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Abstract. In this paper we propose a study of properties of SAT (sat-
isfiability) instances produced by SAT-based Automatic Test Pattern
Generators (ATPGs). Standard non-commercial SAT solvers are being
widely used for the purpose of solving these instances. We show an analy-
sis of properties of these special SAT instances. Even though these ATPG
SAT instances have been thoroughly studied in the past, we show some
newly found properties. Particularly, reasons why ATPG SAT instances
are ‘easy to be solved’ are shown by analysis of the SAT instances. Then,
unexpected behavior of ATPG SAT instances, in terms of their satisfia-
bility, was observed. Next, we propose solution-preserving SAT transfor-
mations and study the properties of the reduced SAT instances.

1 Introduction

Testing has nowadays become an integral part of the chip manufacturing process.
Test patterns are applied to the chip and its response is evaluated, in order to
detect most of the chip’s faults. Millions of test vectors need to be applied to the
chip to test it sufficiently now. Thus, the manufacture test application costs some
time and, consequently money. Therefore designers try to reduce the test cost
by introducing design-for-testability features and Built-in Self-Test structures
[1]. Anyway, the bandwidth of the datapath between the tester and the tested
circuit still persists to be a bottleneck. Thus, the need for compression of the
test patterns is inevitable. Sophisticated on-chip test decompression mechanisms
[2], [3] have been developed for this purpose.

Most of the state-of-the-art and commercial Automatic Test Pattern Gener-
ation (ATPG) tools are based on Satisfiability (SAT) solving [4], [5], [6]. These
SAT-based ATPGs are popular due to their speed, enabling them to generate
test patterns for extremely large circuits.

The NP-completeness of the SAT problem is well known [7]. Thus, there arises
an apparent question why the SAT based ATPGs are as fast as reported [4], [5],
even though tens of thousands SAT instances having tens of thousands variables
are solved in the process. This issue has been studied in the past and it has been



concluded that ATPG SAT problems are ‘easy’ [8]. The expected time simplicity
of solving these SAT's has been proven for a particular (yet common) SAT solving
procedure. The SAT solver running time as a function of the circuit cut-with
was derived. Since it was shown that the circuit cut-width grows logarithmically
with the circuit size, the authors expect no significant runtime growth with a
growing circuit size. In contrast to [8], we study the very SAT instances, instead
of the circuits properties and we show more convincing reasons for ‘easiness’ of
the ATPG SAT instances. We investigate how the ATPG SAT instances differ
from randomly generated SAT instances of the same parameters. Next, we study
an interesting observation in the satisfiability of these instances.

We also focus on the number of the SAT solutions. In standard SAT-based
ATPGs, only one SAT solution is needed. However, we proposed an applica-
tion of SAT-based ATPGs for test pattern compression, which directly gener-
ates compressed test patterns in the process, for details see [13]. The algorithm
requires considering more, or better all, solutions of each SAT instance. Stan-
dard Davis&Putnam (D&P)-based SAT solvers [9] cannot be efficiently used,
as they produce only one SAT solution. More general ([14], [15]) SAT solvers
must be used. This makes the ATPG SAT problem solving more difficult in
contrast to problems of standard SAT-based ATPGs. We investigate possibili-
ties of solutions-preserving SAT transformations, to maximally simplify the SAT
instances.

1.1 Boolean Satisfiability

Let us have a Boolean formula given in a Conjunctive Normal Form (CNF).
The CNF is a conjunction of disjunctions of literals. A literal is a variable or its
complement. The disjunctions of literals are also called clauses.

Example 1. Let us have a formula in CNF: ¢ = (a VbV E) A (@) A (aVc)

The formula is called satisfiable, when there exists an assignment of variables
a, b, c, so that the formula is equal to 1. We can see that ¢ is equal to one for a
combination (a,b,c) = (0,0,1), thus it is satisfiable.

Definition 1. Deciding whether a formula in CNF is satisfiable is called a sat-
isfiability (SAT) problem. If the formula consists only of clauses having exactly
K literals, we call the problem K-SAT.

It is well known that the K-SAT problem is NP-complete for K > 3 [7]. The
2-SAT problem is solvable in a polynomial time [17].

Definition 2. Deciding on satisfiability of CNF' formulae having a mizture of
2- and 3-literal clauses is called a 2+p-SAT problem [12]. Here p stands for
a percentage of 3-literal clauses. This model interpolates between 2-SAT (for
p = 0) and 3-SAT (for p = 1) problems. For p > 0 the 2+p-SAT problem is
NP-complete as well.



1.2 SAT-Based ATPGs

The Automatic Test Pattern Generation (ATPG) process consists in finding a
set of test patterns, that are to be applied to the tested circuit’s inputs, in order
to detect possibly all faults (under a given fault model). Combinational circuits
and a stuck-at fault model [1] will be assumed in the following text.

There were developed many ATPG algorithms in the past twenty years [18],
[19], [20]. Lately, due to emergence of very fast SAT solvers, SAT-based ATPGs
are becoming more and more popular [4], [5]. In principle, SAT-based ATPGs
transform the fault-free circuit together with a given fault into a SAT instance.
A solution of this instance describes a test pattern detecting the respective fault.

Note 1. In practice, only gates on paths exciting and propagating the tested
fault are considered for the CNF construction. In other words, primary inputs,
internal signals, and gates whose values do not affect detectability of the fault
are omitted in the CNF.

Example 2. The main idea of the circuit-to-SAT conversion is shown in Fig. 1.
A circuit of three gates is shown there. To detect a given fault, two copies of
the circuit are created: the fault-free circuit and the circuit with a fault. In
order to detect the fault, output values of these two circuits must differ. This is
indicated by XORing their outputs (X and X’). Each gate is described by its
characteristic function in CNF and the CNF of the whole circuit is constructed
as a conjunction of these characteristic functions. As a result, the final CNF will
be satisfied for all assignments of values of primary input variables detecting the
tested fault (together with values of internal signals).
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Fig. 1. Faulty and fault-free circuit and its CNF example [5]
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Characteristic functions are derived from logic functions of the gates. For
example, let us consider the AND gate D = A A B. For any two functions P
and @, P = Q is equivalent to (P = Q) A (Q = P). In this way the AND gate
characteristic function is constructed as (D = (AA B)) A ((AA B) = D). Next
we transform this expression to CNF, obtaining (DV A)A (DV B)A(DV AV B).



All gates in Fig. 1 are processed in this way, to obtain the final CNF for detecting
the stuck-at-1 fault on D:

(DVAYAN(DVB)AN(DVAVB)A(CVE)A(CVE)A(XVD)
AMXVEYA(XVDVE)AND)YANX'VD)YANX'VE)A(X'VD' VE)
ANMCVE)YAN(CVE)AN(XVX'VBD)A(XVX'VBD)A(XVX'VBD)
ANX VX'V BD) (1)

If there exists an assignment of variables for which this CNF is satisfied, the
fault is detectable. The assignment of input variables corresponds to the test
pattern detecting this fault. In particular, the example CNF (1) is satisfied by
assignment A=1,B=0,C=1,D=0,D'=1,E=0,X=0,X'"=1,BD =1.
Therefore, the stuck-at-1 at D fault is detected by the pattern (4, B, C) = (101).

2 Random SATSs vs. ATPG SATSs

The difficulty of solving random SAT problems has been thoroughly studied
in the past years. In [10] Selman proposed a metrics of ‘difficulty’ of solving
the SAT problem, in terms of the number of the Davis&Putnam [11] algorithm
steps. This algorithm has been established as a basis of most modern SAT solvers
[9], [21]. He has found that there exists a phase transition, where SAT instances
rapidly turn from satisfiable to unsatisfiable. At this transition (threshold) D&P-
based algorithms suffer from extremely long solving time. Such a threshold was
observed at the clauses/variables ratio near 4.3 for 3-SAT, independently of the
number of variables. At this threshold, approximately 50% of random instances
are satisfiable. An interesting phenomenon is observed for a 2-SAT problem: the
SAT /UNSAT transition is continuous, the 50% satisfiability threshold lies near
the ratio of 1.0, whereas there is no apparent solving time increase near this
threshold. It was shown that 2+p-SAT problems behave like 2-SATs for p < 0.4
and like 3-SAT for p higher [12].

By processing approx. 60 circuits from the ISCAS [22], [23] and ITC’99 [24]
benchmark sets, we have generated more than 180,000 ATPG SAT instances.
By analyzing them we obtained some information on their properties. First,
we analyzed the ratios of clauses of a given number of literals. From the na-
ture of the circuit-to-SAT conversion it is expected that 2-literal and 3-literal
clauses will prevail. This fact was more or less confirmed. The measured average
percentages of K-literal clauses were as follows: 3% of 1-literal clauses, 70% of
2-literal ones, 24% of 3-literal clauses, and 2% of 4-literal ones. Less than 1%
of 5 and more literal clauses was present. The distribution of 2-literal and 3-
literal clauses is illustrated in Fig. 2. 1000 random SAT instances were tested
and numbers of satisfiable instances were counted. Judging from this data we can
say that the ATPG SAT instances are similar to 2++p-SATs, where p = 0.24 [12].
In order to judge on ‘hardness’ of these ATPG SATs we have computed the
clauses/variables ratio, in order to cope with the above-mentioned metrics. The
results were surprising: the average ratio was 2.37, ranging from 1.38 to 3.01.
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Fig. 2. Distribution of 2- and 3-literal clauses in ATPG SATs

Recall that the satisfiability threshold for 2-SAT or a similar 2+p-SAT is near
the ratio of 1.0. L.e., random instances having such clauses/variables ratio should
be mostly unsatisfiable, whereas the ATPG SATSs are mostly satisfiable (99% in
our measurements), since most of faults in the tested circuits are detectable. To
justify this surprising fact, we have generated random instances with charac-
teristics exactly like described in this paragraph, with constantly 300 variables,
while we varied the number of clauses. Experimental results have confirmed the
theory: all instances having the ratio above 1.8 were unsatisfiable. Here num-
bers of satisfiable formulas of 1000 random ones were measured. We have also
generated random ‘clones’ of the real instances, by exchanging real variables in
SAT by random ones. Only 10% of them were satisfiable. This brings us to the
first conclusion: ATPG SAT instances do differ from random instances; they are
satisfiable, even though they shouldn’t be. Up to now, we have no fully relevant
clue to explain this phenomenon. We have measured the connectivity of the SAT
instances, when expressed as graphs [27]. However, we haven’t found a significant
difference between ATPG and random SAT instances of equal parameters.

3 Test Pattern Compression

Recently we have investigated test pattern compression methods based on finding
the best test pattern overlap [2], [25]. Even though these methods use sophisti-
cated compression algorithms, the compression ratio is limited by the structure
of the pre-generated test patterns. Recently we have proposed a method based
on an implicit representation of test patterns [13]. Such an implicit test represen-
tation, like CNF, allows for expressing all test patterns for each fault, without
excessive memory demands. Since we are not limited by pre-generated test pat-
terns, we can theoretically reach the best test compression ratio possible. For
this purpose, a SAT solver producing more than one solution is required. This
problem is referred to as an #SAT or All-SAT [14], [15]. In general, the process is
extremely time-consuming. However, the ATPG SAT instances have the above-
mentioned special properties. A general All-SAT problem can be reduced to a



problem generally known as #(2+p)-SAT [16]. Possibilities of using dedicated
2+p-SAT solvers [26] will be a topic of our further research.

There is another application of the #SAT problem. An ATPG process often
needs to discover faults that are ‘hard to test’ and treats them specially. The
‘hardness’ can be formally seen as the probability that a random test vector
detects the fault. The probability can be estimated, for example by Monte Carlo
simulation. However, the number of solutions of the SAT instance for a fault is
directly related to this probability and determines its testability.

3.1 Solution-Preserving Reductions

Since the ATPG SAT instances are repeatedly solved in the test compression
process, we need to store them most efficiently and maximally simplify them for
the SAT solver. Moreover, more (or all) SAT solutions are required. Therefore,
any reduction of the number of variables will significantly ease the #SAT process.

First, we reduce the number of variables. There often appear 1-literal clauses
in the ATPG SATs. Variables of these literals must be assigned to a constant
value, for the SAT to be satisfiable. Repeated application of 1-literal clause
elimination will identify most of constantly set variables. The rest of them are
detected by fixing the variable to a constant value and solving the SAT problem,
see [26]. Next, we reduce the number of clauses by removing duplicities, absorbed
clauses, and by creating resolution terms [11]. All these transformations preserve
all SAT solutions.

Experimental results show that in the average 57% of variables and 62% of
clauses can be removed this way. After these reductions, the clauses/variables
ratio sinks down to 1.67 (from 2.37), which in still in the unsatisfiability region of
random SATs. The percentage of 2-literal clauses grows up to 86% (from 70%),
whereas the percentage of 3-literal clauses sinks to 11% (from 24%). Notice that
the reduced SAT instances are even simpler to be solved than the unreduced
ones, in terms of both the clauses/variables ratio and the percentage of 3-literal
clauses.

The next outcome of the reduction was determination of the backbone size
[12]. The backbone is a set of variables that are fixed to a constant value for
every SAT solution. We have tried to evaluate the ATPG SAT satisfiability
using the backbone size [12]. The backbone is removed by the reduction, while
its average size was that 57% of variables. For the randomly generated ‘clones’ of
the benchmarks, the backbone size was 77% of variables. This allows us to state
that the ATPG SAT instances are much less constrained than random ones and
therefore their satisfiability is higher [12].

4 Conclusions & Future Work

We have made an exploration of the nature of SAT instances generated by SAT-
based ATPG tools. We have experimentally evaluated parameters of such SAT
instances and found them similar to 24+p-SAT problems, where p = 2.37. This



makes these problems very easy to be solved by state-of-the-art SAT solvers. This
fully justifies already known facts. However, the ‘easiness’ of ATPG SAT was
formerly proven by analyzing the circuits, instead of the actual SAT instances
produced.

Next, we have found that ATPG SAT instances significantly differ from ran-
domly generated ones of equal parameters, particularly in terms of their satisfia-
bility. ATPG SAT instances are mostly satisfiable, even though random instances
of the same parameters should not be. We have proposed, and consequently dis-
proved some theories on the reasons in this paper. The investigation of the
satisfiability phenomenon is still in progress.

Next, we have briefly described the very motivation for these experiments —an
application to a novel SAT ATPG-based test compression method. In contrast to
standard SAT-based ATPGs, more than one or all SAT solutions are required. If
the nature of the ATPG SATs was properly understood, problem specific #SAT-
solvers might be used here. This will be a task of our further investigation.
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