
Techniques for SAT-Based Constrained Test Pattern Generation

Jiří Balcárek, Petr Fišer, Jan Schmidt

Dept. of Computer Science & Engineering

Czech Technical University in Prague, FIT

Prague, Czech Republic
balcaji2@fit.cvut.cz, fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract—Testing of digital circuits seems to be a completely

mastered part of the design flow, but constrained test patterns

generation is still a highly evolving branch of digital circuit

testing. Our previous research on constrained test pattern

generation proved that we can benefit from an implicit

representation of test patterns set in CNF (Conjunctive Normal

Form). Some techniques of speeding up the constrained SAT-

based test patterns generation are described and closely

analyzed in this paper. These techniques are experimentally

evaluated on a real SAT-based algorithm performing a

constrained test patterns compression based on overlapping

of test patterns. Experiments are performed on a subset of

ISCAS’85 and ‘89 benchmark circuits. Results of the

experiments are discussed and recommendations for a further

development of similar SAT-based tools for constrained test

patterns generation are given.

Keywords- testing; implicit representation; SAT; ATPG;

constrained test

I. INTRODUCTION

As the number of analog and mixed signal parts in
electronic devices continuously grows, more and more
attention of researchers is focused on testing of these circuits.
It could seem that testing of the digital circuits is a
completely mastered part of the design flow. In fact, there
are still some areas of digital circuit testing waiting to be
resolved. There is a need to generate constrained test sets,
e.g., to decrease heat dissipation and power consumption
during the test [1] or test application time [2].

The basic idea of general constrained test pattern
generation [3] is shown in Figure 1. There is a set of test
patterns for each fault, by which it is detected. The most
suitable (according to constraints) test pattern or a subset of
the most suitable test patterns is chosen by application of
specific additional constraints.

Figure 1. Basic concept of the constrained test generation

Conventional ATPGs (Automatic Test Pattern
Generators) are based on PODEM [4] or FAN [5]

algorithms. Here test patterns are generated by traversing the
circuit structure, with backtracking employed. In contrast to
this approach, SAT-based ATPGs [6] are searching for the
test patterns by SAT (satisfiability) solving. The instance of
the SAT problem in CNF (Conjunctive Normal Form) is
generated for each fault. This CNF implicitly represents the
whole set of the test patterns detecting a given fault. A test
pattern for a fault is obtained by SAT solving of its CNF. A
fault is untestable if there is not a satisfiable solution of its
CNF.

Our research is focused on a class of algorithms where
the same set of SAT instances is repeatedly processed with
different constraints. Algorithms are forced to handle
repeated processing of the same CNFs, which can cause a
significant time overhead [7]. It is expected, that the majority
of constrained SAT instances are classified as UNSAT
(UNSATisfiable) [7, 8]. It means that they do not contribute
by any sub-solution and must be repeatedly solved with other
constraints.

Our experiments on CNF processing show the
differences (time/memory consumption) between

• their repeated generation,

• storing,

• and storing of reduced CNFs.

Reduction of stored CNFs is made by solution set preserving
SAT transformations [8], e.g., by resolution or propagation
of 1-literal clauses. These reductions do not change the set of
solutions.

 Advantages and disadvantages of these approaches are
discussed over the results and recommendations for further
design of SAT-based constrained test patterns generation
algorithms are proposed.

Next, possibilities of detecting unsatisfiable constrained
CNFs were explored. The UNSAT instances are early
detected by resolving conflicts between the demanded fixed
values of the signals in the circuit and their values obtained
by CNF implications. The SAT solving of these unsatisfiable
instances can be skipped, which can significantly speed up
the algorithm. Such a process is in the paper referred as static
or dynamic UNSAT filter based on the performed type of
implications.

II. PREVIOUS WORK ON CONSTRAINED TEST PATTERNS

GENERATION

Generation of test patterns with some constraints is a
common process in digital designs testing. Test patterns are
constrained to be better compressed, tailored for a scan-

based designs, to speed up of the test generation process, to
avoid illegal test patterns (on primary inputs, buses, tri-state
elements), etc.

Constrained ATPG can be used for a broadside transition
testing [9]. Conventional ATPG based on PODEM [4]
algorithm produces a set of test patterns with a great number
of the test patterns covering functionally untestable transition
faults. These functionally untestable transition faults do not
need to be tested because they do not affect the normal
functionality of the chip (they cannot occur). Nevertheless,
testing the chip for these faults may cause the test fail, and
thus decrease the yield. Thus an ATPG is constrained by a
set of illegal (unreachable) states (circuit’s signals values)
that enable detection of the untestable transition faults. These
constraints are described as a Boolean formula in CNF.
Constrained ATPG fixes variables in the generated test
pattern and at the same time fixes corresponding variables in
the CNF of constraints and checks the CNF for conflicts in
variable settings. A conflict means that the illegal state
occurs; an ATPG performs backtracking and searches for a
different variable setting in the test pattern. Such a
constrained set of test patterns reduces activation of the
functionally untestable transitions, which increases the
quality of the test set and reduces the yield loss due to testing
of the functionally untestable faults.

In [10], an implicit representation of all test sequences for
a fault is used to check for conflicts with rule matrices (of the
cellular automata) during the test patterns generation
constrained to cellular automata. This technique is used for
testing of midsize controllers. The entire set of the test
sequences of the controller under test is implicitly
represented by a BDD (Binary Decision Diagram). The BDD
is explored and only those sequences which can be
reproduced by cellular automata are selected. A concrete
algorithm and the way of application of the constraints were
not described in the paper.

An ATPG for industrial circuits with restrictors [11]
represents another application based on constrained test
patterns generation. Industrial circuits contain a great number
of buses, tri-state elements and other parts, where the set of
permitted signal values is constrained. This structural
information is stored as a set of restrictions, which are used
by an ATPG to prune the search space and speed up the test
patterns generation. This method was implemented as a
conventional FAN algorithm [5] extended by a restrictor
(constraint) concept.

Low power tests are mostly built from pre-generated test
patterns [1] by their reordering. Constraints can be formed by
a heuristic algorithm (test sequence is build incrementally).
The best test patterns to be ordered into the test sequence are
searched instead of the ordering of the pre-generated test
patterns.

Test patterns compression based on a tailoring of test
patterns for a scan-chain [2] is a compression technique
based on the RESPIN architecture [2]. The test patterns
generation process for a scan chain, where suitable test
patterns to be overlapped are produced, is denoted as
tailoring of the test patterns. Suitable test patterns are
produced by a conventional ATPG tool performing dynamic

compaction, while constraints to the circuit primary inputs
are applied.

A similar approach to a compression of test patterns for
RESPIN is the SAT-Compress algorithm [7], which is based
on SAT. A set of test patterns for each fault is implicitly
represented by a SAT instance in the CNF. These CNFs are
not stored in memory, but are generated on-the-fly when
requested by the SAT-Compress algorithm. A test pattern for
each fault is obtained by SAT solving of the CNF instances
with applied constraints (i.e., fixed variables values). The
main difference between the tailoring of the test patterns for
RESPIN and the SAT-Compress algorithm is the implicit
representation of the test patterns set. The SAT-based
approach is known to be much faster in test patterns
generation for hard to be tested faults than standard ATPG
tools, but easily tested faults can create a time overhead [6].
It can be assumed that similar behavior can be observed in
the constrained test patterns generation process.

III. SAT-BASED TEST PATTERN GENERATION

A. Circuit to SAT Transformation

In SAT-based ATPGs, the ATPG problem is reduced to a
SAT problem. Here the fault-free and faulty circuits are
transformed into CNF, to obtain a SAT problem instance.
The solutions of this instance are test vectors detecting the
respective fault. Thus, the CNF implicitly represents the
whole set of test patterns detecting a given fault.

A CNF Φ with m Boolean variables is a conjunction of n
clauses, where each clause is a disjunction of literals. Each

literal is a Boolean variable or its complement. The CNF Φ
is satisfiable, if there is some assignment of variables, for
which all clauses are satisfied.

Figure 2. SAT instance generation for an ATPG

A Boolean variable is assigned to each signal in the
circuit C (Circuit under test). Each gate in the output cone of
the fault to primary outputs (POs) of the circuit is included in

the set H⊆C and all gates in the cone from the observable

POs to the primary inputs (PIs) is included in the set S⊆C

(S=S1∪S2), see Figure 2. For each gate, the CNF Φg is

derived from its characteristic function. The CNF Φc
representing the fault free part of the circuit is constructed as

a conjunction of all CNFs of gates g1,…,gn∈S:

∏
=

=

S

i

gic ΦΦ

1

To generate the test for a fault F, the characteristic

function Φf of the faulty circuit is generated as conjunction

of all CNFs of gates g1,…,gn∈H:

∏
=

=

H

i

gif ΦΦ

1

The SAT instance for a fault F is obtained as a product of

Φc, Φf and a characteristic function of a XOR of the fault-

free and faulty circuit POs ΦXOR:

XORfc
F
test ΦΦΦΦ ⋅⋅=

Finally, the variable of the faulty signal in Φf is fixed on

the faulty value and its image in Φc is complemented. Output

variable of the ΦXOR is assigned by logic value 1 (Boolean
difference must result in 1, if it is detectable fault).

The F
testΦ solutions represents the whole set of test

patterns detecting the fault F. If F
testΦ is unsatisfiable, the

fault F is undetectable. More information can be found in [6,
8].

B. SAT-based ATPG Algorithm

A conventional SAT-based ATPG algorithm [6] can be
described in four steps:

1) Generate a fault list for a given circuit.

2) Pick one fault from the fault list and generate its CNF

3) Solve the SAT problem for this CNF. The solution

represents a test pattern detecting the respective fault. If the

CNF is unsatisfiable, the fault is removed from the fault list

as an undetectable fault.

4) Simulate the test pattern obtained in step 3 and

remove all detected faults from the fault list. Repeat steps 2-

4 until the fault list is empty.

For details on the SAT-based ATPGs, see [6, 12].

IV. THE SAT-COMPRESS ALGORITHM

The presented speedup techniques are experimentally
evaluated on the SAT-Compress algorithm [7]. It performs
compression of the test patterns based on overlapping. The
SAT-compress algorithm searches for the best overlap by
gradually building the bitstream of compressed test patterns
for the scan chain. The basic algorithm is shown in Fig. 3.

1) First, the complete fault list is generated (FL).

2) Redundant faults are removed from the FL.

3) A zero state (all-zero test pattern) or the test pattern

covering any fault from the fault list is used as the initial test

pattern.

4) The pattern is simulated and all detected faults are

deleted from the fault list. The leftmost bit of the pattern

goes to the resulting bitstream.

5) The pattern is shifted left and a DC bit is put to its

rightmost position. This is the mask for the next pattern. The

care bits of the mask constrain the values of primary inputs

(PI) in subsequent SAT instances.

6) To generate the next test pattern having the highest

overlap with the previously generated one, a CNF for each

fault in the fault list is generated, while the primary input

variables are set according the mask. The CNF for a fault is

processed in the order given by its position in the fault list.

If a CNF for a fault is satisfiable for a given assignment

of primary variables, a new test pattern is obtained. If none

of these CNFs is satisfiable, the pattern is shifted one more

bit left, which generates a new mask of SAT constraints.

7) These operations (4-7) are performed while the fault

list is not empty or until all care bits from the mask of

primary inputs setting are shifted out while there is still no

satisfiable CNF (the rest of the faults in FL is undetectable).

1. Generate FL (FL = fault list)
2. Remove redundant fault from the FL
3. TP = 0 (TP = test pattern = all-zero seed)

 mask = DC (DC = don’t care)
4. FL = FL - detected_by_simulation(TP)

 compressed_bitstream += TP[0]
5. mask = TP[1 .. n-1] + DC
6. do {

for each fault in FL {
Create CNF
Apply mask to PIs in CNF
if CNF is SAT {

break the for loop
}

}
TP = CNF_Solution
FL = FL - detected_by_simulation(TP)
compressed_bitstream += TP[0]
mask = TP[1 .. n-1] + DC

 }
7. while (FL!=0)

Figure 3. The SAT-Compress algorithm

V. TECHNIQUES OF SPEEDING UP THE CONSTRAINED

TEST GENERATION PROCESS

A class of SAT-based algorithms for constrained test
patterns generation deals with repeated processing of the
same SAT instances in CNF with different constraints. It can
cause constrained test patterns generation process to be time-
consuming [7]. The constrained test patterns generation
process is analyzed and additional techniques of its speedup
based on the CNFs manipulation and its filtering based on
the CNFs satisfiability are discussed.

A. On-the-Fly CNF Generation vs. CNF Storing

The CNFs generation takes a significant part of the
constrained test patterns generation process. The SAT
instances can be generated on-the-fly, or they can be pre-
generated and stored in memory. Either original CNF are
stored, or the CNFs are simplified by solution set preserving
reductions, to reduce memory requirements.

In the CNF generation on-the-fly approach the CNFs are
repeatedly generated and constrained in the test generation
process. It is obvious that memory requirements are
negligible. On the other hand, such a repeated generation of
CNFs can increase the test generation time. The CNF
generation time has been proved to take a significant part of
the test patterns generation process for SAT ATPGs [6].

In the latter approach, CNFs for each fault are generated
only once in the initial part of the algorithm and stored in
memory. The time overhead incurred by repeated CNF
generation is reduced. However, constraints change in the
test generation process, thus original CNFs (unconstrained)
must be repeatedly loaded into the SAT solver. Loading of
the CNFs into SAT solver should create much less time
overhead, but the number of literals stored in memory can be
unfeasible for larger circuits. The number of stored literals
can be further reduced by solution set preserving SAT
reduction [8], e.g. resolution and propagation of 1-literal
clauses.

B. Filering out the UNSAT CNFs

Constrained test patterns generation algorithms must
solve a great number of constrained SAT instances
repeatedly. It is expected, that the majority of these instances
are unsatisfiable [2, 8] with given constraints (do not produce
a test pattern). In SAT-Compress, 98% of generated CNFs
are unsatisfiable with given constraints on average [8].
Generation and solving of these CNFs can cause a significant
time overhead. That is why we focused on filtering of these
UNSAT instances to speed-up the constrained test patterns
generation.

Filtering out the UNSAT instances can be defined as an
early detection of unsatisfiability, as a conflict between fixed
faulty signal variable value (and its fault-free complement) in
the CNF and implications of the constraints.

Two algorithms for filtering of the unsatisfiable instances
incurred in the constrained test generation process are
described in this subsection. An implication filter using static
implications to detect unsatisfiability is used in the first
approach, which is then extended by dynamic implications in
the second.

1) Static implication filter is based on the observation

that ATPG CNFs consist of 70% of 2-literal clauses and 24%

of 3-literal clauses [8] on average. Each 2-literal clause can

be substituted by two implication rules, e.g., a clause x∨y

corresponds to implications ¬x⇒y and ¬y⇒x. These

implications can be further used to speed up the SAT solving

[12] or to propagate constraints (fixed constraints are

propagated by implications).
The static implication filter uses the implication rules to

fix additional variables in the test pattern. Thus an essential
part is the implication table. It consists of implication rules
created from 2-literal clauses from the CNF of the fault free
circuit. Each row of the implication table consists of the list
of the variables and its values to be set if the row is
referenced. The row is indexed by the name of the variable
and its polarity (two rows for a literal). A variable fixed in
the constrained test pattern selects a row in the implication

table and cause the variables stored in the row to be also
fixed in the constrained test pattern. The implication table is
constructed once in the initial part of the constrained test
generation algorithm.

The constrained test patterns generation algorithm
extended by static implication filter checks unsatisfiability of
the CNF instance to be generated, without need of its
generation or solving. A variable corresponding to the faulty
signal is in the constrained test pattern fixed as a complement
of the faulty signal value. The constraints to be applied are
also fixed in the constrained test pattern and further variables
are fixed by implication rules stored in the implication table.
It means that each fixed variable (by constraints or
implications) addresses the row of the implication table and
the variable or its complement stored in the list of variables
is also fixed. The CNF to be generated is marked as
unsatisfiable if some conflict between value of the variable
to be fixed by implication rule and its value in the
constrained test pattern occurs. The CNF instance is marked
as unsatisfiable and it is skipped without generation and
solving because it can not be satisfied with given constraints.

The static implication filter is a simple method for
unsatisfiability checking of the constrained SAT instances.
Its efficiency depends on the number of constrained
variables. A high number of implication rules (2-literal
clauses) gives us a solid ground for setting of the further
variables in the constrained test pattern and increases our
chances to detect unsatisfiability of the CNF to be generated.
Construction of the implication table and unsatisfiability
checking represents a negligible part of constrained test
generation process and filtering of the UNSAT instances can
cause significant speed-up.

2) Dynamic implication filter is an extention of the

static implication filter. The static implication filter fixes

variables values by implications stored in the implication

table. Additional implications can be found in the CNF of

the fault free circuit (fault free part is the same for CNFs of

all faults). Each 2-literal clause is stored in the implication

table (once in the initial part of the algorithm) as two

implication rules and its removed from the CNF of the fault

free circuit. Thus, the CNF of the fault free circuit consists

of clauses with 3 and more literals only. The constraints to

be applied are fixed in the constrained test pattern and the

CNF of the fault free circuit is searched for clauses which

produce additional implications with given variables values

e.g., the clause ¬x∨y∨z with fixed variable values x=1 and

y=0 implies z=1. Searching for new implications continues,

while there are some changes in fixed variables in the

constrained test pattern.
It is obvious that further variable values can be fixed in

the constrained test pattern. A higher number of fixed
variables increase chances to find conflict and to identify
more unsatisfiable instances than the static filter. The time
consumption of the dynamic filter is much higher than of the
static filter, because the set of the clauses from the fault free
part of the circuit must be generated and searched for new
implications for each constraints applied.

VI. EXPERIMENTAL RESULTS

In the following two subsections, we experimentally
evaluate and compare presented techniques. The
measurements were performed on a CPU Intel Core 2 Duo –
1,8GHz with 1GB RAM.

Experiments have been performed on a subset of smaller
ISCAS’85 [13] and ’89 [14] benchmark circuits, because
memory requirements for CNFs storing were unfeasible for
bigger circuits from those benchmark sets.

Properties of the proposed speedup techniques are
demonstrated on the SAT-Compress algorithm [7] as a
representative of the defined class of algorithms. MiniSat
v1.14 [15] has been used as a SAT solver.

A. On-Fly CNF generation vs. CNF storing

A comparison of the three techniques of CNFs
processing is presented in Table I. The first column of the
table “bench name” represents the name of the benchmark
circuit from ISCAS’85 or ’89. Differences between
processing of the CNFs on-the-fly, storing and storing of the
reduced CNFs are shown in the three columns. These
columns consist of columns “CNF” showing the time spent
by a CNF generation. The next column “SAT” represents the
time spent by a SAT solving of the processed CNFs. Column
“SIM” shows the time spent by simulation and column
“SUM” is the time consumption of the whole algorithm.
Moreover, columns with storing CNFs and storing of the
reduced CNFs consist of the column “Lit. Count” which
represents a total number of literals in the stored CNFs, the
column “Store” showing the time consumption of the CNFs
storing or its reduction and storing. The last row of the table
“Avg.” represents average values of all columns.

First, let us focus on the time spent by the CNFs
generation. Experimental measurements show that
processing of the stored CNF instances is in all cases faster
than their generation on-the-fly and generation of the
reduced CNFs is even faster then generation of the stored
CNFs, e.g., for benchmark circuit c3540 is the time of CNFs
generation 2205 seconds while loading of the previously
generated CNFs stored in the memory is made in 1112
seconds and for reduced CNFs it takes only 436.8 seconds.
The time consumption of the storing and reductions of the
CNFs seems to be negligible in comparison with CNFs
generation and SAT solving. On the other hand, the number
of stored literals grows significantly with the size of the
circuit (number of gates), e.g., for test compression of the
benchmark circuit c3540 having 1648 gates, there must be
3428 CNFs stored, which is 31,439,618 literals (in the
reduced CNF). It is obvious that storing the CNFs is
unfeasible for large circuits, because of memory
consumption. Moreover, storing the reduced CNFs is also
unfeasible for large circuits, because the reduction of the
CNFs size is not as significant as we hoped [8].

The average values confirm previous observations. The
time consumption of the CNFs processing can be
dramatically decreased by storing the reduced CNFs in
memory. An average total time for the CNFs processing
show, that processing of the stored CNFs is in average 1.34
times faster than its processing on-the-fly. Thus it seems that

storing of the CNFs is better than processing of the CNFs on-
the-fly, but the memory consumption of the stored literals
can be unfeasible. The storing of the reduced CNFs, does not
decrease processing time of the CNFs, because solution set
preserving reductions are time consuming for bigger
instances. For example, the time of the reductions and
storing of the CNFs for the benchmark circuit c3540 is 1322
seconds while solving of these CNFs takes only 1730
seconds.

It can be concluded that for small circuits it is better to
store CNFs or reduced CNFs, but this is unfeasible for large
circuits, because of high memory requirements. The SAT
solving times indicate that generation of the CNFs on-the-fly
can be the best way, because it is not bounded by the
memory requirements.

B. Static and Dynamic implication filter

A comparison of filtering techniques is presented in
Table II. The first column of the table “bench name”
represents the name of a benchmark circuit from ISCAS’85
or ’89. Differences between the basic algorithm (SAT-
Compress [7]) and its modification with static and dynamic
filtering are shown in the three columns. These columns
consist of the column “Gen.”, with a total number of the
generated CNFs and “Used.”, showing a total number of the
CNFs giving a satisfiable solution. The next sub-column
“Red” shows the percentage reduction of the number of
processed CNFs referred to a basic algorithm. The sub-
column “Filter” shows the time spent by filtering of the
unsatisfiable CNF instances. The following sub-columns
“CNF”, “SAT”, “SIM” and “SUM” have the same meaning as
in Table I. The last row of the table “Avg.” represents an
average value of the column.

Experimental results show that filtering of the
unsatisfiable CNFs can speed up the process of the
constrained test patterns generation more than 2 times, e.g.,
the total test patterns compression time of the basic
algorithm for the benchmark circuit c3540 is 5784 seconds,
while with a static filer it takes 2793 seconds and with
dynamic filter the total test patterns compression time
decreased to 2472 seconds. The static filter as a simple fast
technique of detecting of the unsatisfiable instances is highly
effective and detects 43% of all the processed unsatisfiable
instances on average. Moreover, the dynamic filter is able to
detect an additional 11% of the unsatisfiable CNF instances
on average, but it is much more time-consuming than the
static filter.

The implication filter seems to be a promising technique.
The static filter can be used for any circuit and grants a
significant speedup of the constrained test generation process
by significantly decreasing the number of the unsatisfiable
CNFs solved. The dynamic filter is better for small circuits,
because searching for dynamic implications is much more
time-consuming.

VII. CONCLUSION

A general class of the SAT-based constrained test
patterns generation algorithms has been stated. Extending

techniques of speedup of these algorithms has been
discussed and evaluated by experimental results.

The differences between the CNFs processing on-the-fly,
processing of the stored CNFs or reduced CNFs have been
discussed and shown on a set of ISCAS’85 and ’89
benchmark circuits. It can be concluded that even if a
generation of the CNFs on-the-fly can be time-consuming, it
is still the best technique of CNF processing in a general
case.

Techniques of the filtering of the unsatisfiable CNFs
based on the static and dynamic implications have been
presented. Our experimental evaluation proved that it can be
a power-full technique for speedup of the SAT-based
constrained test patterns generation.

ACKNOWLEDGMENT

This research has been supported by MSMT under
research program MSM6840770014, by the grant of the
Czech Grant Agency GA102/09/1668 and the grant of the
Czech Technical University in Prague,
SGS11/089/OHK3/1T/18.

REFERENCES

[1] Patrick Girard, Nicola Nicolici, Xiaoqing Wen, "Power-Aware
Testing and Test Strategies for Low Power Devices,"
Publisher Springer Netherlands, ISBN: 1441909273, 2009, p.353.

[2] R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for embedded
testing,” in Proc. ITC, 2001, pp. 530–537.

[3] Balcárek, J., “Implicit Rrepresentations in Customized Testing of
Digital Circuits,” Počítačové architektury&diagnostika (PAD'2010),
Češkovice (ČR), 13.-15.9.2010.

[4] P. Goel, ”An implicit enumeration algorithm to generate tests for
combinational logic circuits”, IEEE Trans. On Computers, 1981, pp.
221-222.

[5] H. Fujiwara and T. Shimono, “On the acceleration of test generation
algorithms,” IEEE Trans. Comput., C-32(12) , 1983, pp. 1137-1144.

[6] Drechsler, R., Eggersglüß, S., Fey, G., Tille, D., “Test Pattern
Generation using Boolean Proof Engines,” Publisher Springer
Netherlands, ISBN 978-90-481-2360-5, 2009, XII, p. 192.

[7] Balcárek, J., Fišer, P., Schmidt, J.: Test Patterns Compression
Technique Based on a Dedicated SAT-based ATPG, Proc. of 13th
Euromicro Conference on Digital Systems Design (DSD'10), Lille
(France), 1.-3.9.2010, pp. 805-808.

[8] Balcárek, J., Fišer, P., Schmidt, J.: On Properties of SAT Instances
Produced by SAT-Based Test Pattern Generators, Proc. of Doctoral
Workshop on Mathematical and Engineering Methods in Computer
Science (MEMICS'09), Znojmo, ČR, 13.-15.11.2009, pp. 3-10.

[9] Xiao Liu, Michael S. Hsiao, "Constrained ATPG for Broadside
Transition Testing," in Proc. 18th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT'03), 2003, pp.175.

[10] F. Fummi, D. Sciuto, "Implicit test pattern generation constrained to
cellular automata embedding," Proc. of 15th IEEE VLSI Test
Symposium (VTS'97), 1997, pp.54.

[11] Konijnenburg, M.H., van der Linden, J.Th., van de Goor, A.J.
“Automatic test pattern generation for industrial circuits with
restrictors“ Microelectronics Journal, 26 (7), 1995, pp. 635-645.

[12] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability,”IEEE Transactions on Computer-Aided Design, 1992,
pp. 4-15.

[13] Brglez, F., Fujiwara, H.: A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortan. Proc. of
International Symposium on Circuits and Systems, pp. 663-698,
1985.

[14] Brglez, F., Bryan, D., Kozminski, K.: Combinational Pro_les of
Sequential Bench-mark Circuits. Proc. of International Symposium of
Circuits and Systems, pp. 1929-1934, 1989.

[15] Eén, N., Sorensson, N.: An Extensible SAT-solver. Lecture Notes in
Computer Science, Theory and Applications of Satis_ability Testing,
vol. 2919/2004, pp. 333-336, 2004.

TABLE I. EXPERIMENTAL RESULTS FOR THE PROCESSING OF CNFS

CNFs on-the-fly Stored CNFs Stored reduced CNFs

CNF SAT SIM SUM Lit. Count CNF SAT SIM Store SUM Lit. Count CNF SAT SIM Store SUM
Bench

name
[s] [s] [s] [s] [-] [s] [s] [s] [s] [s] [-] [s] [s] [s] [s] [s]

c432 1.766 1.7969 0.06 3.625 896428 1.031 1.172 0.063 0.484 2.75 835842 0.5 1.15625 0.063 1.172 2.891

c499 1.047 1.8281 0.03 2.906 1657890 0.641 1.922 0.063 0.813 3.438 1608764 0.391 1.1875 0.078 1.594 3.25

c880 37.2 87.797 12.5 137.5 1121334 27.78 93.88 13.77 0.688 136.1 1053408 10.95 75.4063 9.547 1.734 97.64

c1355 9.656 20.5 0.38 30.53 6787138 7.516 25.17 0.469 4.734 37.89 6593756 4.109 23.9531 0.563 14.59 43.22

c1908 39.72 72.938 13.4 126 9743432 25.58 64.23 11.42 8.75 110 9384959 18.61 60.1719 11.34 46.67 136.8

c2670 212 972.55 3.98 1189 11631239 154.8 1047 4.922 8.703 1215 11151282 107.1 1213.89 6.422 59.88 1387

c3540 2205 3176.1 403 5784 33194406 1112 2201 260.7 42.53 3615 31439618 430.8 1730.28 220.8 1322 3704

c5315 27.19 153.59 17.7 198.5 22987852 16.31 169.6 16.67 15.52 218.1 22437695 16.77 162.172 20.69 50.47 250.1

s420 3.875 8.8438 0.08 12.8 208359 2.031 9.563 0.063 0.125 11.78 146410 1.063 8.51563 0.063 0.703 10.34

s510 0.453 1.25 0.38 2.078 346745 0.156 1.594 0.156 0.219 2.125 266822 0.063 1.26563 0.359 1.531 3.219

s526 1.172 7.25 0.14 8.563 173319 0.516 7.219 0.203 0.109 8.047 130328 0.313 7.0625 0.266 0.375 8.016

s526n 1.094 6.4531 0.17 7.719 173156 0.531 6.141 0.281 0.125 7.078 130075 0.313 6.17188 0.188 0.375 7.047

s641 6.953 21.203 1.17 29.33 539954 5.109 20.72 1.063 0.297 27.19 480537 2.719 19.8438 1.25 1.766 25.58

s713 6.625 18.969 1.27 26.86 674441 4.375 19.22 1.219 0.375 25.19 605613 2.703 18.2031 1.297 2.328 24.53

s820 8.078 34.234 1.97 44.28 451536 5.266 34.92 1.719 0.266 42.17 362319 2.594 33.4531 1.688 3.672 41.41

s832 9.609 37.609 2.81 50.03 462205 4.656 31.94 1.156 0.281 38.03 369538 2.875 30.3438 1.141 3.781 38.14

s838 46.52 126.58 0.2 173.3 705499 27.08 127.5 0.219 0.422 155.3 503436 12.98 109.047 0.391 6.203 128.6

CNFs on-the-fly Stored CNFs Stored reduced CNFs

CNF SAT SIM SUM Lit. Count CNF SAT SIM Store SUM Lit. Count CNF SAT SIM Store SUM
Bench

name
[s] [s] [s] [s] [-] [s] [s] [s] [s] [s] [-] [s] [s] [s] [s] [s]

s953 14.95 62.781 3.95 81.69 1037128 9.625 61.14 3.688 0.625 75.08 820193 3.781 58.8125 3.938 11.78 78.31

s1196 93.02 230.5 15.9 339.4 2134625 60.91 248.5 13.09 1.234 323.7 1884138 25.31 199.391 14.2 16.11 255

s1238 110.5 270.66 16.4 397.5 2350333 59.8 236.5 15.42 1.375 313 2049258 31.23 223.578 15.28 21.02 291.1

s1423 28.03 79.781 5.25 113.1 2635526 16.14 108.8 6.406 1.609 133 2538529 7.828 68.0781 5.125 5.703 86.73

s1488 3.344 27.234 2.06 32.64 1209448 2.234 27.73 1.656 0.734 32.36 1002073 1.016 27.75 1.984 25.58 56.33

s1494 3.906 33.141 2.02 39.06 1217152 2.609 34.84 2.094 0.75 40.3 1007773 1.453 35.5469 2.016 26.14 65.16

Avg. 124.84 237.11 21.94 383.9 4449528 67.22 199.11 15.5 3.94 285.78 4208798.5 29.8 178.92 13.85 70.65 293.24

TABLE II. EXPERIMENTAL RESULTS FOR THE UNSAT FILTERING

Basic algorithm Basic algorithm + static filter Basic algorithm + static + dynamic filter

Gen. Used CNF SAT SIM SUM Red Filter CNF SAT SIM SUM Red Filter CNF SAT SIM SUM
Bench

name
[-] [-] [s] [s] [s] [s] [%] [s] [s] [s] [s] [s] [%] [s] [s] [s] [s] [s]

c432 3517 74 1.77 1.8 0.06 3.63 25 0 1.17 1.36 0.08 2.61 64.5 0.3 0.66 0.58 0.11 1.65

c499 3210 73 1.05 1.83 0.03 2.91 9.1 0.02 0.63 1.77 0.05 2.47 49.6 0.94 0.38 0.86 0.08 2.26

c880 70395 181 37.2 87.8 12.5 137.5 46 0.19 22.3 48.8 11.7 82.99 54.6 5.22 18.4 43.5 12 79.12

c1355 13236 95 9.66 20.5 0.38 30.54 32 0.02 6.28 13.6 0.39 20.29 70.4 3.22 3.16 5.36 0.61 12.35

c1908 35443 162 39.7 72.9 13.4 126 19 0.13 31 59.3 13.5 103.93 47.3 8.81 21 34.7 13.5 78.01

c2670 277808 355 212 973 3.98 1188.98 33 1.45 132 635 3.91 772.36 52 58.2 91 471 4.3 624.5

c3540 717888 347 2205 3176 403 5784 53 4.14 1041 1352 396 2793.14 62.9 254 829 993 396 2472

c5315 26978 289 27.2 154 17.7 198.9 15 0.17 25.1 128 17.9 171.17 55.4 88.2 12.5 60.9 18.6 180.2

s298 2782 93 0.08 0.8 0.05 0.93 47 0 0.14 0.33 0.06 0.53 47.8 0.03 0.06 0.5 0.03 0.62

s382 1959 59 0.2 0.78 0.02 1 46 0 0.16 0.34 0.05 0.55 49 0.08 0.11 0.42 0 0.61

s400 4088 69 0.33 1.7 0.03 2.06 54 0 0.17 0.77 0.02 0.96 54.9 0.14 0.14 0.8 0.03 1.11

s420 17210 93 3.88 8.84 0.08 12.8 39 0.08 2.53 5.42 0.05 8.08 45 0.58 1.98 5.34 0.05 7.95

s444 2359 59 0.19 1 0.05 1.24 58 0 0.13 0.34 0.06 0.53 62.8 0.09 0.05 0.44 0.02 0.6

s510 2899 76 0.45 1.25 0.38 2.08 58 0.02 0.13 0.53 0.27 0.95 59.1 0.16 0.19 0.47 0.31 1.13

s526 15563 134 1.17 7.25 0.14 8.56 49 0.02 0.84 3.36 0.19 4.41 49.8 0.42 0.59 3.91 0.23 5.15

s526n 13901 134 1.09 6.45 0.17 7.71 48 0.06 0.56 3.28 0.16 4.06 49.6 0.38 0.53 3.06 0.3 4.27

s641 20397 136 6.95 21.2 1.17 29.32 37 0.02 3.83 12.8 1.14 17.79 50.2 1.08 3.77 10.2 1.02 16.07

s713 17928 130 6.63 19 1.27 26.9 35 0.02 4.06 11.9 1.31 17.29 46.2 1.59 3.14 10.2 1.38 16.31

s820 51351 206 8.08 34.2 1.97 44.25 38 0.13 5.08 20.3 2.22 27.73 38.6 1.09 5.86 19.4 1.73 28.08

s832 56590 203 9.61 37.6 2.81 50.02 39 0.13 5.66 22.5 2.36 30.65 39.5 0.86 5.91 21.9 2.31 30.98

s838 114070 187 46.5 127 0.2 173.7 40 0.13 29.5 77.9 0.16 107.69 43.6 7.55 27.8 80 0.22 115.57

s953 63076 198 15 62.8 3.95 81.75 59 0.06 6.23 23.5 4.03 33.82 67.7 3.73 5.47 18.2 3.5 30.9

s1196 180005 249 93 231 15.9 339.9 48 0.41 47.3 115 15.7 178.41 59.5 18.3 37.5 86 14.5 156.3

s1238 213134 247 111 271 16.4 398.4 49 0.55 57.9 132 16 206.45 56.3 20.4 48 107 17 192.4

s1423 44892 149 28 79.8 5.25 113.05 52 0.17 14.9 35.5 6.34 56.91 59.8 9.41 12.2 28.2 6.59 56.4

s1488 19053 204 3.34 27.2 2.06 32.6 48 0.08 1.81 13.4 2.11 17.4 50.5 4.27 1.64 12.6 2.09 20.6

s1494 22878 201 3.91 33.1 2.02 39.03 51 0.08 1.81 15.5 2 19.39 54 4.31 1.88 14.4 2.2 22.79

s5378 378447 502 210 2818 188 3216 50 4.25 104 1356 185 1649.25 63.3 274 79.9 951 191 1495.9

s9234 4654444 749 9233.7 65926 7016.4 82176.1 42 134 5535 35681 6986 48336 52.6 4014.7 4729.4 28495 7072.3 44311.4

s13207 10733919 1109 25209 228267 25035 278511 60 228.4 9869 76220 24511 110828.4 64.1 14130 9048.7 67857 24485 115520.7

s15850 11160862 980 36446 304751 30766 371963 52 315.1 17406 140654 30269 188644.1 59.5 25019 14212 114844 30138 184213

s35932 2000941 1419 5529.6 131884 290.4 137704 17 402.4 5154 113974 293 119823.4 20.7 10319 4935 113585 294.5 129133.5

s38584 11131264 2256 19658 478943 17419 516020 62 591.2 7392 175764 17696 201443.2 68.3 138870 6265 144431 17612 307178

Avg. 1274923.8 346 3004.8 36910.5 2461.2 42376.6 42.7 51.03 1421.2 16557 2437.5 20466.8 53.6 5852.1 1224.3 14309 2433.1 23818.5

