitly as a 

Boolean formula in the CNF as in the SAT-based ATPG. The next test vector to be overlapped is 

constrained by specified bits in the previously generated test vector (the initial test vector is an all-zero 

seed). This modification of the SAT-based ATPG is known as SAT-Compress algorithm [2] and its 

compression efficiency is comparable with state-of-the-art compression tools, but the time of the 

compression grows up significantly with the size of the circuit.   

 In [3], an implicit representation of all test sequences for a fault is used to check for conflicts with 

rule matrices (of the cellular automata) during the test patterns generation constrained to the cellular 

automata. This technique is used for testing of midsize controllers. The entire set of the test sequences 

of the controller under test is implicitly represented by a BDD (Binary Decision Diagram). The BDD 

is explored and only those sequences which can be reproduced by cellular automata are selected. A 

specific algorithm and the way of application of the constraints were not described in the paper. 

 Low power tests are mostly built from pre-generated test patterns [4] by their reordering. Another 

approach is to represent all test patterns for each fault implicitly and form constraints to choose the 

best sequence of test patterns by a heuristic algorithm (test sequence is built incrementally). The best 

test patterns to be ordered into the test sequence are searched instead of the ordering of the pre-

generated test patterns [4]. 

3 The CNF implicit representation  

We have focused on the implicit representation of the test vectors set in the CNF, because it is simple 

and scalable (its size grows linearly with the number of gates). The CNF is also used by many state-of-

the-art ATPG tools [1][2]. 

 Properties of the CNF and techniques of its processing were examined in the SAT-Compress 

algorithm [2]. This research can give us much better idea about its possible utilization in different 

algorithms. Moreover, further analysis should show the limits of usability of the CNF and also its 

strengths and weaknesses.  

3.1 The CNF analysis 

Difficulty of SAT Instances Produced by SAT-based ATPGs 

The SAT problem is generally known to be NP-complete, thus its solution is considered to be time-

consuming. However, SAT-based tools used for the diagnostics of the digital circuits are fast enough 

to be comparable with other state-of-the-art algorithms. This observation implies that SAT instances 

produced by SAT-based ATPGs (or other SAT-based algorithm) have some specific properties 

(unique structure) which makes them easy to be solved.    



 The theoretical proof that SAT instances produced by SAT-based ATPGs are easy to be solved is 

presented in [5]. Our further experimental evaluation [6] confirmed that SAT instances produced by 

SAT-based ATPGs consist of a majority of 2-literal clauses (1-literal 3%, 2-literal 70%, 3-literal 24%, 

4-literal 2% and 5 or more literal less then 1%) and thus are easy to be solved. This observation is also 

validated in [1][7], which claims that SAT-ATPG spend on average 80% of the CPU time by 

generating of CNFs, instead of solving them. This experimental evaluation shows that solving the SAT 

is easy enough, but the circuit-to-CNF transformation can be a bottle-neck, thus some advanced 

transformation techniques and efficient CNF processing could be useful (e.g., dynamic clause 

activation [8]).  

Satisfiability of SAT Instances Produced by SAT-based ATPG 

The CNF implicitly represents the whole set of test patterns for a fault. If the fault cannot be detected, 

the set of test patterns is empty, thus a satisfiable solution of the CNF does not exist. Our research [6] 

shows that 99% of CNFs produced by the SAT-based ATPG are satisfiable on average. The number of 

SAT solutions (test patterns detecting a fault) is also very high [9] because the major part of the fault 

list usually consists of faults which are easy to be detected. 

 We have also generated random `clones' of the real instances, by substituting real variables in the 

SAT by random ones. While retaining the SAT instances structure, only 10% of them were satisfiable. 

This observation shows that SAT instances produced by the SAT-based ATPG are much more 

satisfiable than its random ‘clones’. Up to now, we have no fully relevant clue to explain this 

phenomenon. We have measured the connectivity of the SAT instances, when expressed as graphs 

[10]. However, we haven't found any significant difference between ATPG and random SAT instances 

of equal parameters. 

 The satisfiability of the constrained ATPG SAT instances in test patterns compression (by SAT-

Compress algorithm) was also explored. For example 1,279,654 CNFs are needed to be generated and 

solved for the c7552 ISCAS benchmark [11], but only 456 CNFs of them fulfill the constraints given 

by variables assignments. According to our extensive measurements, 98% of generated CNFs are 

unsatisfiable with given constraints on average. This can be caused by the ‘structure’ of the ATPG 

SAT instances. According to [12], conflicts between variable assignments in the ATPG SAT instances 

are locally bounded. Our research on difficulty of SAT instances mentioned in the previous section 

shows that ATPG SAT instances contain 70% of 2-literals clauses on average [6]. Variables whose 

values must be fixed can be easily propagated through the chain of implications made of 2-literal 

clauses and force conflict assignments of variables. This implication chain can be used as CNFs 

unsatisfiability detection engine and thus speed their processing up [12][13][14]. 

Solution-Set-Preserving SAT Reductions  

Possible solution-set-preserving reductions were investigated [6], because the number of the processed 

CNFs can be considerable, thus the size of the CNF can also affect the speed of its processing and the 

memory requirements. We have found that 1-literal clauses often appear in CNFs. Variables of these 

literals must be assigned to a constant value in all satisfiable solutions. Repeated application of 1-

literal clause elimination will identify most of the constant variables. The rest of them are detected by 

fixing the variable to a constant value and solving the SAT problem, see [15]. The set of variables 

fixed to a constant value for every SAT solution is called a backbone [16]. Next, we reduce the 

number of clauses by removing duplicities, absorbed clauses, and by creating resolution terms [17]. 

All these reductions preserve all SAT solutions. 

 Experimental results show that 60% of variables and 65% of clauses can be removed by solution-

set-preserving reductions on average. Moreover, 57% of variables have equal values in each SAT 

solution (backbone size) on average [6][16]. The backbone size supports our assumption about high 

unsatisfiability of the constrained ATPG SAT instances. Great number of variables must be fixed, thus 

the probability of a conflict assignment or implication is high. The backbone can be further utilized to 

detect CNFs which cannot be satisfied with the constraints given by variables assignments. It is also 

obvious that a significant reduction of the size of the ATPG SAT instances is possible, but searching 



for the backbone and application of other solution-set-preserving SAT reductions can be unfeasible. 

Only simple solution-set-preserving reductions such as implications of the 1-literal clauses are 

efficient, but the reduction of the CNF size is much less.     

3.2 Techniques of CNF processing 

Circuit to SAT Transformation Techniques 

The first technique of the circuit to SAT transformation was described in [13]. The difference between 

each primary output (PO) of the circuit exhibiting a given fault and its counterpart in a fault-free copy 

is detected by a XOR gate. Difference signals for all outputs are OR-ed to obtain a general difference 

signal. If there exists an input vector that sets this signal to 1, the fault is detectable. Each gate in this 

circuit is described by its characteristic function which is added to the CNF. The variable 

corresponding to the output of the OR gate is set to logic 1. This simple CNF transformation generates 

large CNFs with a great number of redundancies, thus it is not usually used by state-of-the-art tools. 

 Another approach [1] of the circuit to SAT transformation tries to reduce the CNF size by 

elimination of redundancies. Gates in the input cone of the fault in the fault-free and faulty circuit are 

the same, thus they are added to the CNF only once. Moreover, only gates in the input and output cone 

of the fault are added to the CNF. Primary outputs of the output cones are handled as in previous case. 

This transformation of the circuit to the SAT produces much smaller CNFs and their size can be 

further decreased by additional structural information. The value of the variable corresponding to the 

faulty signal can be assigned to a complement of the value assigned to variable corresponding to the 

fault-free signal. This transformation of the circuit to CNF is simple and produces small SAT 

instances, but their solving can be time-consuming for large circuits (large CNFs). 

 The previous approach to the circuit to SAT transformation produces CNFs without redundancies, 

but it can be further extended [1][18] by additional clauses to simplify SAT solving. The set of 

additional clauses describing possible active path (D-chain) is added to CNF for each gate [18]. These 

clauses increase the size of the CNF significantly (e.g., for c6288 [18], several CNFs have over 50 000 

literals), thus some reduction of the CNF is needed. The CNF instances built this way grant a high 

performance of the designed tool, because additional structural information can significantly speedup 

solution of hard SAT instances (SAT instances for the faults which are hard to be detected).  

On-the-fly CNF generation vs. CNF storing 

The class of algorithms such as constrained test patterns generators must solve a set of the same CNFs 

in the loop. These CNFs can be stored in the memory or generated ‘on-the-fly’. Our experimental 

results [14] indicate that the time consumption of the algorithm is almost the same for both CNFs 

storing and their generation on-the-fly, but CNFs storing can be unfeasible for large circuits. In fact, 

both these techniques can be unfeasible because of time or memory requirements. These drawbacks 

can be overcome by a combination of both, the dynamic clause activation [8]. The SAT solver works 

with a dynamic SAT instance. The complete list of clauses for a fault-free circuit is stored in the 

memory and forms a clause database. The SAT solver generates the CNF for the faulty part of the 

circuit and runs the decision heuristic guiding the search for the SAT solution. Additional necessary 

clauses from the fault-free circuit are sent from the clause database on request of the decision heuristic. 

The dynamic clause activation engine is used in the SAT-based tools in the industry, because it is 

highly efficient even though the size of the clause database can be a bottle-neck for large industrial 

circuits [1]. 

Early UNSAT Detection 

Early detection of the unsatisfiable CNFs can be a vital technique for many algorithms such as 

constrained test patterns generation. High number of unsatisfiable CNFs to be generated and solved 

causes a significant time overhead. Several techniques of early unsatisfiability detection have been 

proposed.  

 The first class of techniques is based on the implication engine [13] which can quickly propagate 

constraints given to the SAT solver (or decisions of the SAT solver) and detect unsatisfiability. 



Another approach [12] is based on the claim that all conflicts in the CNF are locally bounded. This 

algorithm does not generate the whole CNF for a fault, but the SAT instance is created from gates 

close to the faulty signal. Only characteristic functions of two levels of gates from the output cone of 

the faulty signal are added to the CNF with the corresponding input cone. The SAT solving of this 

small CNF is obviously much faster then solving of the whole CNF, thus the detection of 

unsatisfiability is fast. The main disadvantage of both these techniques is a need of extra CNF 

generation and solving to detect unsatisfiability of the CNF. 

 Our technique is based on a powerful implication engine with a table of implications [14]. The 

table of implications is generated once when the algorithm starts and consists of 2-literal clauses from 

the CNF of the fault-free circuit. The assigned constraints and structural information of the fault are 

propagated through implications and conflicts in the variable assignments indicate unsatisfiability. 

This technique is able to detect 42% of unsatisfiable SAT instances on average and speed the 

application (the SAT-Compress algorithm) up more then twice. It can be further improved by 

searching for additional implications coming from the previous variable assignment. This new 

‘dynamic’ implications can detect additional 11% of unsatisfiable instances, but the speedup is not as 

high, because searching for dynamic implications causes an additional time overhead. The main 

advantage of this approach is detection of unsatisfiability within CNFs generation and solving. 

However, its efficiency strongly depends on the number of constraints and implications, thus its 

usability is limited to a specific class of applications.  

4 Future Work 

The evaluation of the CNF properties and techniques of its processing should give us much better idea 

about its possible utilization in different algorithms. Moreover, this analysis should show the usability 

limits of the implicit representation and also its strengths and weaknesses.  

 Another promising application of implicit techniques is processing of Boolean networks consisting 

of general purpose blocks (such as LUTs in FPGAs) with described fault behavior. An efficient 

processing of such networks can be utilized by a wide range of applications from diagnostics and 

dependability. These networks consist of a great number of faults to be processed and also the wide 

range of the fault models must be considered. 

 The information about processing of implicit representations learned when designing the SAT-

Compress algorithm and its usability in Boolean networks composed of general blocks will be revised 

and extended by further observations. The exact application of the implicit techniques and selection of 

the proper implicit representation will be considered.  

 The research on implicit representations applied in these exact tasks from the diagnostics and 

dependability of the digital circuits and the differences between its processing by standard algorithms 

(not using implicit techniques) should give us reliable knowledge of implicit representations behavior 

and techniques of their proper processing. This information can be further generalized on a class of the 

similar tasks from diagnostics and dependability and finally the methodology of utilization of implicit 

representations for a class of the algorithms will be defined.   

5 Conclusion 

This paper discusses properties of the implicit representation in the CNF such as hardness, 

satisfiability and possibilities of solution-set-preserving reductions. It also describes some known 

techniques of the circuit to SAT transformations, its processing and detection of unsatisfiable 

instances. This brief overview forms a background for further analysis and methodology of implicit 

representation processing in the diagnostics of digital circuits.       
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