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Abstract: In the paper we propose a new method of test patterns compression based 

on SAT (SATisfiability) solving. By test patterns compression we can dramatically 

decrease test memory requirements for test patterns storing. This compression method is 

very suitable for scan-based digital circuits. Test patterns are decompressed in the scan 

chain during the test, no additional hardware is required. By this way we can also 

decrease the data bandwidth between ATE (Automatic Test Equipment) and the internal 

test mechanism. The main idea is based on test patterns overlapping introduced in the 

COMPAS (COMpressed Pattern Sequencer) compression tool [1]. Our proposed 

algorithm is based, as well as COMPAS, on patterns overlapping. During the test 

generation, we are trying to efficiently generate vectors as candidates for an overlap, 

unlike COMPAS, which is based on efficient overlapping of pre-generated test patterns. 

We introduce our basic algorithm and show results obtained for standard ISCAS’85 and 

‘89 benchmark circuits. The results are compared with the COMPAS compression tool.  
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1 Introduction 

Testing of digital circuits is nowadays quite a difficult task. With the growing complexity of designs, 

scan-based techniques of testing are becoming very popular. The chain of registers (scan chain) is fed 

with test patterns through a serial interface. It means that each test pattern is shifted into the scan chain 

and then the circuit under test (CUT) response is shifted out to the response compactor. Generally, we 

can use a deterministic or pseudorandom test pattern set for testing. Both have their advantages and 

disadvantages. Pseudorandom testing may be easily realized by a linear-feedback shift register (LSFR) 

or by other automata. Test patterns generated in such a way cover most of easily-detectable faults, but 

the patterns can be quite inefficient in covering random pattern resistant faults. Also a great number 

of test patterns are needed to generate. It means that the time consumption may grow up significantly. 

On the other hand, we can generate deterministic test patterns able to detect all detectable faults. Its 

size may also be considerable and we need to send these test patterns to scan chains. This data transfer 

is realized by TAM (Test Access Mechanism), which creates an interface between ATE (Automatic 

Test Equipment) and the on-chip test mechanism. Design requirements force us to make the TAM as 

narrow as possible, but sending test patterns through a narrow TAM may cause a considerable growth 

of the time consumption. That is why we are trying to compress test patterns and by this way decrease 

the bandwidth between ATE and TAM. There are several methods used for a test patterns 

compression. One of the most interesting ones is based on a test patterns compaction and test patterns 

overlapping. The test patterns compressed by this way may be easily decompressed by exploiting scan 

chains. No additional hardware is required and the bandwidth between ATE and TAM sags 

significantly.  



 In this paper we introduce a new algorithm for test patterns compression based on SAT solving. 

This new algorithm doesn’t use test patterns pre-generated by an ATPG (Automatic Test Pattern 

Generator), but it gradually generates most suitable test patterns in the process, to reach the best 

overlap and maximize the compression. A SAT-ATPG [5] based algorithm is used for the test patterns 

generation. A CNF for each fault is generated. This CNF represents a set of all test patterns detecting a 

given fault. Its particular SAT solution represents one test pattern detecting the respective fault. Thus, 

test patterns for a given circuit are represented implicitly, by a set of SAT instances. A proper selection 

of processed faults and their respective SAT solutions could yield optimum test patterns compression, 

in general. However, an exhaustive state space exploration is computationally unfeasible.  We propose 

a heuristic method using these principles, yielding a competitive test patterns compression. 

Experimental results compared with the COMPAS compression tool are shown. 

1.1 Test Patterns Compresion Technique Based on SAT Solving 

The basic compression idea is the same as for the COMPAS compression tool. We try to find the best 

overlap of test patterns that are serially shifted into the scan chain. This approach was firstly described 

in [2]. This algorithm generally tries to find contiguous and consecutive test patterns for the test 

patterns currently present in the scan-chain. These patterns are checked whether they match with one 

or more remaining test patterns, which were previously generated and compacted with the help of 

some ATPG and which were not used in the scan chain sequence yet. The compacted test patterns are 

reordered by a heuristic algorithm to obtain maximum overlapping. The main disadvantage of these 

methods [7] is that they are either computationally complicated and thus they aren’t usable for large 

circuits, or the size of the compressed test patterns is greater than the size of the test patterns 

compressed by other compression methods. The COMPAS compression tool is based on a similar 

approach, but it doesn’t use compacted test patterns. Here the test patterns that are to be compressed 

are pre-generated by an external ATPG. These test patterns should contain as many don’t care bits 

(DC bits, means not specified) as possible. Greater number of don’t care bits grants the algorithm 

much more possibilities to combine test patterns and reach better compression. Another improvement 

is a simulation after every test pattern application and searching for best successors of a given starting 

test pattern (usually an all-zero pattern). These improvements make the COMPAS algorithm very 

efficient. The only weakness of the COMPAS algorithm is the need for don’t care bits. If the input test 

generated by the ATPG doesn’t include lots of don’t care bits, it is much harder for COMPAS to find 

the best overlap and the compression efficiency decreases significantly.  

 In our new approach we try to eliminate the previously mentioned weakness of the COMPAS 

algorithm. The main idea is not to overlap test patterns pre-generated by an ATPG, but to generate 

most suitable test patterns in the process, to reach the best overlap. The basic question is how to find 

these test patterns. Each fault in the fault list has its set of test patterns by which it is detected. If we 

realize this, we can assume that if we were able to pick the right (granting the best overlap) pattern for 

each fault, we can reach the best possible compression of the test patterns. Because computation and 

storing of all these test patterns is quite inefficient, we were forced to find out another, more efficient 

way of representation. We research possibilities of implicit representations of test patterns. We have 

found that we can take advantage of principles of SAT-based ATPGs [5, 8] and efficiently represent 

all test patterns for one fault by an instance of a SAT problem in a CNF (Conjunctive Normal Form). 

The CNF test set representation is much less memory consuming than a standard tabular 

representation of the set of test patters. Our new algorithm generates a SAT instance in CNF for each 

fault and by solving this instance we acquire the next pattern for overlap. It is obvious that for a 

method based on a SAT solving we can expect a greater time consumption than for the COMPAS 

compression tool, but our main goal is to find the best overlap and maximize the test patterns 

compression.  



1.2 Digital Circuit-To-CNF Conversion 

 Conversion of a digital circuit to CNF [5, 8] is an essential task for our SAT-based compression 

algorithm. The main idea of this conversion is shown in Figure 1. Each gate is described by its 

characteristic function and the whole circuit is the conjunction of these characteristic functions. 

Generation of the SAT instance in CNF for a fault means to make XOR of faulty and fault-free circuit 

outputs (X xor X‘).   

 

Figure 1: Faulty and fault-free circuit and its CNF example [5] 

 The characteristic function is derived from the basic function of the gate. We show the procedure 

for an AND gate and its basic function D = A ∧ B. Each function P=Q is logicaly equivalent 

to (P⇒Q)∧(Q⇒P) and that’s why we can transform the basic AND function into (D⇒ 

(A∧B))∧((A∧B) ⇒D). Next we transform all implications into disjunctions by using the fact that 

P⇒Q is logicaly equivalent to ¬P∨Q and get the characteristic function for an AND gate 

(¬D∨A)∧(¬D∨B)∧(D∨¬A∨¬B) [5]. Then the CNF function for the fault-free circuit is: 

 (¬D∨A)∧(¬D∨B)∧(D∨¬A∨¬B)∧(C∨E)∧(¬C∨¬E)∧(X∨¬D)∧(X∨¬E)∧(¬X∨D∨E), (1) 

and the CNF for a faulty circuit is: 

 (D’)∧(X’∨¬D’)∧(X’∨¬E)∧(¬X’∨D’∨E)∧(C∨E)∧(¬C∨¬E). (2) 

The CNF of the output XOR of a faulty and fault-free circuit is: 

 (¬X∨X’∨BD)∧ (X∨¬X’∨BD)∧(X∨X’∨¬BD) ∧(¬X∨¬X’∨¬BD).  (3) 

 Finally, the CNF for a stuck-at-1 fault on internal wire D is a conjunction of faulty-free (1), faulty 

(2) and the XOR of their outputs CNFs (3): 

(¬D∨A)∧(¬D∨B)∧(D∨¬A∨¬B)∧(C∨E)∧(¬C∨¬E)∧(X∨¬D)∧(X∨¬E)∧(¬X∨D∨E)  

∧(D’)∧(X’∨¬D’)∧(X’∨¬E)∧(¬X’∨D’∨E)∧(C∨E)∧(¬C∨¬E)∧ 

(¬X∨X’∨BD)∧ (X∨¬X’∨BD)∧(X∨X’∨¬BD) ∧(¬X∨¬X’∨¬BD) (4) 

 

 If there exists an assignment of variables, for which this CNF is satisfied, the fault is detectable. 

The assignment of input variables corresponds to the test pattern detecting this fault. In particular, the 

example CNF (4) is satisfied by assignment A=1, B=0, C=1, D=0, D’=1, E=0, X=0,X’=1, BD=1. 

Therefore, the stuck-at-1 at D fault is detected by the pattern (A, B, C ) = (101). 

2 The SAT-Compress Algorithm Principles 

2.1 Best Overlap Finding 

We try to find the best overlap by gradually building the compressed test patterns bitstream for the 

scan chain. The initial test pattern must be generated first. To do this, a fault from the fault list is 

picked, its CNF is generated and the SAT problem is solved for it. By this way we obtain a vector 

containing primary and internal variables set. Primary variables represent the primary inputs of the 



CUT, the internal variables represent the CUT internal signals (interconnection), see Fig. 1. The test 

pattern has only primary input variables set, thus values of internal variables are not important for us. 

Bits of the first pattern are set according to the CNF solution. If the generated CNF (and its solution) 

doesn’t contain some primary input variable, it is set as a DC. Figure 2 shows the next pattern 

generation example. The first pattern is simulated and all detected faults are deleted form the fault list. 

Then the pattern is shifted left and the first bitstream bit is shifted out. On the other side of the pattern, 

a DC bit is shifted in. By this way we obtain a new pattern. The DC bits might be set to logic 0 or 1. 

The best of DC bits setting is obtained by searching the fault list for a fault, whose CNF satisfies the 

input variable setting. A new test pattern is obtained, simulated and the search for a next pattern 

continues.  

1 0 1 1- - - First test pattern1

10 1- - -- -

New bitstream bit

Insert DC bit

Next pattern setting

Walk through fault list, generate its CNF, 
primary inputs setting, get satisfiable 
instance and its solution pattern

10 1 --0 1 New test pattern
 

Figure 2: Next pattern generation example 

2.2 Basic Algorithm Description 

The basic algorithm is shown in Figure 3. First, we generate a complete fault list (FL) and pick one 

initial fault (the first one or any we choose). For it we generate its CNF. As a result of first CNF 

solving, the initial test pattern is obtained. The first pattern is simulated and all detected faults are 

deleted from the fault list. The following operation is shifting the first pattern left (see Figure 2). The 

first bit of the compressed bitstream and the next primary variable inputs setting is obtained. In the 

following steps we pick the next fault, generate its CNF and set primary input variables according 

to the previously obtained pattern. If satisfiable CNF is found for the given primary input setting, a 

next test pattern is obtained. In case that there doesn’t exist a satisfiable solution for a given primary 

input variables setting, the pattern is shifted left by one bit, by which a new pattern is obtained (and a 

next bit of the bitstream is produced). A fault having a satisfiable CNF for this new input variable 

setting is looked for. Note that the new pattern contains more don’t care bits, thus there is a bigger 

chance to find such a fault. These operations are performed while the fault list is not empty or until all 

care bits from the primary inputs setting are shifted out. The second case indicates, that the rest 

of faults in the fault list are undetectable (no variables are set and there is still no satisfiable CNF).  

3 Experimental Results 

In this part, results of our experiments are presented. Table 1 presents the compressed pattern 

bitstream lengths obtained by COMPAS and our SAT based algorithm, its compression ratio 

(compared to test lengths generated by Atalanta [4]) and the run time for our SAT based algorithm. 

The “Diff” row indicates the relative improvement (positive values) or deterioration (negative values) 

compared to COMPAS. 

 

 



Table 1: Bitstream length and compression ratio reached by COMPAS and SAT based algorithm. 

Circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552 s1196 s1238 s5378 s9234 

Atalanta 
Bit-

stream 
[bit] 1872 2214 3180 3444 3828 25164 7350 20292 1056 44505 4608 4704 54570 95095 

Bit-
stream 

[bit] 195 224 412 1040 979 6091 726 1217 82 7115 717 783 1989 10589 

COMPAS 
Comp. 
ratio 

[%] 89,6 89,9 87 69,8 74,43 75,79 90,12 94 92,2 84,01 84,44 83,4 96,36 88,86 

Bit-
stream 

[bit] 202 187 643 317 547 2064 1947 840 93 4779 1373 1423 2397 10858 

Comp. 
ratio 

[%] 89,2 91,6 79,8 90,8 85,71 91,8 73,51 95,86 91,2 89,26 70,2 69,7 95,61 88,58 

Diff [%] -3,5 16,5 -36 69,5 44,13 66,11 -62,7 30,98 -11,8 32,83 -47,8 -45 -17 -2,48 

SAT 
based 

alg. 

Time [s] 10 8 25 81 169 1690 4541 207 87 7661 281 407 1007 77751 

 Table 1 presents compression results and run times for the SAT based algorithm. It is obvious that 

by our SAT based algorithm we are able to reach quite an interesting compression ratio. As we 

expected, the time for the compressed test patterns generating grows up significantly, but there are still 

much more possibilities to speed up the algorithm. Time results can not be compared with the 

COMPAS compression tool, because an on-line [6] application was used to compressed test patterns 

generation and the time measurement was not possible to handle. Generally, the speed of the 

COMPAS compression tool is higher than our SAT based algorithm and the difference grows with the 

circuit size. The time for solving of the hardest circuit (s9234) we measured was about one minute for 

the COMPAS algorithm. 

4 Future work 

Our place of interest are implicit methods in generating test patterns. In the previously mentioned 

algorithm, the CNF representation of test patterns for each fault was presented. The COMPAS 

compression algorithm processes previously generated test patterns and tries to combine them to reach 

the best compression ratio. Even if we were able to find the best compression of these test patterns, it 

needs not be the best compression at all. The result of the compression process is highly dependent 

on the input set of the test patterns. Our main goal is to explore possibilities of generating test patterns 

granting the best compression ratio. Each fault is represented by a set of all its test patterns (CNF 

in the presented algorithm). It is obvious, that if one pattern from each set is picked, we obtain the test 

patterns with full fault coverage. By complete exploring of the search space (all set of patterns and its 

permutations) we can guarantee generating the best set of the test patterns for overlap and reach the 

best compression ratio possible. Of course, the whole search space is huge and its complete exploring 

is not possible. In our future work we would like to explore possibilities of extracting the best set 

of the test patterns for overlap to reach better compression ratio. The proposed algorithm shows one 

of possible applications in this idea. The results imply that this approach may be quite efficient and 

offers a wide field for future improvements and possible applications in practice. 

5 Conclusion 

A new SAT based test patterns compression algorithm was proposed, implemented, and tested on a 

chosen set of ISCAS benchmarks. The compression ratio of this algorithm is as well as for the 

COMPAS tool quite high and in some cases even higher, but as expected, the run time may grow up 

significantly especially for larger circuits. The performance and scalability of this SAT based 



algorithm depends on a trade-off between the compression ratio, time consumption and memory 

requirements. This new approach shows us another interesting way in the field of the test patterns 

compression.  
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Figure 3: Basic algorithm  


