
1

Test Patterns Compression Technique
Based on a Dedicated SAT-Based ATPG

Jiří Balcárek, Petr Fišer, Jan Schmidt
Czech Technical University in Prague,

Faculty of Information Technology, Dept. of Digital Design
balcaji2@fit.cvut.cz, fiserp@fit.cvut.cz, jan.schmidt@fit.cvut.cz

Test Patterns Compression

This research has been supported by MSMT under research program MSM6840770014, by the grant of the Czech Grant Agency GA102/09/1668 and the grant of the Czech Technical University in Prague, SGS10/118/OHK3/1T/18.

0010-

010--

101--

01010

10100

100--

00111

0111-

11100

10001

0010-

 010--

 101--

 01010

 10100

 100--

 00111

 0111-

 11100

 10001

0010101001110001

Test bitstream:
 010-- 01010 100-- 0111- 100010010- 101-- 10100 00111 11100

Compressed test bitstream:
 0010101001110001

Test patterns Overlapped test patterns

� SAT-Compress algorithm utilizes a CNF (Conjunctive Normal Form) implicit representation of test patterns

and tries to compress the test patterns by overlapping

� SAT-Compress algorithm does not rely on a pre-generated test set; most suitable test patterns are being

generated on the fly

� The proposed method was compared with seven state-of-the-art test compression algorithms and a

detailed comparison with COMPAS has been made

� Dependences on the initial state and the order of primary inputs show that the compression efficiency

(ratio) can be further increased

� Based on test patterns overlapping

� How can we generate a set of test patterns with maximal overlap?

� Test patterns are not pre-generated by an ATPG (Automatic Test Patterns Generator) but they are

generated on the fly, during the test compression process

� Test patterns set for each fault is represented implicitly in CNF

� Most suitable test patterns to be overlapped are obtained by applying of constraints to the CNF

� SAT-Compress algorithm has been created to show possibilities of implicit representation in CNF

14,2717,29163,23218,56877,81296,05629,397128,046161,040s38584

19,29124,19889,13231,45893,46696,26934,767172,216113,152s38417

5,0961,860--22,744---21,156s35932

12,9878,23432,2269,80526,00032,75812,43849,16358,656s15850

10,4574,16326,00410,58530,880109,77211,28552,741163,100s13207

9,92811,59417,198-22,15227,11112,11219,91225,935s9234

2,4072,14817,332-12,34614,5726,18015,41720,758s5378

SAT-CompressCOMPASRESPIN++EDTFDR CodesIllinois Scan
LFSR

Reseeding
Stat.

Coding
MinTestBench.

� SAT-Compress can obtain similar results such as state-of-the-art compression methods

1) Generate FL (FL = fault list)

2) TP[1..n] = “0..0” (TP = test pattern = all-zero seed)

mask[1..n] = DC (DC = don’t care vector)

3) FL = FL - detected_by_simulation(TP[1..n])

compressed_bitstream += TP[1]

4) mask[1..n] = TP[2..n] + DC[1]

5) do {

for each fault in FL {

Create CNF

Apply mask to PIs in CNF

if CNF is SAT {

break the for loop

}

}

TP[1..n] = CNF_Solution[1..n]

FL = FL - detected_by_simulation(TP[1..n])

compressed_bitstream += TP[1]

mask[1..n] = TP[2..n] + DC[1]

}

6) while (FL!=0 or (mask[1..n]==DC and All_CNF==UNSAT))

Fault-to-CNF Conversion

RESPIN Decompression Architecture

� RESPIN (REusing Scan chains for test Pattern

decompression) is intended for testing systems on

chip (SoCs)

� Based on IEEE 1500 proposed standard for testing

of embedded cores

� Scan chains of different cores are reused for

updating of the content of the tested core scan

chain (SC)

SAT-Compress Algorithm

Comparison with COMPAS algorithm

Dependences of Compression Efficiency

Comparison with Other Compression Algorithms

Conclusion and Future Work

� Two copies of the circuit are created: the fault-free circuit and circuit with a particular fault (faulty circuit)

� Outputs of these two circuits must differ to detect the fault

� Each gate in circuit is described by its characteristic function and CNF is obtained as their conjunction

(X∨∨∨∨¬D)∧∧∧∧
(X∨∨∨∨¬E)∧∧∧∧
(¬X∨∨∨∨D∨∨∨∨E)

CNF of stuck-at 1 fault on D
(X’∨¬D’)∧(X’∨¬E)∧(¬X’∨D’∨E)∧(D’)∧(C∨E)∧(¬C∨¬E)∧

(X∨¬D)∧(X∨¬E)∧(¬X∨D∨E)∧(¬D∨A)∧(¬D∨B)∧(D∨¬A∨¬B)∧

(¬X∨X’∨BD)∧(X∨¬X’∨BD)∧(X∨X’∨¬BD)∧(¬X∨¬X’∨¬BD)

Satisfied for assignment: A=1, B=0, C=1, D=0, D’=1, E=0, X=0, X’=1, BD=1.
Therefore, the stuck-at-1 at D fault is detected by the pattern (A, B, C)=(101).

� Our extensive evaluation shows that the result quality depends on the initial state (initial seed) as much as

on the order of primary inputs (see example for c432)

� COMPAS algorithm compresses pre-generated test patterns by their overlapping

� SAT-Compress algorithm generates compressed test patterns on the fly

� SAT-Compress algorithm can reach better compression ratio than COMPAS

� Compression efficiency seems to be much better for ISCAS’85 than ISCAS’89 benchmark circuits

