
IMPLICIT REPRESENTATIONS IN CUSTOMIZED TESTING OF

DIGITAL CIRCUITS

Jiří Balcárek
Informatics and Computer Science, 1-st class, full-time study

Supervisor: Ing. Jan Schmidt, Ph.D., Ing. Petr Fišer, Ph.D.

Czech Technical University in Prague, FIT, Dept. of Digital Design

Kolejní 550/2, Praha 6,Česká republika

balcaji2@fel.cvut.cz

Abstract. Despite of the growing number of analog and mixed signal parts in electronic

devices, there are still many challenges in digital circuits testing. Many test patterns

generation and compression methods for digital circuits have been developed, but their

efficiency can dramatically depend on the representation of test vectors sets. Also the

importance of additional requirements imposed upon a test set increases. In this paper we

consider implicit representations of test patterns sets and possibilities of their use in test

patterns generation, compression and constrained test generation. We suppose that

by using a proper implicit representation and a set of possible constraints, a significant

improvement in customized test generation is possible.

Keywords. Implicit test representation, testing, test compression.

1 Introduction

Digital circuits testing had been a great challenge in the past, but at present, there are many methods

for Automatic Test Pattern Generation (ATPG) [1] and compression and also a great number of test

architectures. It can seem that testing of digital circuits is a completely mastered part of the design

flow and the future challenges are mixed signal and analog testing. Demands of industry are clear, but

there are still some parts in digital testing waiting to be overmastered. There is a need to generate

customized test sets, e.g., to decrease heat dissipation and power consumption during the test. Also

more fault models are needed to cover greater number of defects.

Figure 1: Basic concept of customized test generation

 Test patterns set can be compactly and with lower memory requirements represented implicitly.

A dedicated ATPG can benefit such implicit test representations for customized test generation. The

best test pattern or a subset of best test patterns for a given application can be chosen by additional

constraints, see Figure 1. Our aim is to find a general concept of a proper implicit test representation,

constraints, and possible solution preserving operations independent of the fault model and customized

by the target application. As far as we know, there have been no similar concepts of test customization

based on implicit representations.

 The SAT-Compress [2] algorithm doing the test patterns compression over an implicit test

representation in CNF (Conjunctive Normal Form) has been introduced in our previous work [2].

Basic implicit representations are discussed in Section 2. Interesting observations about CNF based on

our previous work are presented and discussed in Section 3. The assumed future work is described in

Section 4 and a brief conclusion of this paper is in Section 5.

2 Basic Implicit Representations

This section gives a brief overview of two best known implicit representations of test patterns set: the

Conjunctive Normal Form (CNF) [1, 3] and Reduced-Ordered Binary Decision Diagram (ROBDD) [4,

5, 6], and discusses their properties. Figure 2 shows CNF and ROBDD of the same simple function.

Figure 2: Basic implicit representations (a) CNF, (b) ROBDD.

 Boolean function written in the CNF (see Figure 2a) is a conjunction of clauses, each clause is a

disjunction of literals. A literal is a logic variable or its complement. The set of possible solutions (test

patterns) is defined as an enumeration of satisfiable assignments of the variables. The set of solutions

can be easily customized by a forced variables assignment or by additional clauses. A CNF can be

easily obtained [3] from a Boolean network, its size grows linearly with circuit size.

 Reduced-Ordered Binary Decision Diagrams [4, 5, 6] are another efficient representation of a

Boolean function as a rooted Directed Acyclic Graph (DAG) (see Figure 2b). It consists of decision

nodes (variables) and two terminal nodes (0-terminal and 1-terminal). Nodes are connected by directed

edges. Each edge is evaluated with logical value which represents its assignment to the node

(variable). Each path from the root node to the 1-terminal represents a variable assignment for which

the represented Boolean function is satisfiable, thus the solution set is given by the number of paths

from root node to 1-terminal. The solution set can be also easily constrained by fixing some variables

to a given logical value. The number of BDD nodes strongly depends on the variable ordering and can

easily grow exponentially during building or manipulating of the ROBDD. That is why this implicit

representation can be unfeasible for larger circuits [5].

 It can be assumed that the implicit representation in CNF might be the best one for our further

investigation. It is a simple and scalable implicit test set representation, which can be easily

constrained. A satisfiable solution (test pattern) can be obtained by a SAT-solving, which can be a

bottle-neck of this representation, however the stat-of-the-art SAT-solvers are very efficient [1, 7, 8]

and the ATPG instances are easy to be solved [9, 10].

3 Properties of an Implicit Test Representation in CNF

It has been assumed in Section 2, that CNF can be an efficient representation of test patterns set, thus

it is the starting point of our investigation. The SAT-Compress algorithm [2] has been implemented to

prove possibilities of the proposed approach based on an implicit representation of the test patterns set.

This algorithm compresses the test patterns by their overlapping [11, 12]. The stuck-at fault model and

combinational circuits are assumed. Test patterns to be compressed are not pre-generated by an ATPG,

but generated on the fly. In each algorithm step, the locally best test pattern is chosen from a subset

of possible test patterns represented by constrained Boolean formula in CNF. The CNFs for each fault

are not stored in the memory because its size can be insufficient. Each test pattern is obtained as a

SAT solution of a CNF constrained by the previous test pattern which is shifted one bit left. The Most

Significant Bit (MSB) is a valid bit of the compressed bitstream and the Least Significant Bit (LSB) is

set as a Don’t Care (DC). The SAT-Compress algorithm benefits from an implicit representation of

test patterns set in CNF. The compression ratio does not depend on pre-generated test patterns and it is

comparable with state-of-the-art tools. However, our measurements show that the compression

efficiency depends on the structure of the circuit. Test generation time can also grow significantly in

comparison with the COMPAS [12] compression algorithm which, in contrast to SAT-Compress, is

based on overlapping of pre-generated test patterns.

 Let us focus on some properties of the SAT-Compress algorithm and produced CNF instances

to find possibilities of the compression efficiency improvement (time consumption/compression ratio).

3.1 Possible Speedup of Test Generation Process

The SAT-Compress algorithm is much slower in comparison with COMPAS [12]. The CNF instances

are not stored in the memory (because its size can be insufficient), but they are generated repeatedly

in the test compression process, which can be time consuming. For example 1,279,654 CNFs is

needed to be generated and solved for the c7552 ISCAS benchmark [13], but only 456 CNFs of them

fulfill the constraints given by previous variables assignments. According to our extensive

measurements, in average 98% of generated CNFs are unsatisfiable with given constraints. These

CNFs do not contribute to the compressed test bitstream by any test pattern, but the time to generate

and solve such not suitable (unsatisfiable) instances can cause a significant time overhead. Therefore,

it might be helpful to store maximally simplified CNFs in memory instead of repeated generation.

However, CNF reductions can cause a loss of possible solutions (test patterns). Reduced set of test

patterns can cause a decrease of the compression quality. That is why the whole set of the SAT

solutions must be preserved for each CNF instance.

 Possible solution-set-preserving reductions were investigated [10]. We have found that 1-literal

clauses often appear in the CNFs. Variables of these literals must be assigned to a value constant over

all solutions, for the SAT to be satisfiable. Repeated application of 1-literal clause elimination will

identify most of constant variables. The rest of them are detected by fixing the variable to a constant

value and solving the SAT problem, see [14]. The set of variables fixed to a constant value for every

SAT solution is called a backbone [15]. Next, we reduce the number of clauses by removing

duplicities, absorbed clauses, and by creating resolution terms [16]. All these reductions preserve all

SAT solutions.

 Better understanding of CNF instances can be useful in their further processing. That is why more

than 180000 ATPG CNF instances from ISCAS and ITC benchmarks had been generated and their

properties and possible reductions were closely analyzed.

 Experimental results show that in the average 60% of variables and 65% of clauses can be

removed by solution-set-preserving reductions. Moreover, in average 57% of variables have the same

values in each SAT solution (backbone size) [10, 15]. Constant variables are assigned and great

numbers of clauses are satisfied by resolutions which simplify the SAT solution. All the CNF

instances or their subset can be stored in the memory. Thus, the number of repeatedly generated CNF

instances is reduced and SAT-Compress algorithm can be sped up. The backbone can be further

utilized to detect CNFs which cannot be satisfied with the constraints given by variables assignments.

 Theoretical studies proved that ATPG SAT instances are easy to be solved [9]. The average

percentages of clauses having a given number of literals were measured. Experiments show that

ATPG CNFs consists of 3% of 1-literal clauses, 70% of 2-literal ones, 24% of 3-literal clauses, and

2% of 4-literal ones. It was shown that 2+p-SAT problems behave like 2-SATs for p<0.4 and like 3-

SAT for p higher (p is the percentage of 3-literal clauses) [15]. Based on this observation it can be

concluded that CNF instances (SAT instances) are similar to 2+p-SATs, with p=0.24. Therefore, they

behave like 2-SATs and are easy to be solved. Our experimental results have confirmed theoretical

studies.

 From these observations it can be concluded, that a significant reduction of CNF instances is

possible and the generated CNFs are also easy to be solved. Reduced instances can be stored in the

memory to speed up the compression process. Moreover, the set of possible CNFs can be dynamically

changed based on the learned backbone and its match with constrains. We assume, that dynamic

activation of CNFs based on the backbone can dramatically decrease the number of processed CNF

instances which can not fulfill constrains and speed up SAT-Compress algorithm.

3.2 Improvements of Compression Efficiency

 Another considered aspect is the compression efficiency. SAT-Compress is a simple greedy

algorithm. Each test pattern is generated based on variables assignments given by its predecessors,

thus the initial pattern can affect bitstream lengths. Permutations of PIs (Primary Inputs) can also

affect bitstream lengths. Each test pattern is generated pursuant to mask, which is made from a

previous test pattern by its shift and the LSB is replaced by a DC. The LSB and nearby bits can be less

constrained. We assume that the compression ratio can be further improved by ordering of PIs based

on its occurrences in test patterns. Our extensive evaluation confirms that the result quality depends on

the initial state as much as on the order of primary inputs. Figure 3 shows an example of distributions

of bitstream lengths using different starting patterns (initial states) or different orders of primary inputs

(PIs permutation). The compressed bitstream lengths seem to have Gaussian-like distribution for both

cases and the only difference is displacement. As a default state for both measurements were used

“initial state”/”PIs permutation“ producing the bitstream length equal to median of the bitstream

lengths.

Figure 3: Frequency of bitstream lengths distribution for different initial state or permutation of PIs (c499)

 We have found that the compressed bitstream lengths for some circuits are either better or worse in

comparison with COMPAS [12] independently of the initial state. Also the compression ratio is

surprisingly better for ISCAS’85 [13] than ISCAS’89 [17] benchmark set. We assume that it can be

caused by the structure of the circuits. Numbers of paths from POs (Primary Outputs) to PIs (see

Figure 4) have been measured and analyzed. Table 1 consists of the compression ratios of COMPAS

and SAT-Compress algorithm (compared to compacted test lengths generated by Atalanta [18]), both

starting with an all-zero test pattern, in the columns “ratio”. The “diff.” column indicates the

difference of compression ratios of the SAT-Compress and COMPAS algorithm. A positive value

indicates better compression ratio of SAT-Compress. The ratio of the number of paths from POs to PIs

(e.g. Figure 4b) compared to the maximal number of paths from POs to PIs (e.g. Figure 2a) is

presented in the column “comp.“. Column “Bench.” presents the name of the benchmark. Table 1

signifies that a greedy algorithm based on implicit representation such as SAT-Compress can handle

compression of test patterns for circuits with high number of paths from active POs to PIs more

efficiently (some of ISCAS’85), but it is not able to benefit its lower number (most of ISCAS’89) such

as COMPAS. Much more measurement is needed to prove this assumption and find solutions of this

drawback.
 { {

{ {
Primary outputs Primary outputs

Primary inputs Primary inputs

Pa
th
s
in
 c
ir
c
u
it
fr
o
m
 P
I
to
 P
O

a) b)

Figure 4: Number of paths from POs to PIs of the

circuit (a) maximal, (b) less.

COMPAS
SAT-

Compress Bench.

ratio [%] ratio [%]

diff.

[%]

comp.

[%]

C432 89.6 89.2 -0.4 89.2

C499 89.9 91.6 1.7 100

C880 87 79.8 -7.2 26.8

c1355 69.8 90.8 21 100

S344 82.2 75.8 -6.4 19.3

s1196 84.4 70.2 -14.2 37.7

s1423 90.6 87.5 -3.1 31

Table 1: Number of paths from active POs to PIs of

circuits and compression ratios for COMPAS and

SAT-Compress.

4 Future work

Our areas of interest are implicit representations and customized test patterns generation. In the future

we will continue in CNF investigation and possibly find some efficient handling of the CNF instances

based on their properties such as a backbone size or reductions possibilities. Utilization of implicit

representations will be further explored on test patterns compression. SAT-Compress algorithm can be

sped up according to proposals in Section 3 and more efficient heuristics can be applied to increase the

compression ratio. Such a focused research should give us better understanding the behavior

of implicit representations in specific applications, which can be beneficial in the future to create a

general concept of customized test generation based on specific constrains.

 Further investigation of circuit’s properties such as communication complexity and its influence

on testing are also needed to be explored. These observations can help us to find and overcome

reasons of lower efficiency in test patterns compression for some circuits.

 New implicit representation and set of constrains based on known representations and previous

observation will be considered.

5 Conclusion

General concept of customized test patterns generation based on implicit representations of test

patterns set has been proposed and discussed. Brief overview of implicit representations and their

properties has been made. Implicit representation in CNF has been chosen to be very suitable as test

patterns set representation and its properties has been discussed on formerly published SAT-Compress

algorithm [2].

Acknowledgment

This research has been supported by MSMT under research program MSM6840770014, by the grant

of the Czech Grant Agency GA102/09/1668 and the grant of the Czech Technical University in

Prague, SGS10/118/OHK3/1T/18.

References

[1] Drechsler, R., Eggersglüß, S., Fey, G., Tille, D., “Test Pattern Generation using Boolean Proof Engines,”

Publisher Springer Netherlands, ISBN 978-90-481-2360-5, 2009, XII, p. 192.

[2] Balcárek, J., “Test Patterns Compression Techniques Based on SAT Solving for Scan-Based Digital

Circuits,” Počítačové architektury&diagnostika, Soláň (ČR), 2009, pp. 26-31.

[3] T. Larrabee. Test Pattern Generation Using Boolean Satisfiability. Test Pattern Generation Using Boolean

Satisfiability. IEEE Transactions on Computer-Aided Design, pages 4-15, Jan, 1992.

[4] Bryant, R. E., “Graph-based algorithms for boolean function manipulation,” IEEE Trans. Comput. 35,

ISSN:0018-9340, 1986, pp. 677-691.

[5] Balcárek, J., “Řešení problému splnitelnosti booleovské formule (SAT) pomocí binárních rozhodovacích

diagramů (BDD),” Bakalářská práce, FEL ČVUT v Praze, 2007, p. 71.

[6] R. Drechsler, D. Sieling, “Binary decision diagrams in theory and practice,” Springer Trans., Berlin, 2001,

pp. 112-136.

[7] J. Shi, G. Fey, R. Drechsler, A. Glowatz, J. Schoffel, and F. Hapke, “Experimental studies on SAT-based test

pattern generation for industrial circuits,” In Int’l Conf. On ASICS, 2005, pp. 967-970.

[8] Shi, J., Fey, G., Drechsler, R., Glowatz, A., Hapke, F, and Schloeffel, J.: PASSAT: Effcient SAT-based test

pattern generation for industrial circuits. In IEEE Annual Symposium on VLSI (ISVLSI), 2005, pp. 212-217.

[9] Prasad, M. R., Chong, P., Keutzer, K.: Why is ATPG easy?. In Proc. of the 36th Annual ACM/IEEE Design

Automation Conference, New Orleans, USA, June 21 - 25, 1999, pp. 22-28.

[10] Balcárek , J., Fišer, P., Schmidt, J., “ On Properties of SAT Instances Produced by SAT-Based ATPGs,“ In

Fifth Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, ISBN 978-80-87342-

04-6, Znojmo, 2009, pp. 3-10.

[11] C. Su, K. Hwang, “A Serial Scan Test Vector Compression Methodology,” in Proc. ITC, 1993, pp. 981-988.

[12] O. Novák, J. Zahrádka, “COMPAS – Compressed Test Pattern Sequencer for Scan Based Circuits,” in Proc.

of EDCC, 2005, pp. 403-414.

[13] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target

Translator in Fortan, Proc. Of International Symposium on Circuits and Systems, 1985, pp. 663-698.

[14] Singer, J., Gent, I.P., Smaill, A.: Local Search on Random 2+p-SAT. In Proc. of the 14th ECAI, 2000, pp.

113-117.

[15] Monasson, R., Zecchina, R., Kirkpatrick, S. Selman, B., and Troyansky, L.: 2+p-SAT: relation of typical-

case Complexity to the nature of the phase transition. In Random Structures & Algorithms, Vol. 15, Issue 3-4,

Oct.-Dec. 1999, pp. 414 – 435.

[16] Davis, M., Putnam, H.: A computing procedure for quanti_cation theory. Journal of the ACM (JACM), Vol.

7, Issue 3, July 1960, pp. 201-215.

[17] F. Brglez, D. Bryan and K. Kozminski. Combinational Profiles of Sequential Benchmark Circuits, Proc. of

International Symposium of Circuits and Systems, 1989, pp. 1929-1934.

[18] H.K. Lee and D.S. Ha, "Atalanta: an Efficient ATPG for Combinational Circuits", Technical Report, 93-12,

Dep't of Electrical Eng., Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1993.

